迈克尔孙干涉仪
迈克耳孙干涉仪的调节和使用实验报告

迈克耳孙干涉仪的调节和使用实验报告大家好,今天我要给大家分享一下我最近做的一次实验——迈克耳孙干涉仪的调节和使用。
这次实验可真是让我大开眼界,原来科学实验可以如此有趣!好了,废话不多说,让我们开始吧!我要给大家介绍一下迈克耳孙干涉仪是什么。
迈克耳孙干涉仪是一种利用光的干涉现象来测量物体长度的仪器。
它的主要原理是:当两束光波相遇时,如果它们的光程差相等,那么它们就会发生相长干涉;如果它们的光程差相差半个波长,那么它们就会发生相消干涉。
通过测量干涉条纹的形态和位置,我们就可以计算出物体的长度。
接下来,我要给大家讲解一下实验的具体步骤。
我们需要准备两台迈克耳孙干涉仪,一台作为基准仪,另一台作为待测仪。
然后,我们需要将待测仪放置在一个已知长度的标准尺上。
这时,我们就可以开始调节基准仪了。
具体方法是:用一个已知长度的标准尺放在待测仪和基准仪之间,然后调整基准仪的高度和角度,使得两台干涉仪的光程差为半个波长。
这样一来,干涉条纹就会出现在标准尺上。
接下来,我们只需要观察干涉条纹的位置和形态,就可以计算出待测仪的长度了。
在实验过程中,我遇到了一些有趣的问题。
比如说,当我第一次调整基准仪的时候,总是调不好。
后来我才发现,原来是我没有注意观察干涉条纹的变化。
原来,只有在干涉条纹稳定后,我们才能准确地测量出待测仪的长度。
这让我深刻地体会到了“熟能生巧”的道理。
我还发现了一个有趣的现象。
那就是,当我把待测仪移动到不同位置时,干涉条纹的位置和形态都会发生变化。
这让我想到了那句老话:“人生就像一场戏,每天都有新花样。
”在这个世界上,没有什么是一成不变的,我们要学会适应变化,才能不断地进步。
总的来说,这次迈克耳孙干涉仪的实验让我收获颇丰。
我不仅学会了如何调节和使用干涉仪,还体会到了科学实验的乐趣。
我相信,只要我们用心去探索,就一定能够揭开自然界的神秘面纱。
我要感谢我的老师和同学们的支持和帮助,是你们让我在这个实验中取得了成功。
(大物实验)迈克尔孙干涉仪实验

大学物理实验迈克尔孙干涉仪一.实验原理1.迈克尔孙干涉仪的结构和原理2. 点光源产生的非定域干涉即M1和M2之间的距离每改变半个波长,其中心就“生出”或“消失”一个圆环。
两平面反射镜之间的距离增大时,中心就“吐出”一个个圆环。
反之,距离减小时中心就“吞进”一个个圆环,同时条纹之间的间隔(即条纹的稀疏)也发生变化。
由式可知,只要读出干涉仪中M1移动的距离△h和数出相应吞进(或吐出)的环数就可求得波长。
3. 条纹的可见度利用上式可测出纳黄光双线的波长差4. 时间相干性问题长差越小,光源的单色性越好,相干长度就越长,所以上面两种解释是完全一致的。
t m则用下式表示钠光灯所发射的谱线为589.0nm与589.6nm,相干长度有2cm。
氦氖激光器所发出的激光单色性很好,其632.8nm的谱线,只有10-14~10-7nm,相干长度长达几米到几公里的范围。
对白光而言,其和λ是同一数量级,相干长度为波长数量级,仅能看到级数很小的几条彩色条纹。
5.透明薄片折射率(或厚度)的测量(1)白光干涉条纹(2)固体透明薄片折射率或厚度的测定当视场中出现中央条纹之后,在M1与A之间放入折射率为n、厚度为l的透明物体,则此时程差要比原来增大因而中央条纹移出视场范围,如果将M1向A前移d,使,则中央条纹会重新出现测出d和l求出折射率n。
二.实验步骤1.测量He-Ne激光的波长①调整好干涉仪,为实验做好准备。
②打开He-Ne激光器,在光源前放一小孔光栏,调节M2上的三个螺钉,从小孔初设的激光束,经M1,M2反射后,在观察屏上重合。
③去掉小孔光栏,换上焦距透镜而使光源成为发散光束,在两光程差不太大时,在毛玻璃屏上即可观察到干涉条纹,轻轻调节M2后的螺钉,应出现基本在中心的圆纹。
④测量He-Ne激光的波长。
轻轻转动微动转轮,移动M1,中心每出生或吞进n个条纹,记下移动的距离,用公式2h/n求出波长。
2.测量钠波波长,波长差及相干长度①波长测量同激光波长的测量②慢慢移动M1,增加光程差,条纹可见度下降,乃至看不清,测出两不可见位置的距离差L=t1-t2,即可求出波长。
迈克耳孙干涉仪

第十一章 光学
5
物理学
第五版
M'2
M1
G1
11-5 迈克耳孙干涉仪
d
2(n 1)t k
干涉条纹移动数目
n M2
G2
t
介质片厚度
t k
n 1 2
第十一章 光学
6
未加 2(r2 r1) k
M1
加入 2(r2 d nd r1) (k 1)
2(n 1)d
2024/6/12
r1
d
M2
r2
7
物理学
第五版
11-5 迈克耳孙干涉仪
例 在迈克耳孙干涉仪的两臂中,分别
插入l 10.0 cm长的玻璃管,其中一个抽成 真空, 另一个则储有压强为 1.013105 Pa 的空气 , 用以测量空气的折射率 n . 设所用 光波波长为546 nm,实验时,向真空玻璃管 中逐渐充入空气,直至压强达到1.013105 Pa 为止 . 在此过程中 ,观察到107.2条干涉条 纹的移动,试求空气的折射率 n .
2
物理学
第五版
11-5 迈克耳孙干ቤተ መጻሕፍቲ ባይዱ仪
二 迈克耳孙干涉仪的主要特性
(1)两相干光束完全分开;
(2)两光束的光程差可调.
M'2 M1
d
d
移动反射镜
d k
2
M1
移
干涉
G1
G2
M2
动 距 离
条纹 移动 数目
第十一章 光学
3
物理学
第五版
11-5 迈克耳孙干涉仪
➢ 干涉条纹的移动
当 M1与 M2 之
间距离变大时 ,圆形
物理学
第五版
迈克耳逊干涉仪

大学物理实验迈克耳逊干涉仪简介迈克尔逊干涉仪是1883年美国物理学家迈克尔逊(1852~1931)和莫雷合作设计制造出来的精密光学仪器。
他们利用该仪器进行了“以太漂移”的实验、标定米尺、推断光谱线精细结构等三项著名实验。
迈克尔逊的主要贡献在于光谱学和度量学,获1907年诺贝尔物理学奖。
简介利用该仪器可观察多种干涉条纹,它的调整方法在光学技术中有一定的代表性。
光的干涉是重要的光学现象之一,是光的波动性的重要实验依据。
两列频率相同、振动方向相同和位相差恒定的相干光在空间相交区域将会发生相互加强或减弱现象,即光的干涉现象。
根据干涉条纹数目和间距的变化与光程差、波长等的关系式,可以推出微小长度变化(光波波长数量级)和微小角度变化等,因此干涉现象在照相技术、测量技术、平面角检测技术、材料应力及形变研究等领域有着广泛地应用。
迈克耳逊干涉仪实验内容注意事项数据处理实验目的实验仪器实验原理思考题实验目的1.了解迈克尔逊干涉仪的干涉原理和迈克尔逊干涉仪的结构,学习其调节方法。
2.测量He-Ne激光的波长。
3.测量钠黄光双线的波长差。
返回迈克尔逊干涉仪(WSM-100型),He-Ne激光器,钠光灯,扩束镜,凸透镜图1迈克尔逊干涉仪实物图图2 迈克尔逊干涉仪光路图示意图返回图中M1和M2是在相互垂直的两臂上放置的两个平面反射镜,其中M1是固定的;M2由精密丝杆控制,可沿臂轴前、后移动,移动的距离由刻度转盘(由粗读和细读两组刻度盘组合而成)读出。
在两臂轴线相交处,有一与两轴成45°角的平行平面玻璃板G1,它的另一个平面上镀有半透(半反射)的银膜,以便将入射光分成振幅接近相等的反射光⑴和透射光⑵,故G 1又称为分光板。
实验原理——仪器的调节G2也是平行平平面玻璃板,与G1行放置,厚度和折射率均与G相同。
1由于它补偿了光线⑴和⑵因穿越G1次数不同而产生的光程差,故称为补偿板。
用波长为λ的单色光照明时,迈克尔逊干涉仪所产生的环形等倾干涉圆条纹的位置取决于相干光束间的光程差,而由M 2和M 1反射的两列相干光波的光程差为其中i 为反射光⑴在平面镜M 2上的入射角。
迈克耳孙干涉仪的调整与使用技巧

迈克耳孙干涉仪的调整与使用技巧迈克耳孙干涉仪(Michelson interferometer)是一种常用的光学仪器,广泛应用于光学测量、干涉实验等领域。
正确的调整和使用迈克耳孙干涉仪对于获得准确的实验结果至关重要。
本文将介绍迈克耳孙干涉仪的调整方法以及使用技巧,帮助读者更好地理解和应用这一仪器。
1. 干涉仪的基本原理迈克耳孙干涉仪是利用光的干涉原理进行测量的仪器。
它由两束光线沿不同路径传播后再次叠加产生干涉,通过观察干涉图案的变化可以获得有关样品或光源的信息。
2. 调整干涉仪的步骤(1)准备工作在调整迈克耳孙干涉仪之前,首先要确保仪器和光源的完好和稳定。
检查干涉仪的光学元件是否清洁,光源是否稳定,确保能够获得高质量的干涉图案。
(2)调整光路通过调整迈克耳孙干涉仪的光路,使得两束光相干,达到干涉的条件。
具体步骤如下:- a. 调整分束镜迈克耳孙干涉仪的分束镜是将光分成两束的关键元件。
调整分束镜的位置和角度,使得两束光线的光程差尽量为零。
- b. 调整反射镜调整迈克耳孙干涉仪的反射镜位置和角度,使得两束光线重新叠加时能够产生明亮的干涉条纹。
通过微调反射镜的位置和角度,使得干涉图案更加清晰和明亮。
(3)干涉图案的观察与调整在调整好光路之后,需要观察干涉图案,并进行调整以获得最佳的观察效果。
根据实验需求,通过微调分束镜和反射镜的位置和角度,调整干涉图案的大小、亮度和清晰度。
3. 干涉仪的使用技巧(1)保持稳定在使用迈克耳孙干涉仪进行实验时,保持仪器和光源的稳定非常关键。
避免干涉仪受到外界震动或温度变化的干扰,以确保实验的准确性和可重复性。
(2)校正光程差干涉仪的光程差是影响干涉图案的重要因素。
在实验中,根据需要可以通过微调分束镜或者引入补偿片等方法,校正光程差以获得所需的干涉效果。
(3)避免散射和干涉损失在进行干涉实验时,需要注意避免光线的散射和干涉损失。
合理调整干涉仪的参数,选择合适的光源和滤波器,减少或者消除散射光和多次反射干涉,确保实验结果的准确性。
迈克耳孙干涉仪

参考镜
参考臂扫描可得到样品深度方向的 参考臂扫描可得到样品 深度方向的 深度方向 一维测量数据
眼睛
光束在平行于样品表面的方向进行 扫描测量,可得到横向的数据 横向 扫描测量,可得到横向的数据 将得到的信号经计算机处理便可得 到样品的立体断层图像 到样品的立体断层图像
光源
探测器
实验装置-光纤化的迈克耳逊干涉仪 实验装置-光纤化的迈克耳逊干涉仪
三. 迈克尔孙干涉仪的应用 1. 测定长度及光的相干长度 视场中每变化(移动) 视场中每变化(移动)一个条纹 λ/2 的空气膜距变化 单色光, 单色光,待测长度
l =N
λ
2
非单色光源 l 的最大量程 lM 应为相干长度之半
1 λ lM = L0 = 2 2λ
2
2. 光谱分析 傅立叶变换光谱仪 光谱分析—傅立叶变换光谱仪 给定光谱线型, 给定光谱线型,干涉强度随光程差变化关系 ∞ --傅立叶余弦变换 i() = 2∫ i(σ ) cos(2πσ)dσ --傅立叶余弦变换
相邻暗纹的角距离
di λ λ = ≈ δi = dm 2hsin i 2hi
fλ fλ 相邻环线的线距离 e = fδi = ≈ 2hsin i 2hi
--观测透镜焦距 f --观测透镜焦距
* 等倾条纹特点 (1) 当 = λ / 2 整个视场为暗区(实际由于镀膜视 整个视场为暗区( 场不暗); 场不暗); (2) 当 h 增大时,有: 增大时 a. 中心亮暗交替,h 每改变 λ / 4 ,光程改变 λ / 2, 中心亮暗交替, 暗亮转换一次; 暗亮转换一次; b. 圆环不断从中心涌出并向外散开,h每增加 λ / 2 , 圆环不断从中心涌出并向外散开, 每增加 从中心生出一个新亮点; 从中心生出一个新亮点; c. 同一位置处( i 固定)条纹随h增加越来越密。 同一位置处( 固定) 增加越来越密。 (3) 当 h 减小时,1) 相同;2)、3)相反;圆环向中 减小时 相同; 、 相反 相反; 心靠拢
迈克尔逊干涉仪

3.1.1 迈克尔孙干涉仪(本文内容选自高等教育出版社《大学物理实验》)1881年美国物理学家迈克尔孙(A.A.Michelson)为测量光速,依据分振幅产生双光束实现干涉的原理精心设计了这种干涉测量装置。
迈克尔孙和莫雷(Morey)用此一起完成了在相对论研究中有重要意义的“以太”漂移实验。
迈克尔孙干涉仪设计精巧、应用广泛,许多现代干涉仪都是由它衍生发展出来的。
本实验的目的是了解迈克尔孙干涉仪的原理、结构和调节方法,观察非定域干涉条纹,测量氦氖激光的波长,并增强对条纹可见度和时间相干性的认识。
实验原理1.迈克尔孙干涉仪的结构和原理迈克尔孙干涉仪的原理图如图3.1.1-1所示,A和B为材料、厚度完全相同的平行板,A的一面镀上半反射膜,M1、M2为平面反射镜,M2是固定的,M1和精密丝杆相连,使其可前后移动,最小读数为10-4mm,可估计到10-5mm,M1和M2后各有几个小螺丝可调节其方位。
光源S发出的光射向A板而分成(1)、(2)两束光,这两束光又经M1和M2反射,分别通过A的两表面射向观察处O,相遇而发生干涉,B作为补偿板的作用是使(1)、(2)两束光的光程差仅由M1、M2与A板的距离决定。
由此可见,这种装置使相干的两束光在相遇之前走过的路程相当长,而且其路径是互相垂直的,分的很开,这正是它的主要优点之一。
从O处向A处观察,除看到M1镜外,还可通过A的半反射膜看到M2的虚像M’2,M1与M2镜所引起的干涉,显然与M1、M’2引起的干涉等效,M1和M’2形成了空气“薄膜”,因M’2不是实物,故可方便地改变薄膜的厚度(即M1和M’2的距离),甚至可以使M1和M’2重叠和相交,在某一镜面前还可根据需要放置其他被研究的物体,这些都为其广泛的应用提供了方便。
2.点光源产生的非定域干涉一个点光源S发出的光束经干涉仪的等效薄膜表面M1和M’2反射后,相当于由两个虚光源S1、S 2发出的相干光束(图3.1.1-2)。
迈克尔逊干涉仪

解:根据题意:
2d k 2d (k 10)
2d cos (k 10) 2dcos (k 10 5)
解得: k 20
迈克尔逊
(A.A.Michelson)
美籍德国人 因创造精密光学仪器,用 以进行光谱学和度量学的 研究,并精确测出光速, 获1907年诺贝尔物理奖。
迈克耳孙干涉仪至今仍是许多光学仪器的核心。
反射镜M2
扩束镜
反射镜M1
激光器
分光板 观察屏
补偿 板
二、迈克尔逊干涉仪的原理
M1的虚像位于 M1 ,M1~M2 可 以看成一空气膜
N 2(n 1)d / 0
M2
(2) (2)
d
M1
O
十字 叉线
(1) (1)
C
条纹移
过N条
等厚条纹
三、迈克尔逊干涉仪的应用
想一想
如何测量气体的折射率? 装入气体 抽真空
L
气体室
n 1 N0 2L
M2
(2) (2)
M1
(1)
(1)
O
C
等厚条纹
三、迈克尔逊干涉仪的应用
测量气体 的折射率
n N0 1
(1) 当M1与M2垂直, 会产生等倾条纹。
M2
(2) (2) M1
M1
(1) (1)
O
C
二、迈克尔逊干涉仪的原理
二、迈克尔逊干涉仪的原理
二、迈克尔逊干涉仪的原理
M1的虚像位于 M1 ,M1~M2 可 以看成一空气膜
(1) 当M1与M2垂直, 会产生等倾条纹。
(2) 当M1与M2不垂直, 会产生等厚条纹。
M1 A M2
B
测量结果: n 107.2 0 1 1.0002927
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a
六、干涉应用举例 光的干涉条纹的形状、明暗、间距……
敏感依赖于:波长、几何路程、介质情况……
干涉现象广泛应用于:
测光波波长
测长度或长度变化
测介质折射率
检测光学元件表面,表面处理 …...
例:增透膜和增反膜
为什么一些照相机的镜头看上去是蓝紫色的? 较高级的照相机的镜头由 6 个透镜组成,如不采取 有效措施,反射造成的光能损失可达 45%~90%。 为增强透光,要镀增透膜(减反膜)。复杂的光学 镜头采用增透膜可使光通量增加 10 倍。 增透膜原理:使膜上下两表面的反射光满足相消条件。
1.迈克尔孙干涉仪
•装置:
M1 反射镜1 M2'
反射镜 2 平行光 半透 明镀 银层
补偿玻璃板
•条纹特点:
M1垂直于M 2
M1 // M 2
等倾干涉 等厚干涉
M 2不严格垂直于M1 M1不平行于M 2
等倾干涉条纹
M1 M2 '
M1与M2'重 合
M2' M1
等厚干涉条纹
M1 M2 '
测星干涉仪:测星球角直径
……
美国新墨西哥州射电干涉仪
意大利用于探测引力波臂长3km 的迈克尔孙干涉仪的真空管
例:迈克尔孙星体干涉仪
增大M1、M2的 距离至屏上干涉 条纹刚好消失, 从而计算星体的 角宽度。
例:马赫——曾德干涉仪
根据相对运动原理,航空工程中用风 洞实验来研究飞机在空气中飞行时空 气中的情况。由于气体中各处压强或 密度的差异可以通过折射率的变化反 映出来,所以用干涉方法研究气体中 各处的折射率便可推知气体中压强或 密度分布。图中所示是为此目的设计 的马赫——曾德干涉仪原理图和高速 气流经过尖锥时某时刻的干涉图样。 干涉仪的调节状态是使平波面与通过 气流的波面略有倾斜,这样在不受影 响的气体区域中有等间距的平行直条 纹。
相长:增反
相消:增透
计算:为增强照相机镜头的透射光,往往在镜头 (n3=1.52)上镀一层 MgF2 薄膜(n2=1.38),使对人 眼和感光底片最敏感的黄绿光 = 550 nm 反射最小, 假设光垂直照射镜头,求:MgF2 薄膜的最小厚度。
n1 1
解: i 0;
n1 n2 n3
在该厚度下蓝紫光反射加强, 所以我们看到镜头表面为蓝 紫色。 增反膜:减少透光量,增加反射光,使膜上下两表面 的反射光满足加强条件。 例如:激光器谐振腔反射镜采用优质增反膜介质薄膜 层已达15 层,其反射率99.9%。
对不同特殊用途,设计制造了许多专用干涉仪
显微干涉仪:测表面光洁度 泰曼-格林干涉仪:测光学元件成象质量 干涉比长仪测长度 瑞利干涉仪:测气体、液体折射率
a
(a)属于同一光波列的 两部分相遇发生干涉
(b)不同光波列的两 部分相遇不能干涉
最大光程差:
m L c t
时间相干性
相干长度(波列长度)
空间相干性 时间相干性 波列长度对干涉条纹的 影响,反映原子发光的 断续性
比 较
波源线宽度对干涉条纹的影 响,反映扩展光源不同部分 发光的独立性 x
波的叠加原理
惠更斯-菲涅耳原理
干涉现象 二者关系?
惠更斯-菲涅耳原理
一、衍射现象
衍射现象
波遇到障碍物时,绕过障碍 物进入几何阴影区。 光偏离直线传播路径进入几 何阴影区,并形成光强非均 匀稳定分布(见下页图)。
§15.2
光的干涉(续)
一、光的相干性 光程 二、分波面两束光的干涉
三、光的空间相干性
四、分振幅两束光的干涉 五、迈克尔孙干涉仪 光的时间相干性
1852——1931
美国物理学家,主要从事光学和光谱学研究。以 毕生精力从事光速的精密测量,发明了干涉仪, 研制出高分辨率的光谱学仪器,经改进的衍射光 栅和测距仪。 1887年与E.W.莫雷合作,进行了 著名的迈克尔孙-莫雷实验。他首倡用光波波长作 为长度基准,提出在天文学中利用干涉效应的可 能性,并且用自己设计的星体干涉仪测量了恒星 参宿四的直径。荣获1907年诺贝尔物理学奖。
实验照片:
高速气流:超波速 波 源比波面前进快,前方 无波动。 尖锥使气流不稳定,n 不均匀,条纹弯曲。 3.由
v sin 2 u
(自学 P 442: 三. 冲击波 )
v:波速;u:波源运动速度 得: u
si n
2 v 2.5v o 47.2 si n 2
马赫数
§15.3
G2
①
S
1. L1:透镜,产生平行光 使光束分开再会合:
G1、G2:镀有半透膜的分束板
C
S
L1 G1
L2
②
M2
M1、M 2:平面反射镜
马赫—曾德干涉仪
C:放置实验装置
2. 第(1)束光通过 C 时,由于气流密度、压强不均 匀,各处折射率 n 不同,光程差变化、波面弯曲、而 第(2)束光保持平面波,与(1)叠加时,干涉条纹 反映出(1)波面等厚线的情形。
d 2 4980
A
A
K=?太小技术难度高,太大受光的时间相干性制约。 通常 k 取 1:
由相长条件:
反 2n2d k
( k 1, 2)
2n2d 2 1.38 2988 8246 A k k k
取可见光范围: k 2,
4123A
M1
M2' M1
M2' M1
•计算公式:
调节M1位置,改变e, 从而改变,引起条纹移动。
M 1 每移动
2n
, 改变,视场中有一条纹移过
M1 反射镜1 M2'
d N
2n
反射镜 2 平行光
半透 明镀 银层
补偿玻璃板
可测量10-7m 的微小位移。
2.光的时间相干性 若光程差太大,同一波列分成的两列波不能相遇, 不能形成干涉条纹
电视塔模型 的风洞实验
M1
G2
①
S
C
S
L1 G1
L2
②
M2
马赫—曾德干涉仪
1.说明干涉仪中各个元件的作用并指出气流实验装置 的位置。
2.说明为什么会在S '处形成干涉图样,你可以由气流 经过尖锥时的干涉图样得出哪些结论?
3.若 47.2o , 请计算尖锥相对于气流 的速率与声速 的比值。
M1
n2 1.38 n3 1.52
反 2n2d
相消条件:
反 2n2d ( 2k 1)
2
( k 0 ,1,2 )
( 2k 1) 得: d 4n2
( k 0 ,1,2 )
k=0:
k=1: k=2:
……
dmin
4n2
996 A
d1 2988