1导电塑料的研究进展

1导电塑料的研究进展
1导电塑料的研究进展

1导电塑料的研究进展

导电塑料的研究进展

摘要: 概述了导电塑料的导电原理,阐明了导电塑料的种类和影响导电的因素,分析了不同导电塑料的制备方法、工艺研究等,最后综述了导电塑料的应用领域以及发展趋势,

并进行了展望。

关键词: 导电塑料;导电原理;制备方法;应用

导电塑料广泛应用于半导体、防静电材料、导电性材料等领域,可分为结构型和填充型。结构型导电塑料是高聚物本身或经掺杂之后具有导电性的材料,而填充型导电塑料是本身不具有导电性,但通过加入导电性填充物获得导电性的材料,它是由电绝缘性能较好的合成树脂、塑料和具有优良导电性能的填料及其它添加剂通过混炼造粒, 并采用注射、压塑或挤出成型等方法制得。目前90 %以上导电塑料属于复合型。本文综述的是复合型导电塑料。导电填料一般选用纤维状与片状导电材料,包括金属纤维、金属片材、导电碳纤维、导电石墨、导电炭黑、碳纳米管、金属合金填料等。其中导电炭黑和碳纤维是应用最广的两种导电填料。常用的合成树脂有聚乙烯( PE) 、聚丙烯( PP) 、聚苯乙烯( PS) 、聚碳酸酯( PC) 、乙烯2醋酸乙烯共聚物( EVA) 、丙烯腈2丁二烯2苯乙烯共聚物( ABS) 、尼龙( PA) 、聚酯

(PET) 、聚苯醚(PPO) 、聚硫醚( PPS) 和高性能热塑性塑料合金等。

1 导电塑料的导电原理

1. 1 渗滤理论

复合材料的电导率在一定导电填料浓度范围内的变化是不连续的,在某一温度下材料电阻率会发生突变,表明此时导电粒子在聚合物基体中的分散状态发生了突变 ,即当导电填料达到一定值时,导电粒子在聚合物基体中形成了导电渗滤网络,导电粒子的临界体积分数称为渗滤阀值。

1. 2 有效介质理论

有效介质理论是处理二元无规对称分布体系中电子传输行为的有效方法,无规非均匀复合材料的每个颗粒看作处于相同电导率的一种有效介质中。导电填充粒子能填充满复合材料中所有的空穴和空间,并且绝缘相具有高的绝缘性。

1. 3 量子力学隧道理论

在二元组分导电复合材料中,当高导组分含量较低(在渗滤阀值附近) 时,隧道导电效应对材料的导电行为影响较大。材料导电依然有导电网络形成的问题,但不是靠导电粒子直接接触来导电,而是电子在粒子间的跃迁造成的。隧道效应

能合理地解释聚合物基体与导电填料呈海岛结构复合体系的导电行为。量子力学隧道导电理论能与许多导电复合体系的实验数据相符,证明是讨论和分析复合材料导电行为的有力工具。

2 复合型导电塑料的种类

2. 1 炭黑填充型导电塑料

炭黑是一种天然的半导体,其体积电阻率为0. 1~1 000Ω·cm。炭黑资源丰富、价格低廉,导电性能持久稳定,可大幅改善材料的导电性

(2) 比表面积

比表面积越大,炭黑粒子尺寸越小,单位体积内的颗粒就越多,越容易彼此接触形成网络通路,因此导电性就越高。

(3) 炭黑p H 值

在炭黑生产过程中炭黑表面常形成一些含氧的官能团,它的存在影响了电子的迁移,使导电性下降。表面官能团少的炭黑呈弱碱性或中性,因此,炭黑p H 值高,导电性强。

(4) 渗滤阀值

在导电复合材料中,随着炭黑用量的增加,复合体系的体积电阻率逐渐减小,当炭黑浓度达到某一临界值时,复合体系的体积电阻率突然急剧减小,出现由绝缘体到导电体的突变。这一临界值被称为渗滤阀值。不同的炭黑、不同体系的聚合物、不同的聚合物结构、不同的加工工艺得到的渗滤阀值也不相同。渗滤阀值越小,性能越好。

(5) 增容树脂

导电塑料由于其显著的聚合物基正温度系数(PTC) 效应,是应用最广泛的复合材料之一,这类具有正温度系数的导电材料,在一定的转变温度下,共混材料的电导率会在渗滤阀值附近迅速降低到一极限值(可增大1. 5~8 个数量级) ,产生几个数量级的跳跃,发生从(半) 导体到绝缘体的相互转变。由于炭黑的加入,对材料的加工性能有着显著的影响,为了在导电率和可加工性之间寻得平衡,需要加入增容树脂。李晓林研究不同含量EVA 增容树脂对HDPE/ EVA/ CB 复合材料

性能的影响。炭黑在复合材料中存在于HDPE相中,EVA 的加入增加了复合材料的室温电阻率,同时,提高了材料的熔体指数。当EVA 质量分数在37 %~50 %之间时,可以得到较理想的加工性与导电性能的平衡点。杨波在导电炭黑/聚丙烯(PP) 体系中加入质量分数约20 %的乙烯2丙烯酸共聚物( EAA) 时,炭黑与EAA 有较好的亲和性,可使炭黑选择性分散在EAA 中,体系的

电阻率降低了8 个数量级[9 ] 。目前,炭黑填充型导电塑料领域的研究和开发主要集中在炭黑填料的改性、新型导电炭黑的开发和纳米炭黑等方面。对炭黑改性通常是进行高温热处理,以增加炭黑表面积,并改善表面化学特性;用高温裂解法从石油和焦油中制得的导电炭黑是一种新型导电炭黑。其比表面积达900~1 400 m2 / g ,孔隙率为80 %~90 %,灰分为0. 1 %~1. 5 % ,将其填充到线型低密度聚乙烯中,可使

复合材料的表面电阻率降至(0. 62~1. 10) ×104Ω ,而力学性能基本不变。国外的有美国Cabot公司、哥伦比亚化学公司和日本三菱化成公司生产超细导电炭黑,我国的中橡集团也生产塑料专用导电炭黑。它具有比表面积大、结构高、分散性好和导电性能好等优点。由于采用了特别的生产

工艺和使用了特殊的活性剂,更容易控制炭黑的形态(聚集体结构和空壳状外形等) 。新型炭黑虽然价格相对昂贵,但由于其导电率比普通炭黑高2~3 倍,只要很少的填充量就能满足材料的抗静电要求。因此,对基体聚合物的原有性能影响不大。纳米炭黑粒子比表面积大、

极易团聚。为了

得到单分散的纳米炭黑,目前新的方法是采用具有活性基团的有机小分子原位接枝到炭黑表面,接枝后的炭黑在高密度聚乙烯、聚碳酸酯、聚甲基丙烯酸甲酯中表现出很好的相容性、导电性和透明性。

2. 2 超导炭黑填充型导电塑料

超导炭黑可改善导电塑料的导电性能及加工性能,其效率比普通炭黑填充的导电塑料高出6~8 倍。用超导炭黑来生产抗静电粒料,其性能损失可降至最小,用其生产导电粒料,能克服充模、翘曲和表面质量方面的缺陷。荷兰阿克苏化

学公司生产的超导炭粉,因具有较大的表面积而导电性优异,大约为

传统炉法炭黑的6 倍。荷兰DSM 工程塑料公司生产消除静电的PC 新产品( PC250/ EC) 时,仅用质量分数为5 %的炭黑,表面电阻率达到(0. 11~1. 00) ×104 Ω ,而通常用碳纤维时,则需添加的质量分数为

10 %~15 % ,其表面电阻率才能达到这个数值,大多数普通炭黑无法达到该数值。用该超导炭粉生产的PC250/EC ,其拉伸性能、弯曲性能及热变形温度虽比同等的纤维(填充) 粒料低,但其断裂伸长率和无

缺口悬梁冲击强度是同等粒料的2 倍,而成为它的

一半,容易成型薄断面制品,而且更耐翘曲。陆长征等[10 ] 将来源广泛的乙炔炭黑、国内的超导炭黑及进口超导炭黑对比,从炭黑的性价比考虑,选择了结构高、比表面积大及灰分少的超导炭黑为主要导电填料,采用共混方法制备导电塑料。超导炭黑的使用较大地提高了导电塑料的性能,而采

用共混的方法则可在提高制品性能的同时保证了复合材料的机械性能。

2. 3 碳纤维填充型导电塑料

碳纤维是一种高强度、高模量的高分子材料,不仅具有导电性,而且综合性能良好,与其它导电填料相比,具有密度小、力学性能好、材料导电性能持久等优点。碳纤维的电磁屏蔽性能主要源于自身良好的导电性,其电导率随热处理温度的升高而增大。因此,经高温处理得到的碳纤维的导电率已逐步接近导体,具有较高的电磁屏蔽性能,如经高温处理后的聚苯胺( PAN) 基碳纤维与环氧树脂复合制得的复合材料在频率为500 MHz时的屏蔽效能可达37 dB。虽然碳纤维具有碳素材料的固有特性和金属材料的导电性,但要使导电塑料具有良好的导电效果,需加入较高填充量的导电碳纤维,这会对导电塑料的机械强度与成型加工性能产生不利影响。近年来,对碳纤维用适当的金属包覆,可提高其导电性和电磁屏蔽性,降低它在导电塑料中的填充量。提高导电塑料的

性能,已成为研究热点。如美国已开发出一种高导电性的镀镍碳纤维,其填充的体积分数为12 %~67 % ,密度为1. 27~1. 64 g/ cm3 ,屏蔽效能为40~85 dB ,可用于制造具有电磁屏蔽性能的导电塑料。我国开发的金属包覆碳纤维填充型热塑性导电塑料( PC/ 丙烯腈2丁二烯2苯乙烯三元共聚物) ,其填充的体积分数为10 %~15 % ,屏蔽效能可达47 dB ,可注塑加工成型,同时具有很好的导电性能和力学性能,已应用在汽车配件、电子电器产品的壳体屏蔽材料上。此外,采用金

属包覆由丙烯腈生成的碳纤维,与环氧树脂、ABS、聚烯烃等基体复合后制得的导电塑料,在频率10~800 MHz下测得其屏蔽效能平均为50 dB ,最高达60 dB ;如将体积分数为15 %的镀镍碳纤维与PA、PC 以及改性的PS 树脂复合制成的屏蔽塑料,不仅屏蔽效果好,而且具有优良的耐老化性能,在

60 ℃时其导电性能基本稳定。碳纤维具有较高的强度和模量,导电性能优良,用它来代替炭黑或石墨添加到热塑性树脂(如PA 和PP 等) 中制成的复合型导电塑料的综合性能优良,电阻率低,电磁屏蔽效果好。但由于其价格昂贵,目前碳纤维填充型导电塑料仅限于航空航天等高科技产品中

的应用。

2. 4 碳纳米管填充型导电塑料

碳纳米管自1991 年被Lijima 发现以来,引起了物理、化学和材料等科学界的广泛兴趣。碳纳米管是石墨中一层或多层碳原子卷曲而成的管状纤维,内部是空的,直径在1~20 nm ,分单壁和多壁。由于碳纳米管具有很好的导电性,同时又

拥有较大的长径比,因而很适合作导电填料,相对于其它导电填料,用很少量的碳纳米管就能形成导电网链,且其密度很小,不容易因重力的作用而聚沉。碳纳米管作为导电相和加强相添加到聚合物中使材料的导电性能和力学性能得到改善。但碳纳米管很容易团聚,难以分散。为改善和提高

碳纳米管的相容性和分散性,需对碳纳米管进行化学修饰,使其在端

头部分带上羧基,从而使碳纳米管表面活化。研究表明:碳纳米管加入到PP、聚对苯二甲酸乙二酯( PET) 、聚乙烯和PMMA中可使材料的导电性大幅度提高。碳纳米管加入

到PS 和环氧树脂可使材料的力学性能提高。张景昌制备了纳米导电ABS ,表面电阻和体积电阻率可降到104 Ω和102 Ω以下,这是因为“葡萄状”导电网络的形成[11 ] 。

3 复合型导电塑料的制备

3. 1 导电塑料的三种制备方法

复合型导电塑料根据制备的方法不同,又可分为以下三种:

(1) 表面处理法。是指在塑料表面进行导电处理以达到较高的导电率,包括金属热喷涂法、干法镀层法、湿法镀层法和导电涂层法,经表面处理后的塑料可以使电荷快速泄漏,防止电磁波和射频干扰( EMI/ RFI) 。表面处理法的工艺复杂、成本高,而且表面导电层容易在外力作用下破坏,其应用受到一定限制。

(2) 填料分散复合法。是在塑料内混入导电

填料而制成导电塑料。分散相的形态主要有: ①“海岛”结构,以颗粒状(或棒状或椭球状) 分散; ②分散相纤维化,以大量微细纤维形式分散; ③分散相层化,以片状或细筋状的层状形式分散。颗粒状导电填料主要有炭黑、石墨、金属粉末等,这种导电塑料用在集成电路、医疗、矿山等易燃易爆领域的防静电及面状发热体等;金属粉末填充的胶粘剂中制成的导电胶主要用于微型线路板、光电子线路及集成线路的粘接。纤维状填料主要有碳纤维、金属纤维、镀金属的碳或玻璃

纤维,主要用于电子仪器仪表壳体,起防止电磁信号外泄和EMI/ RFI 屏蔽作用。分散相的层状分散技术是目前被广泛重视的新技术,是将两种或两种以上的聚合物复合组成多组分体系,使聚合物呈薄层状分散,形成类似微细筋状分布的多层结构,使聚合物合金呈现优异的性能。

(3) 导电填料层积复合法。是将金属网、板、丝毡等作为中间层,两侧再层压上塑料或利用双层平行挤出方法制成一层为导电树脂,另一层为普通树脂的双层制品,用作电磁干扰/ 射频干扰( EMI/ RFI) 屏蔽,控制和减小无线电噪音、电气

噪音或者无线电干扰。EMI 会影响广播接收、电视接收以及导航设备的准确性,更严重者,甚至会干扰医疗设备、雷达设备和汽车系统。目前该技术正处在发展阶段[12 ] 。

3. 2 填料分散复合法制备工艺

导电塑料的配方确定以后,共混方法的选择和工艺控制是影响电性能的关键。为了得到电性能均匀的产品,炭黑填充导电塑料的加工采取如下四种方式。

(1) 双螺杆造粒工艺过程

先将聚合物和偶联剂均匀混合,然后加入导电炭黑及其它助剂,将上述混合物通过双螺杆挤出造粒得到成品。双螺杆造粒时采用了强制下料,由于炭黑含量多,体积大,下料不均匀,有时局部炭黑过多,使下料困难甚至堵塞出料孔,这些现

象造成制品导电性不均匀,为此采取如下措施:第一,反复造粒对提高

混合料的熔体指数是很有效的;第二,采取炭黑分次加入方法,一般采取两次加入造粒可使加工性能得到改善,且制品均匀性好;第三,采取树脂分次加入方法,留取少量树脂在挤出过程中加入可使熔融挤出的流动性变好或添加硬脂酸锌挤出的流动性变好;

(2) 开炼机碾压混合

这种方法有利于在配方中添加更多的炭黑。用此方法应注意的是碾压次数及时间要加以控制,否则炭黑结构会被破坏,影响其导电性。(3) 双辊压延与双螺杆造粒配合应用

由于炭黑飞扬且同粒料混合时下料不均匀,为改善环境,根据试验得出以下较理想的工艺路线。用该工艺路线生产的破碎料是浓缩的,可根据需要调整浓缩料的含量来达到生产电阻值不同的系列化产品。这样改善了造粒时生产环境,使

颗粒电性能均匀。将部分树脂、偶联剂、改性剂和部分炭黑混合,通过双辊压延,加入其余炭黑成片,然后破碎,将破碎料和剩余树脂混合,通过双螺杆造粒,切粒得到成品。李维新通过双辊压延制备了EVA/ L EPE/ 炭黑发泡复合材料。也有通过双阶双螺杆挤出造粒,第一阶段相当于双螺杆熔融共混,将导电炭黑与树脂助剂等混合均匀;第二阶段是单螺杆造粒,使得导电炭黑的分散性更好[13 ,14 ] 。

董先明用原位聚合法制备炭黑/ 聚甲基丙烯酸酯导电复合材料,由于炭黑的阻聚作用,当复合材料的炭黑含量增加时,均聚物的数均分子量呈下降趋势,多分散性系数变大,而且炭黑粒子表面发生了接枝聚合反应,这有利于炭黑粒子在聚合物基体中的分散。当聚合物基体的

玻璃化温度较高时,复合材料渗滤阀值较低[15 ] 。将部分树脂、偶联剂、改性剂和部分树脂在高速混合机中混合,在双辊机中压延并加入剩余炭黑成片后,破碎的工程中加入其余树脂,将破碎料通过双螺杆挤出造粒,得到导电PP 颗粒[16 ] 。

(4) 导电泡沫塑料加工

李茁实采用熔融共混方法制备PVC/ 炭黑复合物泡沫体,当导电炭黑的质量分数为10 %时,泡沫体(以偶氮二甲酰胺为发泡剂,模压发泡法制备的导电塑料) 具有良好的室温电阻值和负温度效应(N TC) ,得到的泡孔结构及泡沫性能较理想;过氧化二异丙苯(DCP) 质量分数为

1 % ,偶氮二甲酰胺(AC) 质量分数为

2 %是较好的配方量,其导电泡沫阻温特性较好; PVC/ 炭黑导电泡沫在升温过程中,主要表现出N TC 效应,当炭黑质量分数较大( > 1

3 %) 时,存在较弱的PTC 效[17 ] 。将炭黑、胶粘剂和表面活性剂充分搅拌制成导电胶液,把聚氨酯泡沫塑料裁成所需尺寸,加入浸泡,反复加压、烘干,制得导电聚氨酯泡沫塑料[10 ,18 ] 。

4 导电塑料的应用

4. 1 抗静电以及电磁屏蔽上的应用

导电塑料是一种理想的抗静电、电磁屏蔽材料。静电荷的积累与释放、电磁干扰及无线电波干扰是电子行业面临的两大难题。静电荷的积累与释放会使各种精密仪器、精密电子元件被击穿而报废。电磁干扰及无线电干扰会直接或间接引发电子元器件误动作或系统失灵。因此,在电子设备、集成电路等精密元器件的涉及、生产、储运、运行

过程中必须考虑抗静电和电磁屏蔽问题。金属具有优良的导电性,是传统的抗静电、电磁屏蔽材料,但金属材料存在密度大、价格贵、难加工、易腐蚀、抗静电和屏蔽性能难以调解等缺点。一般工程塑料虽然具有质量轻、价格低、耐腐蚀、易成型的特点,但是一般为绝缘体,易积累静电荷,且对电磁场几乎无任何屏蔽作用, 尤其是对1GHz 以下和低频电磁波几乎是完全“透过”,因此无法应用于抗静电、电磁屏蔽领域。导电塑料具有普通塑料的优点,同时拥有类金属的导电特性,是一种理想的抗静电、电磁屏蔽材料,在电子、电器领域中可广泛用作集成电路、晶片、传感器护套等精密电子元件生产过程使用的防静电周转箱、托盘、晶片载体、薄膜袋、导电钳、电焊把、抗静电滑轮等。中、高压电缆中使用的半导电屏蔽,防爆产品的外壳及结构件,如:煤矿、油船、油田、粉

尘及可燃气体等场合中使用的电器产品的外壳及结构件。

全国统配煤矿自1991 年1 月起全部使用阻燃抗静电运输带、安全网、导风筒、电缆等,这为阻燃抗静电材料的研究开发和应用起到了极大的推动作用。但目前国内市场上塑料阻燃抗静电管材专用料尚不多见,专用料和管材都具有较高的附加值。如果能将现有的聚乙烯( PE) 和超高分子量聚乙烯(U HMWPE) 管材进行阻燃和导电方面的改性,相信在矿业和要求抗静电和阻燃的领域将会有广阔的研发空间。复合型电磁屏蔽塑料是目前普遍采用并具有广阔发展前景的一种电磁屏蔽材料[20 ] ,它不仅具有较好的屏蔽效果,而且工艺简单、成本低廉。复合型电磁屏蔽塑料在不同目的和使用条件的工程第2 期陈勇,等.

导电塑料的研究进展·79 ·中应用,往往需要兼顾各方面的因素进行综合设计。开发综合性能好、方便使用且成本低的复合型电磁屏蔽塑料成为当前研究的重点[21 ] 。

4. 2 聚合物基正温度系数(PTC) 电阻复合材料

聚合物基正温度系数( PTC) 电阻复合材料由导电粒子与聚合物复合而成,其聚合物基体的熔融温度常决定复合材料电阻突变的温度区间。高密度聚乙烯PTC 复合材料的电阻突变区间主要集中在125~140 ℃,而低密度聚乙烯复合材料则

集中在80~120 ℃。管材连接件,用挤出成型方法制成导电塑料环,置于被焊接的塑料管中,对其通电后,利用发热特性对塑料管材加热,实现对塑料管的焊接[22 ] 。

4. 3 塑料芯片

在微芯片的开发上,塑料芯片有可能取代硅芯片。塑料芯片的价格仅为硅芯片的1 %~10 % ,极具市场竞争力。目前国际上已研制出集成了几百个电子元器件的塑料芯片,采用这种导电塑料制造的新款芯片可以大大缩小计算机的体积,提高计算机的运算速度。到2004 年,全球塑料芯片行业的年平均销售额达到一百亿美元,塑料芯片成为未来极具发展潜力的新一代芯片。

4. 4 便携式电源

在便携电源开发上,导电塑料用途广阔。传统的镍和铅等重金属电池逐渐无法满足轻薄小巧的移动电话市场要求。美、德、日等国家已先后推出了小巧轻薄的导电塑料电池。同时,与易造成环境污染的重金

属电池相比,使用导电塑料电池

更有利于环境保护。因此,未来塑料电池可应用在电动汽车上使汽车真正实现“零污染”。导电塑料作为钒电池集流板的研究:以聚乙烯为基体、炭黑为导电填料制备导电塑料板,考查该导电塑料板的导电性能和机械性能;制作由导电塑料板、铜网和聚丙烯腈基石墨毡组成的复合电极用于钒电池的正极和负极,组装钒电池;体积电阻率为6.

2 ×10 - 2 Ω·cm ,集流板表面无宏观改变,实验电池无漏液现象[2

3 ] 。

4. 5 显示器领域

在显示器领域,旋转覆膜是一种很先进的技术,它可以提供厚度仅为100~200 nm 的塑料薄膜,几近完美。制作时,把溶液倒在处于旋转状态的基底上,立刻就可以形成同质薄膜。当溶剂蒸发之后,塑料薄膜就紧绷在基底上,成为一层导电

或半导电的材料。在飞利浦公司的实验室里,聚合物发光二级管和塑料芯片的样品都是使用旋转覆膜的方法制作的。可以设想,如_______果以这种方式制作大面积的聚合物半导体就可以生产聚合物显示器。导电塑料制造的显示屏可以用于移动电话、太阳能电池和微型电视等。

5 结语

展望未来,导电塑料的发展趋势为: (1) 综合考虑成本、加工方便、屏蔽性能的稳定性、环保及回收等因素,未来导电塑料的研究方向是以高导电性的导电填料开发为主,并以降低添加量、提高导电能力、

降低填料对基体工程塑料性能影响及改善加工适应性为主要研究及开发方向; (2) 加强导电塑料导电机理研究。完备和成熟的导电机理·80 ·弹性体第18 卷不仅可以为导电塑料的配方和生产过程的工艺参数控制提供理论指导而且还会为研究和开发熔点高、软化点高、热稳定性好、抗静电性能优异的新型碳材料,并使产品向功能化、系列化方向发展提供新的动力和指导方向。

参考文献:

[1 ] 陈立军,方宏锋,张欣宇,等. 碳系填充型导电塑料的研究进展[J ] . 合成树脂及塑料,2007 ,24 (2) :78~81.

[ 2 ] 杨明锦,陆长征. 结构型与复合型导电塑料研究进展[J ] . 塑

料,2005 ,34 (3) :15~18.

[ 3 ] D Kumar , R C Sharma. Advances in conductive polymers [J ] . European Polymer Journal ,1998 ,34 (8) :1 053~1 060. [ 4 ] Lu Jinrong , Wengui , Chen Guohua , et al . Piezorealstive

maeterials f rom firected shear induced assembly of graphite nanosheet s in polyet hylene [J ] . Advanced Functional Mate2 rials ,2005 ,15 (8) :1 358~1 363.

[ 5 ] S Pauson ,A Helser ,M Buongiomo Nardelli. Tunable resist2

ance of a carbon nanot ube - graphite interface [J ] . Science ,

2000 ,290 :1 742~1 744.

[ 6 ] Ebbesen T W,Lezec H J ,Hiura H ,et al . Elect rical conduc2

tivity of individual carbon[J ] . Nature ,1996 ,382 :54~56. [ 7 ] 李莹,王仕峰,张勇,等. 不同炭黑对聚丙烯/ 炭黑复合材料导电性能的研究[J ] . 中国塑料,2004 ,18 (10) :63.

[ 8 ] 李晓林,斐志强,张立群. EVA 对HDPE/ EVA/ CB 导电复

合材料性能的影响[J ] . 塑料,2007 ,36 (2) :5~8.

[ 9 ] 杨波,林聪妹,陈光顺,等. 导电炭黑在聚丙烯/ 极性聚合物体系中的选择性分散及其对导电性能的影响[J ] . 功能高分

子学报,2007 ,20 (3) :231~236.

[ 10 ] 陆长征,杨明锦. 炭黑填充导电塑料的研究[J ] . 塑

料,2000 ,

29 (1) :32.

[ 11 ] 张景昌,刘敏,杨林峰. CB/ ABS 导电复合材料导电性能的

影响因素[J ] . 北京理工大学学报,2005 ,9 (25) :35~37.

[ 12 ] 彭竹琴. 塑料导电改性原理及应用[ J ] . 绝缘材料, 2004 , (6) :57~59.

[13 ] 李继新,张国. 炭黑填充EVA/ LDPE 体系发泡复合材料导

电性能的研究[J ] . 塑料,2007 ,36 (4) :8~12.

[ 14 ] Mit suhiro Kataoka , Torum asuko. PTC characteristics of

( TiC/ polyet hylene ) conductive composites in relation to t heir particle - filled st ructures[J ] . Elect rical Engineering in

J apan ,2005 ,152 (2) :1~9.

[ 15 ] 董先明,罗颖,张淑婷,等. 原__

电子封装用导电胶的研究进展与应用

电子封装用导电胶的研究进展与应用 摘要:随着微电子工业的发展,导电胶替代传统的锡铅焊料已经成为一种发展趋势。本文介绍了导电胶的组成和分类、导电机理及国内外导电胶的研究现状和发展方向。着重介绍了各向异性导电胶(ACAs)的研究现状和未来的发展。 关键词:各向异性导电胶;电子组装;研究发展。 The Recent Development and Application of Anisotropic Conductive Adhesives for Eletronic Packaging Abstract: As the development of electronic industry, conductive adhesives have been a good alternative available to replace traditional Pb/Sn solder. This paper introduces the ingredients and classification of conductive adhesives, as well as the electric conduction mechanism and the recent research progress and development. This paper highlights the recent research progress and future development. Keywords: ACAs, Electronic Packaging, Research Progress. 1 引言 随着科技发展,电子产业突飞猛进,但是它给人带来便利的同时也给人带来了危害。如许多电子电气产品中铅、镉、汞、六价铬、聚溴联苯(PBB)和聚溴二苯醚(PBDE)等是多种有毒有害物质。其中作为焊接用的锡铅焊料就是污染源之一。1986—1990 年, 美国通过了一系列法律禁止铅的应用, 瑞典政府提议在2001 年禁止在电路板上使用含铅焊膏, 日本规定2001年限制使用铅。[1]欧盟 1998年 4月提出的WEEE /Ro HS指令,已于 2003年 2月 13日生效。该指令要求进入欧盟的电子、电气产品须满足以下要求:(1)有毒有害物质, 包括铅、镉和汞等,含量不能超过法律规定值; (2)废弃物的处理要符合法律规定,否则不能进入欧盟市场。[2,3] 此外,随着电子产品向小型化、便携化方向发展。器件集成度的不断提高,传统的Pb/Sn焊料存在一系列材料及工艺问题,已经不能满足工艺要求,迫切需要开发新型连接材料。目前,各国都在抓紧研究Pb/Sn合金焊料的替代品。 其中,在微电子组装领域,导电胶膜是代替传统的Pb/Sn焊料的选择之一。与传统的Ph/Sn焊料相比,导电胶可以制成浆料,实现很高的线分辨率,而且导电胶工艺简单,易于操作,可提高生产效率,同时也避免了锡铅焊料中重金属铅引起的环境污染。 2 导电胶的组成 导电胶一般由预聚体、稀释剂、交联剂、催化剂、导电填料以及其他添加剂组成。 其中预聚体作为主要组分含有活性基团,为固化后的聚合物基体提供分子骨架。预聚体也是粘结强度的主要来源。导电胶的力学性能和粘结性能主要是由聚合物基体决定。稀释剂的作用是用来调节体系粘度,使之适合工艺要求。稀释剂

塑料管材行业现状和发展趋势分析

塑料管材行业现状和发展趋势分析 (建筑材料工业技术情报研究所100024 王政) 塑料管种类:1)硬质聚氯乙烯(UPVC)管、2)氯化聚氯乙烯(CPVC)管、3)聚乙烯(PE)管、4)交联聚乙烯(PE-X)管、5)三型聚丙烯(PP-R)管、6)聚丁烯(PB)管、7)工程塑料(ABS)管、8)玻璃钢夹砂(RPM)管、9)铝塑料复合(PAP)管、10)钢塑复合(SP)管,等等、塑料管材管件生产。使用是跨行业跨部门的系统工程。原材料属石油化工。提供所需专料,制造归另行安排工和建材工业(作为新型建材),产品使用在建筑(住宅)和农业及城市基础设施方面。 2000年世界塑料材料总产量16300万吨,比1999所增长3.6%。中国2000年合成树脂1080万吨,近十年合成树脂的产量年平均增长率高达15%以上。2001年我国塑料制品产量超过1000万吨,(含规模以-F企业全部产量约为2200万吨)2002年1~7月规模以上企业塑料制品产量为762.75万吨,同比增长13.9%。我国塑料制品加工业的迅猛发展,取得举世瞩目的辉煌成就得益于塑料制品生产所用原、辅材料生产行业以及加工机械设备和模具制造行业的快速发展,同时塑料制品加工业快速发展也极大地促进了相关行业的发展,以塑料制品加工行业为核心的合成树脂、助剂与添加剂生产及加工机械和模具制造等行业相互促进、协同发展,构筑成了中国塑料工业发展的宏伟蓝图。 主要原料供应情况: 2001年我国生产乙烯原料481万吨,同比增长2.3%、2002年1-7月规模以上企业塑料树脂及共聚物累计产量为756.21万吨,同比增长9.5%,乙烯原料产时298.60万吨,同比增长5.2%。我国塑料国产原料供不应求,缺口靠进口弥补。我国乙烯生产状况,一是乙烯数量不能满足市场需求,近5年进口高达50%;二是品种质量不能满足市场需求,特有品种,专用料大量依靠进口,三是乙烯规模远未达到世界经济规模水平。我国乙烯当量需求将以8.5%的速度增长,至2005年我国乙烯的总当量需求量将达1500万吨,经过改造扩建和新建乙烯生产能力达到900万吨以上,自给率达60%。聚乙烯生产能力259.3万吨/年(低密度70.3万吨、高密度85.5万吨、线性低密度103.5万吨)。聚乙烯世界生产能力5980万吨/年。2005年合成树脂专用料国内市场满足率达到40%以上。塑料原材料消费情况见下表。 中国1999/2000年各种塑料材消费量及增长率 加入世界贸易组织的影响分析:

聚噻吩类导电聚合物的研究进展

聚噻吩类导电聚合物的研究进展 姓名:丁泽 班级:材化12-3 学号:1209020302

摘要 π-共轭聚合物被认为是很有发展前景的材料,因为它拥有独特的光电特性,可以被广泛的应用于太阳能电池(PSCs),电致变色器件,传感器,聚合物发光二极管(PLEDs)等各种领域。这些电活性与光活性聚合物通常是基于噻吩,吡咯,苯,芴或咔唑等芳环、芳杂环等单元的聚合物。在大量的电致变色材料中,噻吩类聚合物由于它们的高电子导电性和好的氧化还原特性,以及在可见与红外区域,快的响应时间,显著地稳定性和高的对比率而成为一类重要的电致变色共轭聚合物。更重要的是,通过聚合物链结构改动,噻吩类聚合物拥有容易的禁带可调性,可展示不同的电致变色特性。 关键词:π-共轭聚合物;电化学聚合;共聚;导电聚合物;

一、导电聚合物简介 1.1导电聚合物的分类 导电高分子材料包括结构型导电高分子材料和复合型导电高分子材料两大类型。 复合型导电高分子材料是将各种导电性物质以不同的方式和加工工艺(如分散聚合、层积复合、形成表面电膜等)填充到聚合物基体中而构成的。该类材料通常是填充高效导电粒子或导电纤维,较普及的是炭黑填充型和金属填充型。复合型导电高分子材料在技术上比结构型导电高分子材料具有更加成熟的优势。 结构型(又称作本征型)导电聚合物是指聚合物本身具有导电性或经掺杂处理后具有导电性的聚合物材料。这种高分子材料本身具有“固有”的导电性,由其结构提供载流子,一经掺杂,电导率可大幅度提高,甚至可达到金属的导电水平。如聚乙炔、聚吡咯、聚苯胺、聚噻吩、聚苯硫醚、聚对苯撑等均属于结构型导电高分子材料(如图1-1)[1]。结构型导电聚合物是目前导电聚合物研究领域的重点。

区别几种常见塑料管的特点及用途

区别几种常见塑料管的特点及用途 PVC管:具有较好的抗拉、抗压强度,但其柔性不如其他塑料管,耐腐蚀性优良,价格在各类塑料管中最便宜,但低温下较脆粘接、承插胶圈连接、法兰螺纹连接用于住宅生活、工矿业、农业的供排水、灌溉、供气、排气用管、电线导管、雨水管、工业防腐管等 CPVC管:耐热性能突出,热变形温度为100℃,耐化学性能优良粘接、法兰螺纹连接热水管 PE管:重量轻、韧性好,耐低温性能较好,无毒,价格较便宜,抗冲击强度高,但抗压、抗拉强度较低热溶焊接、法兰螺纹连接饮水管、雨水管、气体管道、工业耐腐蚀管道 PP管:耐腐蚀性好,具有较好的强度、较高的表面硬度、表面光洁度,具有一定的耐高温性能热溶焊接、法兰螺纹连接化学污水、海水、油和灌溉的管道,用于室内混凝土地坪作采暖系统加热管 ABS管:耐腐蚀性优良,重量较轻,耐热性高于PE、PVC,但价格较昂贵。粘接、法兰螺纹连接卫生洁具用下水管、输气管、污水管、地下电缆管、高防腐工业管道等 PB管:强度介地PE和PP之间,柔性介于LDPE和HDPE之间,其突出特点是抗蠕变性能(冷变形),反复绕缠而不断,耐温,化学性能也很好热熔焊接、法兰螺纹连接给水管、冷热水管、燃气管、地下埋高管道 GRP管:优良的耐腐蚀性、质轻、强度高、可设计性能好承插胶圈连接、法兰连接广泛用石油化工管道和大口径给排水管 浅谈各种塑料管道的特点及应用 摘要:本文简明地对硬聚氯乙烯以(UPVC)、芯层发泡管(PSP)、硬聚氯乙烯消音管、塑料波纹管、氯化聚氯乙烯管(CPVC)、高密度取乙烯管(HDPE)、交联聚乙烯管(PEX)、钢塑复合管、铝塑复合

管(PAP)、无规共聚聚丙烯管(PPR)、聚丁烯管(PB)等几种常见塑料管的发展形成,特点(优缺点)以及应用范围进行了阐述,以期对各位读者在选择和利用塑料管时,能提供一点帮助。 关键词:塑料管硬聚氯乙烯管UPVC 芯层发泡管PSP 塑料波纹管 塑料管与传统金属管道相比,具有自重轻、耐腐蚀、耐压强度高、卫生安全、水流阻力小、节约能源、节省金属、改善生活环境、使用寿命长、安装方便等特点,受到了管道工程界的青睐。为此,许多发达国家塑料制品商与管道工程界进行广泛的合作,投入了大量人力、物力和财力进行全方位的开发研究,使原料合成生产、管材管件制造技术、设计理论和施工技术等方面得到了发展和完善,并积累了丰富的实践经验,促使塑料管在管道工程中占据了相当重要的位置,并形成一种势不可当的发展趋势。 塑料管道是我国”十五”期间重点推广应用的化学建材之一。自国家科委将建筑排水用硬聚乙烯管应用技术列入“六五”科技攻关项目以来,我国塑料管的发展在经历了研究开发和推广应用的阶段之后,正进入产业化高速发展的第三阶段。全国化学建材协调组提出:到2005年,塑料管道在全国各类管道中市场占有率达到50%。 笔者收集整理了几种我们使用比较广泛的塑料管的特点,希望对各位设计、监理、施工等建筑业同行在选择和利用塑料管时能有所帮助。 1、硬聚氯乙烯管(UPVC) 在世界范围内,硬聚氯乙烯管道(UPVC)是各种塑料管道中消费量最大的品种,亦是目前国内外都在大力发展的新型化学建材。采用这种管材,可对我国钢材紧缺、能源不足的局面起到积极的缓解作用,经济效益显著。 1.UPVC管具有以下特点: 1.1.1 化学腐蚀性好,不生锈;

聚苯胺的制备与导电性的观察

实验七:聚苯胺的制备与导电性的观察 姓名:辛璐学号:PB09206226 日期2011年11月10日 目录 1.1前言﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍P2 2.1关键词﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ P2 3.1实验中的具体概念及部分产品的说明﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍P2 3.1.1.共轭聚合物﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ P2 3.1.2.化学氧化聚合﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ P2 3.1.3.电化学聚合﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ P2 4.1实验的具体说明﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ P2 4.1.1对于功能高分子材料的认识和发展过程﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍P2 4.1.2对于共轭化合物的具体说明﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ P2 4.1.2.1共聚化合物作为导电聚合物使用的普遍缺﹍﹍﹍﹍﹍﹍﹍﹍ P2 4.1.2.2聚苯胺具有的优点﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ P2 4.1.2.3聚苯胺的应用 4.1.3 :本实验制备原则的部分说明﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍P2 4.1.3.1化学氧化聚合的一些条件 4.1.3.2本反应采用的方式 4.1.3.3对于聚苯胺溶解性的部分说明 4.1.3.4对于聚苯胺导电性的影响因素﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍P3 5.1实验的仪器药品以及其物理常数﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ P3 5.1.1实验仪器 5.1.2实验药品 5.1.3物理常数 6.1实验的具体步骤﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ P4 6.1.1溶液聚合法 6.1.2乳液聚合法 7.1实验现象以及实验中出现现象及其本质的解释说明﹍﹍﹍﹍﹍﹍﹍﹍P5-P6 8.1 思考题与解答﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍P6 附录 9.1 对于部分相关药品及专业名词的查找﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍P7 9.1.1苯胺﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍P7-P8 9.1.2聚苯胺﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍p8 9.1.3十二烷基苯磺酸﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍P9 9.1.4 二甲苯﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍P10

什么是深隆导电胶以及它的研究现状

什么是深隆导电胶以及它的研究现状 北京瑞德佑业王雅蓉I8OOII3O8I2 1 SLONT 深隆导电胶的研究现状 1.1纳米SLONT 深隆导电胶 目前广泛应用于SLONT 深隆导电胶中的导电填料一般为C 、Au 、Ag 、Cu 和Ni 等。Au 的导电性能较好,并且性能稳定,但其价格较高;Ag 的价格比Au 低,但在电场作用下会产生迁移等现象,从而降低了导电性能和使用寿命;Cu 、Ni 价格低廉,在电场作用下不会产生迁移,但温度升高时会发生氧化反应,导致电阻率增加;碳粉在长时间高温条件下使用时容易形成碳化物,致使电阻变大、导电性能下降,并且其受环境影响较大。纳米碳管具有较强的力学性能,将其作为导电填料,可以明显增加SLONT 深隆导电胶的拉伸强度(1 700 MPa );另外,纳米碳管的管状轴承效应和自润滑效应,使其具有较高的耐摩擦性、耐酸碱性和耐腐蚀性能,从而提高了含纳米碳管SLONT 深隆导电胶的使用寿命和抗老化性能[1-2] 。 [3] 制备了导电性能极好的双组分纳米银/碳复合管SLONT 深隆导电胶。研究结果表明:该SLONT 深隆导电胶的体积电阻率低于10 -3 Ω·m ,剪切强度高于150 MPa ,剥离强度高于35 N/cm ;与传统导电银粉胶粘剂相比,该SLONT 深隆导电胶可节省银原料30%~50%. [4] 等制备了以碳纳米管和镀银碳纳米管为导电填料的各向同性SLONT 深隆导电胶(ICA )。研究结果表明:以碳纳米管作为导电填料,当准(碳纳米管)=34%时SLONT 深隆导电胶的最低电阻率为 2.4×10 -3Ω·cm ,当准(碳纳米管)=23% 时SLONT 深隆导电胶的剪切性能最好;以镀银碳纳米管为导电填料,当准(镀银碳纳米管)=28% 时,SLONT 深隆导电胶的最低电阻率为2.2×10 -4Ω·cm ;当SLONT 深隆导电胶中分别填充碳纳米管和镀银碳纳米管时,SLONT 深隆导电胶的抗老化性能均较好,在85 ℃/RH85% 环境中经过1 000 h老化测试后,SLONT 深隆导电胶的体积电阻率和剪切强度的变化率均低于10%. [5] 等研究了碳纳米管用量对SLONT 深隆导电胶性能的影响。结果表明:当准(碳纳米管)=0.1%~5% 时,SLONT 深隆导电胶电阻的变化与填料用量没有直接的关系;当准(碳纳米管)=1% 时,SLONT 深隆导电胶的导电效果最好;当温度为199 ℃、准(碳纳米管)=2.5% 时,电阻率达到最低值(为1.5×10 -4Ω·m )。 1.2复合SLONT 深隆导电胶 复合型导电高分子材料已发展成为一种新型的功能性材料,在抗静电、电磁屏蔽、导电、自动控制和正温度系数材料等方面具有广阔的应用前景,其市场需求量不断增大。 [6] 等采用无钯活化工艺在环氧树脂(EP )粉末上形成活性点,利用化学镀法成功制备出新型外镀银铜/EP 复合导电粒子,其电阻率为 4.5×10 -3Ω·cm ,可以作为各向异性SLONT 深隆导电胶的导电填料(代替纯金属导电填料)。 [7] 等制备出一种新型低熔点各向异性SLONT 深隆导电胶。研究结果表明:该SLONT 深隆导电胶的电阻低于10 mΩ,而传统SLONT 深隆导电胶的电阻则低于l 000 mΩ;该SLONT 深隆导电胶可以在电流密度为10 000 A/cm 2的条件下使用;高压蒸煮试验前后,SLONT 深隆导电胶的电阻和电流密度均没有发生变化,而剪切强度的变化率为23% 。1.3紫外光固化SLONT 深隆导电胶 紫外光(UV )固化SLONT 深隆导电胶是近年来开发的新品种。与普通SLONT 深隆导电胶相比,其将紫外光固化技术与SLONT 深隆导电胶结合起来,赋予了SLONT 深隆导电胶新的功能,并扩大了SLONT 深隆导电胶的应用范围。该SLONT 深隆导电胶具有固

中国塑料管道行业现状与前景

中国塑料管道行业发展现状与前景 塑料管道的种类: 1)硬质聚氯乙烯(UPVC)管 2)氯化聚氯乙烯(CPVC)管 3)聚乙烯(PE)管 4)交联聚乙烯(PE-X)管 5)三型聚丙烯(PP-R)管 6)聚丁烯(PB)管 7)工程塑料(ABS)管 8)玻璃钢夹砂(RPM)管 9)铝塑料复合(PAP)管 10)钢塑复合(SP)管 11)其他塑料管。 塑料管道的材质分类与特点: 塑料管与传统金属管道相比,具有自重轻、耐腐蚀、耐压强度高、卫生安全、水流阻力小、节约能源、节省金属、改善生活环境、使用寿命长、安装方便等特点,受到了管道工程界的青睐。 塑料管一般是以塑料树脂为原料、加入稳定剂、润滑剂等,以塑的方法在制管机内经挤压加工而成。由于它具有质轻、耐腐蚀、外形美观、无不良气味、加工容易、施工方便等特点,在建筑工程中获得了越来越广泛的应用。主要用作房屋建筑的自来水供水系统配管、排水、排气和排污卫生管、地下排水管系统、雨水管以及电线安装配套用的穿线管等等。 塑料管道的发展: 塑料管道具有质量轻(密度约为钢管的1/7),耐腐蚀性强,对流体的阻力小,导热率低(约为钢的1/100),工程造价低(材料成本约为钢管的1/4,安装成本约为钢管的1/3),施工方便且寿命长等特点。这些特点使塑料管道迅速发展并被广泛应用——广泛用于燃气输送、给水、排污、农业灌溉、矿山细颗粒固体输送以及油田、化工和邮电通讯等领域,特别在燃气输送方面得到了普遍的应用。 国外塑料管道的发展: 1936年,德国开始出现塑料管材。20世纪50年代以后,塑料管材获得了迅速发展,1989年在德国西部塑料管的消费量近40万吨。目前,德国的饮用水

有机导电聚合物研究进展a

有机导电聚合物研究进展 1 导电聚合物 各种人造聚合物俗称为塑料或化纤,天然聚合物主要有蛋白质和树脂等。上述有机固体通常是绝缘体,而增强它们的电导率是一个非常吸引人的研究领域。因为这类材料成本低廉、重量轻,更重要的是,可以把聚合物的可塑以及柔韧等优良机械特性与通常只有金属才具备的高电导特性结合在一起,从而将应用范围大大拓宽。 1977年,白川英树在一次聚乙炔合成的实验中,意外地加入了过多的催化剂(齐格勒—纳塔催化剂,以1963年诺贝尔化学奖得主Ziegler 和Natta命名,其作用是定向催化——用于严格控制聚合物的空间结构)。不料,在反应器中生成了一种光亮的反式聚乙炔薄膜。如果将薄膜暴露于卤族Br2或I2蒸汽,生成物的电导率可以提高1012倍[1],从此有机物不能导电的观念被打破。 2000 年度诺贝尔化学奖授予了三位致力于导电聚合物研究的科学家,他们是美国物理学家艾伦·黑格(Alan Heeger)、化学家艾伦·麦克迪尔米德(Alan MacDiarmid )和日本化学家白川英树(Hideki Shirakawa )。这是对导电聚合物研究的充分肯定。 导电聚合物根据材料的组成可以分成复合型导电聚合物材料和本征型导电聚合物材料两大类[2-4]。复合型导电聚合物材料是由普通高分子结构材料与金属或碳等导电材料,通过分散、层合、梯度复合、表面镀层等复合方式构成。其导电作用主要通过其中的导电材料来完成。本征型导电聚合物材料也被称为结构型导电聚合物材料,其高分子本身具备一定的导电能力,这种导电聚合物如果按其结构特征和导电机理还可以进一步分成:载流子为自由电子的电子导电型聚合物和载流子为能在聚合物分子间迁移的正负离子的离子导电型聚合物。 在电子导电聚合物的导电过程中,载流子在电场的作用下能够在聚合物内定向移动形成电流。电子导电聚合物的共同结构特征是分子内有大的线性共轭π电子体系,给自由电子提供了离域迁移条件,故又称为共轭聚合物。作为有机材料,聚合物是以分子形态存在的,其电子多为定域电子或具有有限离域能力的电子。π电子虽然具有离域能力,但它并不是自由电子。当有机化合物具有共轭结

导电胶的研究进展

导电银浆、导电橡胶、导电胶水、导电膏、导电银胶、导电塑料、导电、导电胶带、ad导电胶、3M 导电胶、导电漆、导电泡棉、导电布、导电油墨、导电胶、AD导电胶、导电胶膜、导电胶料、医用导电胶、硅脂导电胶、环氧导电胶、导电胶现货、导电胶点胶机、导电银胶,导电环氧胶,导电硅胶,导电密封胶,导电胶泥,导电银浆,导电铜胶,石墨导电胶,EMC胶,电磁屏蔽胶,银导电胶,铜导电胶,银镀玻璃微珠导电胶,晶振导电胶,高温导电胶,低温导电胶,阻燃导电胶,耐腐导电胶,导电铜箔,导电铝箔,导电泡棉,铝箔麦拉胶带,半导电胶条,导磁胶。 北京瑞德佑业I8OOII3O8I2 OIO-6253897I Pb/Sn焊料是印刷线路板上基本的连接材料,SMT(Surface Mount Technology)中常用的也是这种材料。随着电子产品向小型化、便携化发展,器件集成度的不断提高,迫切需要开发新型的连接材料和方法。从20世纪90年代初到现在,IC上的I/O数已经从500个发展到1 500个,预计到2005年将达到3 800个,到2008年将达到4 600个。高的I/O密度要求连接材料具有很高的线分辨率。Pb/Sn焊料只能应用在0.65 mm以下节距的连接,已经不能满足工艺的需要。Pb/Sn连接工艺中温度高于230℃,产生的热应力也会损伤器件和基板。另外,Pb是有毒的重金属元素,不少国家已经对电子工业用铅提出明确规定:日本和欧洲分别要求在2001年和2004年停止铅的使用。在这一压力下,发展无铅连接材料已经成为必然[1~2] 。 与Pb/Sn合金相比,SLONT 深隆导电胶中使用的是金属粉末导电,这样可以使连接的线分辨率有很大提高,更能适应高的I/O密度。SLONT 深隆SLONT 深隆导电胶的涂膜工艺简单,固化温度低,可以有效地提高工作效率。由于SLONT 深隆SLONT 深隆导电胶基体是高分子材料,可以用在柔性基板上,适应电子产品小型化、轻型化的要求[3~5] 。1994年在柏林召开的第一届电子生产中粘合剂连接技术国际会议(InternationalConference on Adhesive Joining Technology inElectronics Manufacturing)上,就已经指出了SLONT 深隆SLONT 深隆导电胶代替Sn-Pb合金的必然趋势[3] 。 1SLONT 深隆SLONT 深隆导电胶分类 SLONT 深隆SLONT 深隆导电胶可以分为各向同性(ICAs IsotropicConductive Adhesives)和各向异性(ACAs AnisotropicConductive Adhesives)两大类。前者在各个方向有相同的导电性能;后者在XY方向是绝缘的,而在Z方向上是导电的[6~10] 。通过选择不同形状和添加量的填料,可以分别做成各向同性或各向异性SLONT 深隆导电胶。图2为两类SLONT 深隆导电胶连接原理示意。 由于组成的不同,SLONT 深隆SLONT 深隆导电胶分为室温固化、中温固化(<150oC)和高温固化(150~300oC)。室温固化需要的时间太长,需数小时到几天,工业上很少应用。高温固化速度快,但在电子工业中,温度高会对器件的性能产生影响,一般避免使用。中温固化一般需数分钟到一小时,应用最多。

塑料管材的研究进展

塑料管材的研究进展 摘要:塑料管因安全、环保而广泛应用于建筑给排水、城镇给排水以及燃气管等领域。2013—2017年,全球塑料管材的需求量将以年均8.5%的速率增加,而亚洲需求量的年均增长率为9.7%[1]。塑料管能够稳定增长的基础是技术发展快,不断有新材料,新技术,和新应用出现。本文综述了建筑给排水、城乡给水管、燃气用水管、工业用管等领域中常用管材的种类、应用及新型管材的研究进展,并对其特性及优缺点进行了详细的阐述。对比分析了塑料管材与传统管材的性能,并论述了目前塑料管材在应用上存在的问题。 一、建筑给排水领域 1、各种塑料管材的特点及其研究进展 1.1、UPVC与PVC管材 UPVC管材的化学稳定性好、耐化学药品腐蚀性强。UPVC管内壁光滑、安全卫生、水流阻力小;但UPVC管在低温条件下较脆,在温度较高时易变软,因此不适合做热水管,也不适用于寒冷地区。与其他管材相比,UPVC管材具有较高的模量、强度和硬度,即使在不增强的情况下也能满足普通有压液体的输送要求;UPVC管的耐化学药品腐蚀性强、耐老化、使用寿命长、安装维修方便、外形美观、成本较低。UPVC管材的弯曲应力和弯曲模量较高,承受外部荷载的性能较好,因此在相同的使用条件下用料最少。刘继纯等[2]制备了具有阻燃、抗静电和耐冲击的UPVC,分析了炭黑用量和表面处理对UPVC性能的影响。结果表明:炭黑用量过少(小于6 phr)时,UPVC的导电能力减弱;炭黑用量过多(大于10 phr)时,UPVC的抗冲击性能变差,阻燃性能下降。炭黑未经过表面处理且用量为10 phr左右时,UPVC的综合性能最优。王振中等[3-4]探讨了UPVC在准静态裂纹扩展、高速裂纹扩展以及疲劳裂纹扩展的断裂机理。结果发现:UPVC在准静态荷载作用下的断裂形式为韧性断裂,在冲击荷载作用下的断裂形式为脆性断裂,在疲劳阶段的断裂形式为偏韧性断裂。PVC 径向加筋管的管外壁带有径向加强筋,可提高管的环向刚度和耐压强度;但管材在熔融挤出时的流动性及热稳定性较差,不适于制备大口径管。PVC是非晶形聚合物,透明性较好,透光率约80%。严立万[5]将PVC及助剂按比例制成 PVC 给水管,管内水流情况可视,方便检修。 1.2、PPR管材PPR的化学稳定性好,耐化学药品腐蚀性强,力学性能优异。PPR管内壁光滑,阻力小,不易积垢,质轻,运输、维修方便。PPR管分为热水管和冷水管,加热到一定温度时,同材质的管与管件在几秒钟内就可以完全融为一体,解决了管道连接处漏水的问题。PPR管的最高使用温度为95 ℃,长期使用温度为70 ℃,其导热系数为0.21 W/ (m·℃),约为钢管的1/200,保温性能良好;但 PPR管的膨胀系数是钢管的12倍,长期使用会因热胀冷缩而使管体变形。 2015年6月,中国石油天然气股份有限公司独山子石化分公司生产

导电高分子材料的应用、研究状况及发展趋势(精)

导电高分子材料的应用、研究状况及发展趋势 熊伟 武汉纺织大学化工学院 摘要:与传统导电材料相比较 , 导电高分子材料具有许多独特的性能。导电高聚物可用作雷达吸波材料、电磁屏蔽材料、抗静电材料等。介绍了导电高分子材料的结构、种类及导电机理、合成方法、导电高分子材料的应用、研究现状及发展趋势。 关键字:导电高分子分类制备现状 Abstract : Compared with conventional conductive materials, conductive polymer material has many unique properties. Conducting polymers can be us ed as radar absorbing materials, electromagnetic shielding materials, antistatic materials. Describes the structure of conductive polymer materials, types and conducting mechanism, synthesis methods, the application of conductive poly mer materials, research status and development trend. Keywords : conductive polymer categories preparation status 1 导电高分子的结构、种类 按照材料结构和制备方法的不同可将导电高分子材料分为两大类 :一类是结构型 (或本征型导电高分子材料,另一类是复合型导电高分子材料 [3]。 结构型导电高分子材料是指高分子本身或少量掺杂后具有导电性质的高分子材料。 根据加入基体聚合物中导电成分的不同 , 复合型导电高分子材料可分为两类 :填充复合型导电高分子材料和共混复合型导电高分子材料 [5]。

导 电 聚 苯 胺 的 化 学 合 成 及 导 电 性 能

导电聚苯胺的化学合成及导电性能 魏渊石圆圆罗亚茹刘正伦 (广州大学化学化工学院化工系) 摘要导电聚苯胺是结构和性能最稳定的导电高分子材料, 有较广泛的应用前景。本实验用化学氧化合成方法,研究了氧化剂种类、用量以及介质酸的浓度等因素对苯胺聚合反应及产物性能的影响,并运用四探针法在电阻率测试仪上完成了PAn的电导率测试。 关键词导电聚苯胺,化学合成,掺杂,电导率 前言传统的有机化合物由于分子间的相互作用弱,一般皆认为是绝缘体。因而过去一直只注重高分子材料的力学性能和化学性能。20世纪50年代初人们发现有些有机物具有半导体性质;60年代末又发现了一些具有特殊晶体结构的电荷转移复合物;70年代初发现了具有一定的导电性的四硫富瓦烯一四睛代对苯醒二甲烷(TTF一TCNQ)。1977年人们发现:聚乙炔化学掺杂后电导率急剧增加,可以达到金属秘的导电性能。此后人们开始关注高分子材料的导电性,逐渐开发出各种导电性高分子材料,如聚乙炔、聚毗咯、聚噬吩和聚苯胺等。直到1984年聚苯胺才被MacDiarmid等人重新开发,他们在酸性条件下制备了高电导率的聚苯胺;1987年,日本桥石公司和精工电子公司联合制得了用聚苯胺为电极制成的钮扣式二次电池作为商品投向市场,使聚苯胺很快成为导电高分子中的研究热点[1]。 本实验采用盐酸进行掺杂,使苯胺氧化聚合为聚苯胺,而且就氧化剂的种类与用量、介质酸的浓度等因素对苯胺聚合产物的产率和导电性能的影响等进行了探究。 其聚合反应历程如0.1所示【2】

图0.1 Radical reaction course of PANI polymerization 聚合反应可以分为三步:链引发、链增长和链终止。首先,苯胺被慢速氧化形成阳离子自由基,苯胺阳离子自由基的形成是决定反应速率主要的一步。接着,这个自由基阳离子可能失去质子或电子,与苯胺单体结合生成一个苯胺的二聚体,这种结合主要是以头尾相连接的方式结合,二聚体一旦形成,就可以被氧化剂迅速的氧化成醒亚胺结构,这是因为它的氧化潜能低于苯胺的氧化潜能。二聚体的形成是反应的关键步骤,接着另一个苯胺单元可能亲核性的进攻被氧化的二聚体形成三聚体,这个过程就像形成的二聚体一样,不需要氧化两个苯胺分子随着氧化单元逐步加到二聚体上,所产生的齐聚物更易被氧化,更易于接受苯胺单体的亲核性进攻。链增长以头一尾结合的方式进行着,一旦这种结构的浓度足够大,它就可能被氧化,并与剩余的苯胺单体反应,直到高分子量的聚合物形成。在链增长阶段,放出大量的热,使反应发生自加速的现象而迅速进行,随后反应迅速进入链终止阶段。这个过程可能会因放热而难以控制,导致分子量分布加宽,聚合物缺陷增多,严重影响产物的电导率。由此可见,低温聚合有利于延缓终止的时间,使分子量较大、分子链较长,而较长的共轭有利于载流子的传输,从而具有较高的电导率。【3】 但本实验研究过程是在室温下进行。 1 实验部分 1.1 原料 过硫酸铵、盐酸等为分析纯试剂;苯胺、重铬酸钾等为化学纯试剂;其中苯胺在使用前蒸馏至完全无色;实验用水为去离子水。 1.2 实验仪器设备 SDY—型数字式电阻率测试仪,BS600L电子天平,DF一1型集热式磁力搅拌器,SHE 一D(III)循环水式真空泵,Z一88电热恒温真空干燥箱,三口烧瓶,冷凝装置,耐酸滤过漏斗,烧杯、容量瓶若干 1.3 聚苯胺(P An) 的合成

给排水新型管材的研究进展

给排水新型管材的研究进展 摘要:给水排水管道作为市政建设的重要组成部分,其管材的选择和创新广受重视。相较于传统给排水管材,新型管材具有良好的抗冲击性、密封性、耐腐蚀性、耐久性、耐寒性,以及过水能力强、施工方便等优点,因而具有广阔的应用前景。文章论述了给排水新型管材的应用现状、发展趋势,并综述了新型管材的研究进展。 关键词:新型管材、应用现状、发展趋势、研究进展 Abstract:As an important part of the municipal construction,the selection and creation of pipes in water supply and drainage get wide https://www.360docs.net/doc/1a17888949.html,pared to traditional ones,the new type pipes have characteristics of great impact resistance,sealing,corrosion resistance,durability and cold resistance as well as the high water capacity and the convenience of construction,therefore,it has a bright future.In this paper,application status and development tendency of the new type pipes in water supply and drainage were discussed.The study progress of the new type pipes are also mentioned. Keywords:new type pipes;application status;development tendency;study progress. 一、给排水新型管材的应用现状 ㈠金属管材 金属管材长时间作为给水排水管材中的主导管材,其技能发展成熟,常用的金属管材主要有镀锌钢管、铸铁管、铜管和不锈钢管等。 1.镀锌钢管。其长处是耐高压、抗震功能强、分量较轻。缺陷是不耐腐蚀。运用在给水管道时导致管道锈蚀进行微生物鉴守时可发现细菌总数、大肠菌群严重超支,严重污染水质,冷镀锌钢管现已被制止运用。 2.铸铁管。包含球墨铸铁管、灰口铸铁管及承插式柔性接口排水铸铁管。三大类中承插式柔性接口排水铸铁管是这些年发展的一种新式管材,其长处是管材细密、耐高温、强度高、抗震功能强、壁厚均匀、抗噪声性强、运用寿命长、可循环运用、具有杰出的经济效益。在高层修建、环境需求较高的住所中运用较多。 3.铜管。铜管因为会发生“铜绿”:在PH值小于6.5情况下,发生锈蚀;在高速水流冲刷下易磨损且报价较高,多被用于热水管道。 4.不锈钢管。其材料力学功能好、耐腐蚀、耐高温且膨胀系数小但因为造价高多被运用于别墅以及宾馆等高档次需求的场所中。 ㈡塑料管材 这些年塑料管材疾速发展,新式的塑料管材也层出不穷。在市政工程建设中通常运用的塑料给水管包含聚乙烯(PE)管、硬聚氯乙烯(UPVC)管、改性聚丙烯(PPR)管、聚丙烯类(PP)管、交联聚乙烯(PEX)管、聚丁烯(PB)管等。

1导电塑料的研究进展

1导电塑料的研究进展

导电塑料的研究进展 摘要: 概述了导电塑料的导电原理,阐明了导电塑料的种类和影响导电的因素,分析了不同导电塑料的制备方法、工艺研究等,最后综述了导电塑料的应用领域以及发展趋势, 并进行了展望。 关键词: 导电塑料;导电原理;制备方法;应用 导电塑料广泛应用于半导体、防静电材料、导电性材料等领域,可分为结构型和填充型。结构型导电塑料是高聚物本身或经掺杂之后具有导电性的材料,而填充型导电塑料是本身不具有导电性,但通过加入导电性填充物获得导电性的材料,它是由电绝缘性能较好的合成树脂、塑料和具有优良导电性能的填料及其它添加剂通过混炼造粒, 并采用注射、压塑或挤出成型等方法制得。目前90 %以上导电塑料属于复合型。本文综述的是复合型导电塑料。导电填料一般选用纤维状与片状导电材料,包括金属纤维、金属片材、导电碳纤维、导电石墨、导电炭黑、碳纳米管、金属合金填料等。其中导电炭黑和碳纤维是应用最广的两种导电填料。常用的合成树脂有聚乙烯( PE) 、聚丙烯( PP) 、聚苯乙烯( PS) 、聚碳酸酯( PC) 、乙烯2醋酸乙烯共聚物( EVA) 、丙烯腈2丁二烯2苯乙烯共聚物( ABS) 、尼龙( PA) 、聚酯 (PET) 、聚苯醚(PPO) 、聚硫醚( PPS) 和高性能热塑性塑料合金等。 1 导电塑料的导电原理 1. 1 渗滤理论

复合材料的电导率在一定导电填料浓度范围内的变化是不连续的,在某一温度下材料电阻率会发生突变,表明此时导电粒子在聚合物基体中的分散状态发生了突变 ,即当导电填料达到一定值时,导电粒子在聚合物基体中形成了导电渗滤网络,导电粒子的临界体积分数称为渗滤阀值。 1. 2 有效介质理论 有效介质理论是处理二元无规对称分布体系中电子传输行为的有效方法,无规非均匀复合材料的每个颗粒看作处于相同电导率的一种有效介质中。导电填充粒子能填充满复合材料中所有的空穴和空间,并且绝缘相具有高的绝缘性。 1. 3 量子力学隧道理论 在二元组分导电复合材料中,当高导组分含量较低(在渗滤阀值附近) 时,隧道导电效应对材料的导电行为影响较大。材料导电依然有导电网络形成的问题,但不是靠导电粒子直接接触来导电,而是电子在粒子间的跃迁造成的。隧道效应 能合理地解释聚合物基体与导电填料呈海岛结构复合体系的导电行为。量子力学隧道导电理论能与许多导电复合体系的实验数据相符,证明是讨论和分析复合材料导电行为的有力工具。 2 复合型导电塑料的种类 2. 1 炭黑填充型导电塑料 炭黑是一种天然的半导体,其体积电阻率为0. 1~1 000Ω·cm。炭黑资源丰富、价格低廉,导电性能持久稳定,可大幅改善材料的导电性

关于导电高分子材料的研究进展

湖北汽车工业学院 本科生课程论文 《新材料导论》 论文题目关于导电高分子材料的研究进展学生专业班级 学生姓名(学号) 指导教师(职称) 完成时间

关于导电高分子材料的研究进展 摘要:与传统导电材料相比较,导电高分子材料具有许多独特的性能。导电高聚物可用作雷达吸波材料、电磁屏蔽材料、抗静电材料等。介绍了导电高分子材料的概念、分类、导电机理及其应用领域,综述了近些年来国内外科研工作者对导电高聚物的研究进展状况并对其发展前景进行了展望。 关键词:导电高分子;功能材料;导电机理;应用;述评。 自从1976年美国宾夕法尼亚大学的化学家MacDiarmid领导的研究小组首次发现掺杂后的聚乙炔(Polyacetylene,简称PA)具有类似金属的导电性以后,人们对共轭聚合物的结构和认识不断深入和提高,新型交叉学科)))导电高分子领域诞生了。在随后的研究中科研工作者又逐步发现了聚吡咯、聚对苯撑、聚苯硫醚、聚噻吩、聚对苯撑乙烯撑、聚苯胺等导电高分子。导电高分子特殊的结构和优异的物理化学性能使它成为材料科学的研究热点,作为不可替代的新兴基础有机功能材料之一,导电高分子材料在能源、光电子器件、信息、传感器、分子导线和分子器件,以及电磁屏蔽、金属防腐和隐身技术上有着广泛、诱人的应用前景。到目前为止,导电高分子在分子设计和材料合成、掺杂方法和掺杂机理、可溶性和加工性、导电机理、光、电、磁等物理性能及相关机理以及技术上的应用探索都已取得重要的研究进展。本文介绍了导电高分子的结构特征、导电机理及其应用领域,综述了近些年来导电高分子材料研究领域的进展状况。 1 导电高分子材料的分类 高分子导电材料通常分为复合型和结构型两大类: ①复合型高分子导电材料。 由通用的高分子材料与各种导电性物质通过填充复合、表面复合或层积复合等方式而制得。主要品种有导电塑料、导电橡胶、导电纤维织物、导电涂料、导电胶粘剂以及透明导电薄膜等。其性能与导电填料的种类、用量、粒度和状态以及它们在高分子材料中的分散状态有很大的关系。常用的导电填料有炭黑、金属粉、金属箔片、金属纤维、碳纤维等。 ②结构型高分子导电材料。 是指高分子结构本身或经过掺杂之后具有导电功能的高分子材料。根据电导率的大小又可分为高分子半导体、高分子金属和高分子超导体。按照导电机理可分为电子导电高分子材料和离子导电高分子材料。电子导电高分子材料的结构特点是具有线型或面型大共轭体系,在热或光的作用下通过共轭π电子的活化而进行导电,电导率一般在半导

导电聚苯胺的研究进展

导电聚苯胺的研究进展 摘要:导电高分子的出现打破了聚合物仅为绝缘体的传统观念。在众多的导电高分子中,聚苯胺是目前研究进展最快的导电高分子之一。介绍了聚苯胺的结构,性质,合成和掺杂,改性,并对其应用前景作了展望。 关键词:导电高分子;聚苯胺;改性 2000年10月10日瑞典皇家科学院授予美国Alan MacDiamid和Alan Heeger 教授及日本Hideki Shirakawa 教授2000年诺贝尔化学奖,以表彰他们开创了新的研究领域——导电高聚物。导电高聚物的出现不仅打破了聚合物仅为绝缘体的传统观念,而且对高分子物理和高分子化学的理论研究也是一次划时代的事件,为功能材料开辟了一个极具应用前景的崭新领域。最早发现的本征导电高聚物是掺杂聚乙炔(PA),在随后的研究中科研工作者又相继开发了聚吡咯(PPy)、聚对苯(PPP)、聚噻吩(PTh)、聚对苯撑乙烯(PPv)、聚苯胺(PAn)等导电高分子。人们对聚乙炔的研究较早,也最为深入,但由于它的制备条件比较苛刻,且它的抗氧化能力和环境稳定性差,给它的实用化带来了极大困难。在众多导电高分子中,聚苯胺以其良好的热稳定性、化学稳定性和电化学可逆性,优良的电磁微波吸收性能,潜在的溶液和熔融加工性能,原料易得,合成方法简便,还有独特的掺杂现象等特性,成为现在研究进展最快的导电高分子材料之一。 1 聚苯胺的结构 聚苯胺是典型的导电聚合物,常温下一般呈不规则的粉末状态,具有较低的结晶度和分子取向度。与其它导电高聚物一样,它也是共轭高分子,在高分子主链上形成一个电子离域很大的p-π共轭。1987 年,MacDiarmid[1]提出了后来被广泛接受的苯式-醌式结构单元共存的模型,两种结构单元通过氧化还原反应相互转化。即本征态聚苯胺由还原单元: 和氧化单元: 构成,其结构为: 其中y值用于表征聚苯胺的氧化还原程度,不同的y 值对应于不同的结构、组分和颜色及电导率,完全还原型( y = 1) 和完全氧化型( y = 0) 都为绝缘体。在0 < y < 1 的任一状态都能通过质子酸掺杂,从绝缘体变为导体,仅当y = 0.5 时,其电导率为最大。y值大小受聚合时氧化剂种类、浓度等条件影响,与其它导电高聚物相比,聚苯胺的结构具有如下特点:

相关文档
最新文档