线性代数复习资料
数学专业考研复习资料线性代数重点知识点整理

数学专业考研复习资料线性代数重点知识点整理数学专业考研复习资料:线性代数重点知识点整理一、向量与矩阵1. 向量的定义和性质- 向量的表示与运算- 单位向量和零向量- 向量的线性相关性2. 矩阵的定义和性质- 矩阵的基本运算- 矩阵的转置和逆矩阵- 矩阵的秩和行列式二、线性方程组1. 线性方程组的概念- 线性方程组的解和解的存在唯一性- 齐次线性方程组和非齐次线性方程组2. 线性方程组的解法- 列主元消元法- 矩阵的初等变换和阶梯形矩阵 - 高斯消元法和高斯约当法三、线性空间和子空间1. 线性空间的定义和性质- 线性空间的子空间和直和- 基和维数的概念- 线性空间的同构与等价2. 子空间的性质与判定- 线性子空间的交与和- 维数公式和秩-零化定理- 子空间的降维与升维四、线性变换和特征值1. 线性变换的定义和性质- 线性变换的表示和运算- 线性变换的核与像- 线性变换的矩阵表示和判定2. 特征值和特征向量- 特征方程和特征值的求解 - 特征空间和特征子空间- 相似矩阵和对角化矩阵五、内积空间和正交变换1. 内积的定义和性质- 内积的基本性质和判定- 正交向量和正交子空间- 构造内积空间2. 正交变换和正交矩阵- 正交变换的性质和表示- 正交矩阵的特点和运算- 正交矩阵的对角化和特征值六、二次型和正定矩阵1. 二次型的定义和性质- 二次型的标准形和规范形 - 二次型的正定性和负定性- 二次型的规约和降维2. 正定矩阵的定义和性质- 正定矩阵的判定和运算- 正定矩阵的特征值和特征向量- 正定矩阵及其应用总结:线性代数是数学专业考研中的重要内容之一。
通过对向量与矩阵、线性方程组、线性空间和子空间、线性变换和特征值、内积空间和正交变换、二次型和正定矩阵等知识点的学习和掌握,能够为考研复习提供有力的理论基础和解题方法。
在复习过程中,需要注重概念的理解、性质的掌握以及应用题的练习,同时注意归纳总结和思维方法的培养。
线性代数复习要点

2
2、初等变换的性质 (1) 对调变换使得行列式的值反号; (2) 倍乘变换只是放大或缩小行列式的值; (3) 倍加变换不改变行列式的值. 3、加法原理:若行列式的某一行(或列)的元都是两数之和,则此行列式等于两个行列式的和. 4、乘积法则:对任何 n 阶矩阵 A 和 B ,均有 | AB | | Α | | B | . 5、转置运算不改变行列式的值. 三、行列式的计算 1、典型方法:三角化方法、降阶法、归纳法、递推法、分拆法、升阶法. 2、设 A 为 n 阶矩阵, k 为任意数,则 kA k A .
1 * * 1 * T T *
4、 ( A ) ( A ) , ( A ) ( A ) , ( A ) ( A ) .
T 1
AT A 5、 B
T
, T B B
1
A T A
T
BT ;
A1 A 当 A, B 可逆时,有 B
一、行列式的概念
n 阶行列式 A 或 det A 是 n 阶矩阵 A [aij ] 按下述运算法则得到的一个算式: 当 n 1 时, A a11 a11 ; 当 n 2 时,
A a11 A11 a12 A12
这里 A1 j (1)
三、分块矩阵的求逆公式 当 A, B 可逆时,有
, 1 B B
A 1 A
1
B 1 .
A 1 A C 0 B 0
四、重要结论
1
A1 A1CB 1 A 0 , 1 1 B 1 C B B CA
(5) rank
A 0 0 rankA rankB , rank 0 B B
线性代数重点复习(16页)

齐次线性方程组给出系数矩阵,
1
非齐次线性方程组给出增广矩阵 。
对矩阵进行初等行变换得到行最
2
简形。
3
把行最简形矩阵写回线性方程 组的形式。
4
给出方程组的通解。
若线性方程组的系数带有未知数,需分各种情况讨论,灵活处理。
相似矩阵与二次型 05 Guidance for Final Exams at XXX University in 2025 2025
交向量组,由此便可得到相应的正交变换矩阵和相似对
角矩阵。
2025
马到成功!
XXX大学2025年期末考试指导
2025
公众号:安全生产管理
线性代数复习重点
第一章 行列式 01 Guidance for Final Exams at XXX University in 2025 2025
容易出选择填空题的内容:
(1)求逆序数; (2)含某个因子的项(注意正负号); (3)与余子式或代数余子式相关的内容; (4)已知 |A| 求某个与A相关的行列式。。
第三章 向量空间 03 Guidance for Final Exams at XXX University in 2025 2025
向量空间
本章提到的的性质和定理较多,需要灵活运用。
容易出选择填空题的内容: 二 (1)向量的加法、数乘和内积运算; (2)线性相关和线性无关的定义,以及它们与向量组秩的关系(线性无关意
容易出大题的内容:行列式的计算。 其中,若已知行列式的阶数和每个元素的数值, 则问题很简单,但要注意,对于2阶和3阶行列式, 可用划斜线的方式(对角线法则)来计算。而对于4 阶或更高阶的行列式,不能采用对角线法则计算, 此时必须利用行列式的性质将其化为上三角行列式 从而得出结果,或者当某一行(列)非零元很少时, 运用展开定理将该行(列)展开从而得到经过降阶 的行列式计算。 对于n阶行列式的情形或者行列式元素中出现未 知数,求解的难度较大,需要灵活的结合运用行列 式的性质和展开定理。一般来说,考试中都会出课 本中已有的例题、习题,或者非常相似的题目。
线性代数--总复习

可见, 当λ=-4/5时, R(A)=2, R(A|b)=3, 方程组无解. 当λ≠-4/5, 且λ≠-1时 R(A)=R(A|b)=3, 方程组有唯一解.
当λ=-1时, 有
1 −1 −2 1 1 −1 0 3 ( A | b) → 0 0 1 1 → 0 0 1 1 0 0 1 1 0 0 0 0
第三章 向量 线性关系 秩
1. 理解n维向量的概念以及向量的线性运算; 2. 理解向量组的线性组合与线性表示的概念; 3. 理解向量组线性相关, 线性无关的定义, 了解并会用 向量组线性相关, 线性无关的有关性质及判别法; 4. 理解向量组的极大线性无关组和向量组的秩的概念, 会求向量组的极大无关组和秩,理解向量组等价的概念; 5. 理解矩阵秩的概念及与向量组秩的关系及其计算.
0 2/3 0 B = 6 0 3/ 4 0 0 0 6/ 7
−1
0 3 0 0 1/ 3 0 = 0 2 0 0 1/ 4 0 0 0 1/ 7 0 0 1
49页:10, 11, 12, 18
第六章 矩阵的特征值与特征向量
1. 了解矩阵的特征值和特征向量的概念及其求法; 2. 了解矩阵的特征值和特征向量的性质; 3. 了解相似矩阵的概念及性质; 4. 掌握将(实对称)矩阵(正交)相似对角化的方法.
第七章 二次型
1. 掌握二次型及其矩阵表示, 了解二次型秩的概念, 了解合同变换与合同矩阵的概念, 了解二次型的标准形和 规范形的概念以及惯性定理; 2. 掌握用正交变换化二次型为标准形的方法, 会用 配方法化二次型为标准形; 3. 理解正定二次型和正定矩阵的概念, 掌握其判别法.
线性代数复习资料

第一章一.选择题(1)设行列式D 1=22221111a cb a ac b a a c b a+++,D 2=222111c b a c b a cba ,则D 1= ( ) A .0 B .D 2C .2D 2 D .3D 2 (2)设行列式D =333231232221131211a a a a a a a a a =3,D 1=333231312322212113121111252525a a a a a a a a a a a a +++,则D 1的值为 ( ) A .-15 B .-6 C.6 D.15(3)已知333231232221131211a a a a a a a a a =3,那么333231232221131211222222a a a a a a a a a ---=( ) A .-24 B .-12 C .-6 D .12 二.填空题1.排列341265 的逆序数是__________;排列513264 的逆序数是( )。
2.四阶行列式中,项14432231a a a a 的符号是__________;项42342311a a a a 的符号是__________; 三.计算题 1.4321032131001011-,2.3315112043512131------,3.设 D=3142313150111253------,D 的(i ,j )元的代数余子式记作j i A ,,求+11A +12A +13A 14A 。
4.设 D=335111243152113------,D 的(i ,j )元的代数余子式记作j i A ,,求331+A 232-A 233+A 34A 。
一.选择题1、设A 为n 阶方阵,则=*AA ( )a 、1;b 、A ;c 、2A ;d 、nA 。
2、设n 阶方阵C B A,, 满足关系式:E ABC =,则必有( )a 、E ACB =;b 、E CBA =;c 、E BAC =;d 、E BCA =。
线性代数-要点考点复习

六、行列式的计算
1.基本计算方法 (1)化三角形法 (2)展开法(降阶法)
展开前尽量化 0 按特殊的一行、列展开 按0多的一行、列展开
2.常见行列式的计算方法
(1)各行(列)和相等
b a"a
a b"a
# #%#
a a"b
a1 + b a2 " an
a1 a2 + b " an
#
#%#
a1
a2 " an + b
2.向量的长度及其性质 向量的单位化 (标准化 ) 3.向量的正交 (1)夹角 (2)正交 (3)求与一个或几个向量均 正交的向量 解齐次方程组 由部分特征向量求实对 称矩阵的其余特征向量
(4)正交向量组与标准正交 向量组
4.施密特正交化方法
向量组的正交化
向量组的标准正交化
六、正交矩阵
1.定义 AT A = I
QT AQ = Λ QT AkQ = Λk Ak = QΛkQT
( ) AX = 0与 AT A X = 0同解 : ( ) AX = 0 ⇒ AT A X = AT ( AX ) = 0 ( ) ( ) AT A X = 0 ⇒ XT AT A X = 0
⇒ ( AX )T ( AX ) = 0
⇒ AX = 0
第一章 行列式
复习要点 :
一、排列及其逆序
τ (i1"in ) = a,
τ
(in " i1 )
=
n(n − 2
1)
a.
二、2、3阶行列式的对角线原理
三、行列式的定义
D
=| aij
|=
p1
∑
p2"
线代复习资料
第一部分:基本要求(计算方面)四阶行列式的计算;N阶特殊行列式的计算(如有行和、列和相等);矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算);求矩阵的秩、逆(两种方法);解矩阵方程;含参数的线性方程组解的情况的讨论;齐次、非齐次线性方程组的求解(包括唯一、无穷多解);讨论一个向量能否用和向量组线性表示;讨论或证明向量组的相关性;求向量组的极大无关组,并将多余向量用极大无关组线性表示;将无关组正交化、单位化;求方阵的特征值和特征向量;讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵;通过正交相似变换(正交矩阵)将对称矩阵对角化;写出二次型的矩阵,并将二次型标准化,写出变换矩阵;判定二次型或对称矩阵的正定性。
第二部分:基本知识一、行列式1.行列式的定义用n^2个元素aij组成的记号称为n阶行列式。
(1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和;(2)展开式共有n!项,其中符号正负各半;2.行列式的计算一阶|α|=α行列式,二、三阶行列式有对角线法则;N阶(n>=3)行列式的计算:降阶法定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。
方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。
特殊情况上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;(2)行列式值为0的几种情况:Ⅰ行列式某行(列)元素全为0;Ⅱ行列式某行(列)的对应元素相同;Ⅲ行列式某行(列)的元素对应成比例;Ⅳ奇数阶的反对称行列式。
二.矩阵1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等);2.矩阵的运算(1)加减、数乘、乘法运算的条件、结果;(2)关于乘法的几个结论:①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵);②矩阵乘法一般不满足消去律、零因式不存在;③若A、B为同阶方阵,则|AB|=|A|*|B|;④|kA|=k^n|A|3.矩阵的秩(1)定义非零子式的最大阶数称为矩阵的秩;(2)秩的求法一般不用定义求,而用下面结论:矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。
线性代数期末复习
二、相似矩阵 1、相似矩阵的定义与性质。 、相似矩阵的定义与性质。 性质 2、区分矩阵相似、矩阵等价(P.54 定义 1. 15) 、矩阵合 、区分矩阵相似、矩阵等价( 等价 ) 同的概念。 同的概念。
三、矩阵的对角化 1、矩阵可以对角化的判定(定理 4 . 9 及其推论 、 、矩阵可以对角化的判定( 判定 定理 4 . 10 ) 。 2、当矩阵 A 可以对角化时,求出可逆矩阵 P、对角矩阵 、 可以对角化时, 、 Λ,使 P −1 A P = Λ 。 进而, 可以对角化时, 进而,当矩阵 A 可以对角化时,r ( A ) = 矩阵 A 的非零特 征值的个数。 征值的个数。 3、实对称矩阵 A 的对角化:求出正交矩阵 Q、对角矩阵 、实对称矩阵 对角化: 、 Λ , 使 Q− 1 A Q = Λ 。 4、当矩阵 A 可以对角化时,利用矩阵 A 的特征值和特征 、 可以对角化时, 向量, 向量,求出矩阵 A 以及 A k 。
9、练习1. 6 的 3、求解下列矩阵方程: 、练习 求解下列矩阵方程:
2 1 0 5 1 1 (3*)X 1 1 2 = 0 0 − 6 3*) 1 2 5 1 0 − 1
0 0 1 ( − 1 2 − 1 )、 0 2 − 1
16、习题二的 8 : 、 考题有时会更难; 注:① 考题有时会更难; ② 题中方程组的两个解 γ1 ,γ2 可能会以另一种形式给 出: 设 4 × 3 矩阵 A 分块为 A = ( α1 ,α2 ,α3 ) ,其中 α i ∈ R4 ,i = 1,2,3,− α1 + α2 = β ,α1 + α3 = β ,且线性 , , , 方程组 A x = β 满足 r ( A ) = r (A ) = 2 ,试求出该方程组 的全部解。 的全部解。 17、习题二的 10 ; 、 18、习题二的 12 。 、
线性代数期末复习知识点参考
行列式1. 行列式的性质性质1 行列式与它的转置行列式相等T D D =.性质2 互换行列式的两行(列),行列式变号.推论1 如果行列式有两行(列)的对应元素完全相同,则此行列式的值为零.性质3 行列式的某一行(列)中所有的元素都乘以同一数k ,等于用数k 乘此行列式.如111213111213212223212223313233313233a a a a a a ka ka ka k a a a a a a a a a = 推论2 如果行列式中有两行(列)元素成比例,则此行列式的值为零.性质4 若行列式的某一行(列)的元素都是两数之和,则这个行列式等于两个行列式之和.如111213111213111213212122222323212223212223313233313233313233a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ''''''+++=+ 性质5 把行列式的某一行(列)的各元素乘以同一数然后加到另一行(列)对应的元素上去,行列式的值不变.如111213111213212223212223313233311132123313a a a a a a a a a a a a a a a a ka a ka a ka =+++例1 已知,那么( )A.-24B.-12C.-6D.12 答案 B解析2. 余子式与代数余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的n-1阶行列式叫做元素ij a 的余子式,记作ij M ,i jij ij A (1)M +=-叫做元素ij a 的代数余子式.3. 行列式按行(列)展开法则定理1 行列式的值等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即1122i i i i in in D a A a A a A =+++或 1122j j j j nj nj D a A a A a A =+++()1,2,,;1,2i n j n ==定理2 行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即12120,j j i i jn i n a A a A a A +++=或,11220.j j j j nj nj a A a A a A i j +++=≠()1,2,,;1,2i n j n ==例.设3阶矩阵()ij A a =的行列式12A =,ij A 为ij a 的代数余子式.那么313132323333a A a A a A ++=___12____; 213122322333a A a A a A ++=___0___.4. 行列式的计算(1)二阶行列式1112112212212122a a a a a a a a =- (3)对角行列式1212n nλλλλλλ=,n(m 1)21212n n(1)λλλλλλ-=-(4)三角行列式1111121n 2122222n 1122nn n1n2nnnna a a a a a a a a a a a a a a ==(5)消元法:利用行列式的性质,将行列式化成三角行列式,从而求出行列式的值.(6)降阶法:利用行列式的性质,化某行(列)(一般选择有0元素的行或列)只有一个非零元素,再按该行(列)展开,通过降低行列式的阶数求出行列式的值.(7)加边法:行列式每行(列)所有元素的和相等,将各行(列)元素加到第一列(行),再提出公因式,进而求出行列式的值.例:思路:将有0的第三行化为只有一个非0元素a 33=1,按该行展开,D=a 33A 33,不用忘记a 33。
线性代数总复习知识点
M
M
am1 L amm
0L 0
M
M
0L 0
0L0
M 0 b11 M
L L
Ma
0 b1n
=
11
M am1
L L
a1m
b 11
MM
amm bn1
L L
b1n
M bnn
bn1 L bnn
∗L∗
M ∗
b11 M
L L
Ma
∗ b1n
=
11
M am1
L L
a1m
b 11
MM
amm bn1
L b1n
M L bnn
)
=
1 det
A
2)分块上下三角阵的行列式
det CA
O B
=
det
A
⋅
det
B
,
det
A O
C B
=
det
A
⋅
det
B
3)利用
det A = λ1λ2 Lλn
其中 λ1,λ2 ,L,λn 是A的n个特征值。
四、求逆矩阵★★★
1.具体矩阵:
① 2阶矩阵——伴随阵法(公式法)
对
A
=
a11 a21
n(n−1)
= (−1) 2 a1na2,n−1Lan1
a1n
a2,n−1 NM
a2n M
n(n−1)
= (−1) 2 a1na2,n−1Lan1
an1 L an,n−1 ann
③范德蒙行列式
1 1L1
x 1
x 2
L
xn
Dn =
x2 1
M
∏ x2 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十章线性代数简介本章知识结构导图数学家的故事: 阿瑟·凯利简介(Richmond),卒于剑桥。
17岁时考入剑桥大学的三一学院,毕业后留校讲授数学,几年内发表论文数十篇。
1846年转攻法律学,三年后成为律师,工作卓有成效。
任职期间,他仍业余研究数学,并结识数学家西尔维斯特(Sylvester)。
1863年应邀返回剑桥大学任数学教授。
他得到牛津大学、都伯林大学和莱顿大学的名誉学位。
1859年当选为伦敦皇家学会会员。
凯利和西尔维斯特同是不变量理论的奠基人。
在布尔1841年的工作的影响下,他首创代数不变式的符号表示法,给代数形式以几何解释,然后再用代数观点去研究几何学。
他第一次引入n维空间概念,详细讨论了四维空间的性质,为复数理论提供佐证,并为射影几何开辟了道路。
他还首先引入矩阵概念以化简记号,规定了矩阵的符号及名称,讨论矩阵性质,被公认为矩阵论的奠基人。
他开始将矩阵作为独立的数学对象研究时,许多与矩阵有关的性质已经在行列式的研究中被发现了,这也使得凯利认为矩阵的引进是十分自然的。
他说:“我决然不是通过四元数而获得矩阵概念的;它或是直接从行列式的概念而来,或是作为一个表达线性方程组的方便方法而来的。
”他从1858年开始,发表了《矩阵论的研究报告》等一系列关于矩阵的专门论文,研究了矩阵的运算律、矩阵的逆以及转置和特征多项式方程。
凯利还提出了凯利-哈密尔顿定理,并验证了3×3矩阵的情况,又说进一步的证明是不必要的。
哈密尔顿证明了4×4矩阵的情况,而一般情况下的证明是德国数学家弗罗贝尼乌斯(F.G.Frohenius)于1898年给出的。
本章小结本章主要掌握行列式、矩阵的概念及运算,逆矩阵、矩阵方程、线性方程组的求解。
一、行列式的定义与性质1. 一阶行列式:1111a a =;二阶行列式:1112112212212122a a a a a a a a =-;三阶行列式:111213222321232122212223111213111112121313323331333132313233111213111112121313111112121313(1)(1)(1)a a a aa a a a aa a a a a a a M a M a M a a a a a a a a a a M a M a M a A a A a A +++=-+=-+=-+-+-=++;其中ij M 为余子式,ij A 为代数余子式。
2. 性质:(1)任何行列式与它的转置行列式相等,即 D =D T。
(2)互换行列式的两行(列),行列式变号。
(3)如果行列式有两行(列)相同,则行列式为0。
(4)行列式某一行(列)的各元素乘以同一个数,等于这个数乘以该行列式。
(5)若行列式有两行(列)的元素对应成比例,则行列式为0。
(6)如果某一行(列)元素都是两个数之和,则此行列式就等于两个行列式的和。
(7)行列式的任一行(列)的所有元素乘以同一个数,再加到另一行(列)对应的元素上去,行列式的值不变。
(8)行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和。
(9)行列式中的任一行(列)的各元素与另一行(列)对应元素的代数余子式乘积之和等于0。
3. 计算方法:(1)二阶、三阶行列式可以根据定义直接计算;(2)选择0元素较多的行(列),按该行(列)展开计算;(3)利用行列式的性质,把某行(列)化为只有一个非零元素,按该行(列)展开计算;(4)利用行列式的性质,化为三角形行列式再进行计算。
二、矩阵及其运算1. 同型矩阵的线性运算规律:+=+A B B A ;()()++=++A B C A B C ;+=A O A ;()+-=A A O ;()k l k l +=+A A A ;()k k k +=+A B A B ,0,0k l ≠≠。
2. 矩阵乘法的运算规律:()()=AB C A BC ;()()=+=+A B +C AB AC,B +C A BA CA;()()λλλ=AB A B =A B ;=AE EA=A 。
注意:(1) AB ,只有当A 的列数等于B 的行数时,该乘积才有意义;(2)矩阵乘法不满足交换律;(3)矩阵乘法不满足消去律。
3. 矩阵转置运算规律:()TT =A A ;()T T T =+A+B A B ;()T T λλ=A A ;()TT T =AB B A 。
三、逆矩阵1. 定义:若AB=E ,则A 、B 互为逆矩阵,记1-=A B ,1-=B A 。
2. 性质:(1)若A 可逆,则1-A 可逆,且()11--=A A 。
(2) 若A 可逆,0k ≠,则k A 可逆,且()111k k--=A A 。
(3)若矩阵A 与B 都可逆,则AB 可逆,且()111---=AB B A 。
(4) 若A 可逆,则T A 可逆,且()()11TT --=A A 。
3. 矩阵可逆的充分必要条件:0≠A 。
当0≠A 时,11211122221*1211n n nnnn A A A A A A A A A -⎛⎫⎪⎪== ⎪⎪⎝⎭A A A A 。
4. 解矩阵方程:(1)1-⇒AX =C X =A C ;(2)1-⇒XB =C X =CB ; (3)11--⇒AXB =C X =A CB ; (4)()()−−−−→ AX =B,A B E X 行初等变换则。
四、矩阵的初等变换及矩阵的秩1. 阶梯形矩阵:(1)如果有零行的话,零行位于矩阵下方;(2)各个非零行的第一个非零元素的列标随着行标的递增而严格增大。
注:一个矩阵的阶梯形矩阵不是唯一的,但阶梯形矩阵中所含非零行的行数是唯一的。
2. 行最简形矩阵:每一非零行的第一个非零元素都是1,并且这些1所在列其余元素都是0。
3. 矩阵的秩:矩阵A 的阶梯形矩阵中,其非零行行数称为矩阵A 的秩,记为秩A 或()r A 。
4. 求矩阵秩的方法:用行初等变换把任意矩阵A 化为阶梯形,然后判断非零行的行数。
5. 逆矩阵的求法:()()1-−−−−→ A E E A 行初等变换。
五、线性方程组1. 方程组有解时称方程组相容;方程组无解时称方程组不相容。
2. n 元线性方程组的求解: (1)根据方程组写出增广矩阵;(2)用行初等变换将增广矩阵化为阶梯形矩阵; (3)判断方程组是否相容(有解),在方程组相容时,把阶梯形矩阵化为行最简形矩阵; (4)根据行最简形矩阵直接写出原方程组的解。
3. n 元线性方程组解的判断:(1)()()r r = A A 时,方程组有解:①()()r r = A A =未知量个数时,方程组有唯一解;②()()r r n =< A A (n 为未知量个数)时,方程组有无穷多个解,其中自由未知量个数等于()n r -A 。
(2) ()()r r ≠ A A 时,方程组无解。
综合练习 一、判断题:1. 行列式33-=。
( )2. 零矩阵一定是方阵。
( )3. 若AB =O ,则A =O 或B =O 。
( )4. 若乘积AB 、BA 存在,则AB =BA 。
( )5. ()TT =A A 。
( )6. 若A 为n 阶方阵,且()r n =A ,则A 的行最简形矩阵为单位矩阵。
( )7. 若AX =C ,则CX =A。
( ) 二、填空题:1. 如果333231232221131211a a a a a a a a a D ==1,则3332313123222121131211111324324324a a a a a a a a a a a a D ---== 。
2.01221≠--k k 的充分必要条件是 。
3. 已知)013(=A ,⎪⎪⎪⎭⎫⎝⎛--=530412B ,则=AB 。
4. 已知)013(=A ,212⎛⎫ ⎪= ⎪ ⎪⎝⎭B ,则=AB ;BA= 。
5. 矩阵A 与B 能进行乘积运算AB 的充要条件是 。
6. 非齐次线性方程组AX B =有解的充分必要条件是 。
7. 已知214284⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭A ,11210224203061103001-⎛⎫⎪--⎪= ⎪- ⎪⎝⎭B ,则()=r A ;()=r B 。
三、选择题:1. 设A 为32⨯矩阵,B 为23⨯矩阵,则下列运算中 ( )可以进行。
A. ABB. T ABC. A+BD. T BA2. 设A 为34⨯矩阵,B 为52⨯矩阵,若矩阵T ACB 有意义,则矩阵 C 为( )型。
A. 32⨯ B. 42⨯ C. 35⨯ D. 45⨯3. 设A,B 均为同阶可逆矩阵,则下列等式成立的是( )。
A. ()TT T =AB A B B. ()TT T =AB B A C. ()()111T T ---=AB A B D. ()()111TT ---=AB A B4. 若1003231ba⎛⎫⎪= ⎪⎪⎝⎭A是对称矩阵,则( )。
A. 2,3a b== B. 2,1a b== C. 0,2a b== D. 0,0a b==5. 矩阵120112024-⎛⎫⎪--⎪⎪-⎝⎭A=的秩为( )。
A. 3B. 2C. 1D. 06. 设A为四阶矩阵,若()3r=A,则 ( )。
A.A可逆B.A的阶梯形矩阵有一个零行C.A一定有一个零行D. A至少有一个零行7. 若A为可逆矩阵,且A+AB=E,则1-=A( )。
A.-E AB B.E-B C.E+B D. ()1-E-AB四、计算题:1. 计算行列式(1)2452,(2)122134213,(3)1234234134124123,(4)191033281982372991454055----。
2. (1)判断矩阵4132A⎛⎫= ⎪⎝⎭是否可逆?如果可逆,求1-A。
(2)判断矩阵114012210⎛⎫⎪= ⎪⎪-⎝⎭A,是否可逆?如果可逆,求1-A。
3. 解矩阵方程(1)AX B=,其中11011231,2021235A B-⎛⎫⎛⎫⎪ ⎪=-=⎪ ⎪⎪ ⎪-⎝⎭⎝⎭。
(2) XA B=,其中001121200,341 324A B-⎛⎫-⎛⎫ ⎪=-= ⎪⎪-⎝⎭ ⎪-⎝⎭。
4. 求下列线性方程组的一般解:(1)1231241324142543x x xx x xx x-+=⎧⎪++=⎨⎪+=⎩,(2)12341234123123435123342585371139x x x xx x x xx x xx x x x++-=⎧⎪++-=⎪⎨++=⎪⎪++-=⎩,(3)1231231233342161845614+-=⎧⎪-+=⎨⎪++=⎩x x xx x xx x x。
5. 讨论k取何值时,方程组12312321231kx x xx kx x kx x kx k⎧++=⎪++=⎨⎪++=⎩(1)无解,(2)有唯一解,(3)有无穷多个解。