初二下册分式专题(全部题型)

合集下载

初二分式练习题及答案

初二分式练习题及答案

初二分式练习题及答案在初二阶段,分式是一个重要的数学概念。

掌握分式的运算方法对学生的数学学习至关重要。

下面是几道初二分式练习题及其答案,希望能帮助同学们巩固和加深对分式的理解和运用能力。

练习题一:计算下列分式的值,并将结果化简到最简形式:1. $\frac{3}{4} + \frac{5}{8}$2. $\frac{2}{3} - \frac{1}{6}$3. $\frac{3}{2} + \frac{1}{4} - \frac{1}{8}$4. $\frac{a}{2} - \frac{2a}{3}$5. $\frac{x-1}{5} - \frac{x+2}{3}$练习题二:将下列分数改写为带分数,并化简到最简形式:1. $\frac{11}{4}$2. $\frac{8}{3}$3. $\frac{12}{5}$4. $\frac{25}{6}$5. $\frac{10a}{3}$练习题三:将下列带分数改写为分数,并化简到最简形式:1. $1\frac{1}{2}$2. $2\frac{2}{3}$3. $5\frac{1}{4}$4. $3\frac{5}{6}$5. $4\frac{2a}{3}$练习题四:计算下列表达式的值,并将结果化简到最简形式:1. $\frac{2}{3} \times \frac{6}{5}$2. $\frac{3}{4} \div \frac{2}{5}$3. $\frac{1}{2} \times \frac{4}{7} \div \frac{2}{5}$4. $\frac{a}{2} \times \frac{3a}{4}$5. $\frac{x-1}{5} \times \left(\frac{x+2}{3}+\frac{3}{2}\right)$练习题五:解下列方程:1. $\frac{2x-1}{3} = \frac{x+4}{2}$2. $\frac{1}{x} + \frac{1}{2x} = \frac{3}{4}$3. $\frac{1}{2a} - \frac{1}{3a} = \frac{1}{6}$4. $\frac{3}{x-1} - \frac{1}{3} = \frac{2}{x}$5. $\frac{1}{x+2} + \frac{1}{2} = \frac{x}{2} - \frac{1}{x+2}$答案如下:练习题一:1. $\frac{13}{8}$2. $\frac{1}{2}$3. $\frac{21}{8}$4. $\frac{a}{6}$5. $\frac{-3x-3}{15}$练习题二:1. $2\frac{3}{4}$2. $2\frac{2}{3}$3. $2\frac{2}{5}$4. $4\frac{1}{6}$5. $\frac{10a}{3}$练习题三:1. $\frac{3}{2}$2. $\frac{8}{3}$3. $\frac{21}{4}$4. $\frac{23}{6}$5. $\frac{10a+8}{3}$练习题四:1. $\frac{4}{5}$2. $\frac{15}{8}$3. $\frac{2}{7}$4. $\frac{3a^2}{8}$5. $\frac{x^2+x-3}{10}$练习题五:1. $x = \frac{5}{2}$2. $x = \frac{2}{3}$3. $a = \frac{1}{4}$4. $x = \frac{5 \pm \sqrt{37}}{2}$5. 方程无解以上是初二分式练习题及答案,通过做题的过程,希望同学们能够熟练掌握分式的运算规则,提高数学解题能力。

八年级分式经典题型

八年级分式经典题型

八年级分式经典题型包括:
1.分式的约分:将分式的分子和分母进行因式分解,然后找出分子和分母中的公因
式,将其约去。

2.分式的乘法:将两个分式相乘,即将分子相乘、分母相乘。

3.分式的除法:将除法转化为乘法,再将两个分式相乘。

4.分式的加减法:同分母的分式相加减,直接将分子相加减,分母不变。

5.分式的混合运算:在运算过程中,需要注意运算顺序,先乘除后加减,有括号的先
算括号里面的。

6.分式的实际应用:例如,解决与面积、速度、时间等相关的实际问题,需要根据实
际情况建立数学模型,然后进行分式的运算。

分式专题(含答案)

分式专题(含答案)

.分式专题一、分式定义,注意:判别分式的依据是分母中还有字母,分母不等于零。

1、在式子y x y x x c ab y a 109,87,65,43,20,13+++π中,分式的个数是( )个2.下列式子:x y a y x ab x 73),(51,89,97222++-,yx 2915-中,是分式的有( )个 二、分式基本性质1、填空:()yx xy ba -=---..............;2.在括号内填入适当的代数式,使下列等式成立:2xy =22()2ax y; 322()x xy x y --=()x x y -. 3、把分式xyyx -中的x 、y 的值都扩大2倍,则分式的值( )A 不变B 扩大2倍C 扩大4倍D 缩小一半4、已知31=b a ,分式ba ba 52-+的值为 ;5、若32,234a b c a b ca b c-+==++则=_______. 6、不改变分式52223x y x y -+的值,把分子、分母中各项系数化为整数,结果是( ) 三、分式无意义与有意义,1、当x 时,分式3213+-x x 无意义;2.在分式2242x x x ---中,当x ______时有意义.3.当x____时,分式||2x x -有意义.4.2(3)--x 的取值范围是_______.5. 当x_____________时,式子23+x x ÷322--x x 有意义 四、分式值为零,1、当x 时,分式392--x x 的值为0;2.使分式234x ax +-的值等于零的条件是x____.3.在分式2242x x x ---中,当x ____时分式值为零..__01||87.42=---x x x x ,则的值为若分式五、分式约分1.约分:34522748a bx a b x , 532164abc bc a - 22923a a a ---, xx x 52522--2.分式:①223a a ++,②22a b a b --,③412()a a b -,④12x -中,最简分式有( )个六、通分 1、分式222439xx x x --与的最简公分母是___ ___________. 2、分式yx 21,323x y,232xy x +的最简公分母是( ) 3、把下列各组分式通分 (1)243,2bac bd c (2),412-a 21-a七、分式运算 1、化简xy x x 1⋅÷的结果是( ) 2、22332p mn p n nm÷⎪⎪⎭⎫ ⎝⎛⋅; 3、aa a -+-21422; 4、112---x x x ; 5、⎪⎪⎭⎫ ⎝⎛--÷-x y xy x x y x 2222, 6.339322++--m m m m7 、先化简,再对a 取一个你喜欢的数,代入求值.221369324a a a a a a a +--+-÷-+-.8、先化简:⎪⎭⎫ ⎝⎛--÷-aa a aa 121 并任选一个你喜欢的数a 代入求值.9、先化简,再求值:1312-÷+x xx x ,其中31+=x .10、已知220x -=,求代数式222(1)11x x x x -+-+的值.11、 先化简,再求值: 3x +3 x ·⎝ ⎛⎭⎪⎫ 1 x -1 + 1 x +1 ÷ 6x ,其中x =1.12、先化简,再求值:232224xx x x x x ⎛⎫-÷ ⎪-+-⎝⎭,其中3x =.八、分式方程,易错点:分式方程检验 1、解方程: (1)256x x x x -=--. (2)21411x x x +---=1. (3)12212+=++-x xxx x ,(4)6122x x x +=-+. (5)14143=-+--x x x ,(6)22333x x x -+=--,2、已知23(1)(2)12x A Bx x x x -=+-+-+,求A ,B 的值.3、已知分式方程21x ax +-=1的解为非负数,求a 的范围.4、已知关于x 的方程12-=-+x ax 的根是正数,求a 的取值范围。

(完整版)八年级下册数学分式练习题+答案

(完整版)八年级下册数学分式练习题+答案

初中数学81八年级数学下册分式单元测试题一、精心选一选(每小题3分,共24分)1.计算223)3(a a ÷-的结果是()(A )49a -(B )46a(C )39a (D )49a2.下列算式结果是-3的是()(A )1)3(--(B )0)3(-(C ))3(--(D )|3|--4.下列算式中,你认为正确的是( ) A .1-=---a b a b a bB 。

11=⨯÷ba ab C .D .b a b a b a b a +=--•+1)(12225.计算⎪⎪⎭⎫⎝⎛-÷⎪⎪⎭⎫ ⎝⎛-⋅24382342y x y x y x 的结果是()(A )x3-(B )x3(C )x12-(D )x126.如果x >y >0,那么xyx y -++11的值是()(A )0 (B )正数(C )负数(D )不能确定7.如果m 为整数,那么使分式13++m m 的值为整数的m 的值有()(A )2个(B )3个(C )4个(D )5个8.已知122432+--=--+x B x A x x x ,其中A 、B 为常数,则4A -B 的值为()(A )7 (B )9 (C )13 (D )5二、细心填一填(每小题3分,共30分)9.计算:-16-=.10.用科学记数法表示:-0.00002004=.11.如果32=b a,那么=+ba a____ .12.计算:a b bb a a -+-=.13.已知31=-a a ,那么221a a +=.14.一根蜡烛在凸透镜下成一实像,物距u ,像距v 和凸透镜的焦距f满足关系式:1u +1v =1f. 若f =6厘米,v =8厘米,则物距u =厘米.15.若54145=----xx x 有增根,则增根为___________.16、若2)63(2)3(----x x 有意义,那么x 的取值范围是 。

17、某工厂的锅炉房储存了c 天用的煤m 吨,要使储存的煤比预定多d 用天,每天应节约煤 吨 18.若1)1(1=-+x x ,则x = .三、耐心做一做(本题共6小题,共46分)19.(本题满分4分)化简:)3()126()2(2432x x x x ÷-+-.20.(本题满分4分) 计算:|1|2004125.02)21(032-++⨯---21.计算题(共18分) 1、)6()43(8232y x zy xx -⋅-⋅ 2.212293m m ---3.(-3ab -1)34.4xy 2z ÷(-2x -2yz -1)5.112---a a a 6.22428a a a -+-÷(a 2-4)·2442a a a -+-. 22.已知(a+11a -)(311a +-1)÷31aa -,其中a=99,求原式的值.(6分) 24.(本题满分5分)某商场销售某种商品,第一个月将此商品的进价加价20%作为销售价,共获利6000元,第二个月商场搞促销活动,将商品的进价加价10%作为销售价,第二个月的销售量比第一个增加了100件,并且商场第二个月比第一个月多获利2000元,问此商品进价是多少元?商场第二个月共销售多少件? 25.(本题满分4分)学校在假期内对教室内的黑板进行整修,需在规定日期内完成.如果由甲工程小组做,恰好按期完成;如果由乙工程小组做,则要超过规定日期3天.结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成,问规定日期是几天?附加题:国家对居民住宅建设明确规定:窗户面积必须小于卧室内地面面积,而且按采光标准,窗户面积必须与卧室内地面面积之比应该在15%左右,而且这个比值越大,采光条件越好,如果同时增加相等的窗户面积和地面面积,那么采光条件变好了还是变差了,请你运用数学知识这个回答问题。

初二分式考试题及答案

初二分式考试题及答案

初二分式考试题及答案一、选择题(每题3分,共30分)1. 下列分式中,分母为零的分式是()A. \frac{2}{x-1}B. \frac{3}{x+2}C. \frac{4}{0}D.\frac{5}{x}2. 计算分式 \frac{1}{x} + \frac{1}{y} 的结果为()A. \frac{y+x}{xy}B. \frac{x+y}{x}C. \frac{x+y}{xy}D.\frac{y-x}{xy}3. 若分式 \frac{2}{x} = \frac{3}{y},则x与y的关系是()A. x = \frac{2}{3}yB. x = 3yC. y = \frac{2}{3}xD. y = 3x4. 将分式 \frac{a+b}{c+d} 化简为最简形式,正确的做法是()A. 直接约分B. 先通分再约分C. 先约分再通分D. 不能约分5. 已知 \frac{1}{x} + \frac{1}{y} = \frac{1}{2},求\frac{2x+2y}{x+y} 的值是()A. 2B. 4C. 6D. 86. 计算分式 \frac{3x-2}{2x+1} \cdot \frac{2x-1}{3x+2} 的结果为()A. \frac{1}{2}B. \frac{1}{3}C. \frac{1}{4}D. \frac{1}{5}7. 将分式 \frac{a^2-1}{a^2-2a+1} 化简,正确的结果为()A. \frac{a+1}{a-1}B. \frac{a-1}{a+1}C. \frac{a+1}{a}D. \frac{a-1}{a}8. 已知 \frac{2}{x} + \frac{3}{y} = 5,求 \frac{x+y}{xy} 的值是()A. \frac{1}{5}B. \frac{1}{10}C. \frac{1}{15}D. \frac{1}{20}9. 计算分式 \frac{1}{x-1} - \frac{1}{x+1} 的结果为()A. \frac{2}{x^2-1}B. \frac{2}{x^2+1}C. \frac{2x}{x^2-1}D.\frac{2x}{x^2+1}10. 将分式 \frac{x^2-1}{x^2-4} 化简,正确的结果为()A. \frac{x+1}{x-2}B. \frac{x-1}{x-2}C. \frac{x+1}{x+2}D.\frac{x-1}{x+2}二、填空题(每题4分,共20分)1. 计算 \frac{2x}{3} \div \frac{x}{2} 的结果为\frac{4x}{3} 。

八年级100道分式方程

八年级100道分式方程

题目1:解方程 $\frac{5}{6}x + \frac{1}{2} = \frac{4}{3}x - \frac{3}{4}$。

解法:首先将方程的两边都乘以12,得到$10x+6=16x-9$。

将变量的项移到一边,得到$16x-10x=6+9$。

继续计算,得到$6x=15$。

最后解得 $x=\frac{15}{6}$。

题目2:解方程 $2y - 1 = \frac{3}{4}y + \frac{5}{8}$。

解法:首先将方程的两边都乘以8,得到$16y-8=6y+5$。

将变量的项移到一边,得到$16y-6y=5+8$。

继续计算,得到$10y=13$。

最后解得 $y=\frac{13}{10}$。

题目3:解方程 $\frac{4}{5}x + \frac{2}{3} = \frac{3}{10} - \frac{1}{6}x$。

解法:首先将方程的两边都乘以30,得到$24x+20=9-5x$。

将变量的项移到一边,得到$24x+5x=9-20$。

继续计算,得到$29x=-11$。

最后解得 $x=\frac{-11}{29}$。

题目4:解方程 $\frac{1}{3}x + \frac{1}{2} = \frac{2}{5} - \frac{4}{15}x$。

解法:首先将方程的两边都乘以30,得到$10x+15=12-8x$。

将变量的项移到一边,得到$10x+8x=12-15$。

继续计算,得到$18x=-3$。

最后解得 $x=\frac{-1}{6}$。

题目5:解方程 $\frac{2}{7}x - \frac{3}{5} = \frac{1}{3}x + \frac{1}{2}$。

解法:首先将方程的两边都乘以70,得到$20x-42=35x+35$。

将变量的项移到一边,得到$35x-20x=35+42$。

继续计算,得到$15x=77$。

最后解得 $x=\frac{77}{15}$。

题目6:解方程 $\frac{3}{x} - 4 = \frac{5}{x} - 2$。

分式题型-易错题-难题-大汇总

分式题型-易错题-难题-大汇总

分式单元复习〔一〕、分式定义及有关题型一、分式的概念: 形如BA 〔A 、B 是整式,且B 中含有字母,B ≠0〕的式子,叫做分式。

概念分析:①必须形如“B A 〞的式子;②A 可以为单项式或多项式,没有其他的限制;③B 可以为单项式或多项式,但必须含有字母。

...例:以下各式中,是分式的是①1+x 1② ③3x ④ ⑤3-x x ⑥ ⑦πx 练习:1、以下有理式中是分式的有〔 〕A 、 m 1B 、C 、D 、57 2、以下各式中,是分式的是 ①x 1② ③3x ④ ⑤3-x x ⑥ ⑦ 1、以下各式:()xx x x y x x x 2225 ,1,2 ,34 ,151+---π其中分式共有〔 〕个。

A 、2 B 、3 C 、4 D 、5二、有理式:整式和分式统称有理式。

即:例:把以下各有理式的序号分别填入相应的横线上 ①21x② ③x -3 ④0 ⑤3a ⑥ ⑦ 整式: ;分式 。

①分式有意义:分母不为0〔0B ≠〕②分式无意义:分母为0〔0B=〕③分式值为0:分子为0且分母不为0〔〕④分式值为正或大于0:分子分母同号〔或〕⑤分式值为负或小于0:分子分母异号〔或〕⑥分式值为1:分子分母值相等〔A=B〕⑦分式值为-1:分子分母值互为相反数〔A+B=0〕⑧分式的值为整数:〔分母为分子的约数〕例:当x 时,分式有意义;当x 时,有意义。

练习:1、当x 时,分式无意义。

8.使分式无意义,x的取值是〔〕A.0 B.1 C.1- D.1±2、分式,当______x时有意义。

3、当a 时,分式有意义.4、当x 时,分式有意义。

5、当x 时,有意义。

分式有意义的条件是。

4、当x 时,分式的值为1;2.〔辨析题〕以下各式中,无论x取何值,分式都有意义的是〔〕A.121x+ B.21xx+C.231xx+ D.〔7〕当x为任意实数时,以下分式一定有意义的是〔〕A.23x+B. C.1xD.四、分式的值为零说明:①分式的分子的值等于零;②分母不等于零例1:假设分式的值为0,那么x 。

初二(下册)分式专题(全部题型)

初二(下册)分式专题(全部题型)

分式专题题型一:分式的概念:【例题1】下列各式:5.043,23,33,,22,22-++-+x x y x x xy x x x π.其中分式有______个. ( )A 、1B 、2C 、3D 、4 【练一练】1. 下列式子中.属于分式的是 ( )A 、π1 B 、3x C 、11-x D 、52 2. 下列式子中.2a .3x .1m m +.23x +.5π.2a a .23-.哪些是整式?哪些是分式?整式有:________________________________;分式有:________________________________;题型二:分式有意义.分式值为0:【例题2】 下列各式中.(1)2m m +;(2)1||2m -;(3)239m m --.m 取何值时.分式有意义?【练一练】1. x 为任意实数.分式一定有意义的是 ( )A 、21x x - B 、112-+x x C 、112+-x x D 、11+-x x 2. 若代数式4-x x有意义.则实数x 的取值范围是________________.3. (1)若分式11+x 有意义.则x 的取值范围是________________;(2)已知分式ax x x +--532.当2=x 时.分式无意义.则=a _______________________.4. 若不论x 取何实数.分式mx x x ++-6322总有意义.则m 的取值范围是______________________.【例题3】当x 为何值时.(1)2132x x +-;(2)221x x x +-;(3)224x x +-.各式的值为0.【练一练】 1. 已知分式11+-x x 的值是零.那么x 的值是 ( ) A 、-1 B 、0 C 、1 D 、1±2. 若分式112--x x 的值是零.则x 的值为 ( )A 、-1B 、0C 、1D 、1± 3.(1)如果分式212-+-x x x 的值为零.那么x 的值为_____________________;(2)当=x ______________时.分式123++x x 的值是零;(3)当=x ______________时.分式112--x x 的值为零.【例题4】当x 满足什么条件时.分式2122-++x x x 的值是负数?正数?【练一练】1.(1)若分式1232-a a 的值为负数.则a 的取值范围为__________________;(2)当整数=x _____________时.分式16-x 的值是负整数; (3)已知点)82017,22018(2-++n n n 在第四象限.则n 的取值范围是______________________.2. 当x 为何值时.分式232-+x x 的值为正数?负数?题型三:分式的基本性质I (分子、分母同乘或除以一个不等于0的数或整式):【例题5】 如果把分式中的都扩大3倍.那么分式的值 ( )A 、扩大3倍B 、不变C 、缩小3倍D 、扩大2倍 【例题6】不改变分式的值.将下列分式的分子、分母中的系数化为整数. (1)0.20.020.5x yx y+-(2)11341123x y x y +- 【练一练】 1. 如果把分式yx xy+中的x 和y 都扩大为原来的2倍.那么分式的值 ( ) A 、扩大为原来的4倍 B 、扩大为原来的2倍 C 、不变 D 、缩小为原来的21 2. 如果把分式y x y x ++2中的x 和y 都缩小为原来的31.那么分式的值 ( ) A 、扩大为原来的3倍 B 、缩小为原来的31 C 、缩小为原来的91D 、不变 3. 分式x --11可变形为 ( ) A 、11--x B 、x +-11 C 、x +11 D 、11-xyx x232-y x ,4. 不改变分式的值.将下列分式的分子、分母中的系数化为整数.并将较大的系数化成正数.(1) xx x x 24.03.12.001.032+-(2) yx y x +-5.12.041题型四:分式的基本性质II (约分和通分):【例题7】 约分:(1); (2);(3)1616822-+-a a a .其中5=a (4)y x y x ---2422.其中1,3==y x【练一练】 1. 约分:(1) 2323510c b a bc a - (2))(3)(2b a b b a a ++- (3)32)()(a x x a -- (4)393--x x (5)2222222y xy x xy y x +-- (6)2222)1()1()1(-+-x x x2. 先化简.再求值:(1) 22)2(1)(4-+--x x x x .其中7-=x (2)已知212=-=+y x y x ,.求2222222y xy x y x ++-的值.【例题8】 通分:(1)分式abc b a ab 3,1,22的最简公分母是________;(2)分式222,7n m mnn m ---的最简公分母是____________; (3)分式122,1441,1232-+-+a a a a 的最简公分母是______________________; (4)分式2222222,2,b ab a cb ab a b b a a +-++-的最简公分母是_____________________________; (5)分式22941,461,461y y y x y x -+-的最简公分母是_____________________________________;(6)分式acbb ac c b a 107,23,5422的最简公分母是__________.通分时.这三个分式的分子分母依次乘以_______________.____________._______________. 【练一练】 通分:(1)xz xz y x 45,34,2123 (2)32)1(,)1(,1a z a y a x --- (3)42,882,4422-+-+-a c a a b a a a已知xy y x 4=-.求yxy x yxy x ---+2232的值【练一练】1. 若2=+abb a .则=++++22224b ab a b ab a ___________;若311=-y x .则代数式=----y xy x y xy x 22142____________; 2. 已知311=-y x .求yxy x yxy x ----2232的值.题型五:分式的加减:【例题9】 计算:(1) (2)(3)(4) (5) (6).22222333a b a b a b a b a b a b +--+-222422x x x x x +-+--222222222a ab b a b b a a b ++---21132a ab +2312224x x x x +-+--211a a a ---1. (1)111+-+x x x =_________;(2)x y x y x y -+-=_________;(3)2222235ba ab a b a ---+=__________. 2. (1)已知1,3==+ab b a .则=+a b b a ___________;(2)已知0322=++b ab a .则=+abb a __________. 3.(1) (2) (3)222442242x x x x x x-+-++-+【例题10】 已知.求整式A.B .【练一练】 1. 若11)1)(1(3-++=-+-x Bx A x x x .求整式A.B.22256343333a b b a a b a bc ba c cba +-++-2222()()a b a b b a ---34(1)(2)12x A Bx x x x -=+----【例题11】 计算:(1)(2) (3)(4).【练一练】 1.计算:(1)32232)()2(y x x y -- (2)x x x x x x +-÷-+-22211122.先化简.再求值:(1)其中 (2)其中=-1.3.已知求的值.422449158a b xx a b 222441214a a a a a a -+--+-222324a b a bc cd -÷2222242222x y x y x xy y x xy -+÷+++,144421422x x x x x ++÷--14x =-⋅,ab .b b a a b a b a a 222224)()(+÷--,21=a b .0)255(|13|2=-+-+b a b a 323232236().()()a ab ba b b a-÷--【例题12】 解分式方程:(1)(2) (3)【练一练】 (1)0122=-+x x (2)22231--=-x x x(3)x x x -=+--23123 (4)1132-=+-x xx x题型七:分式方程增根问题:【例题13】(1)若分式方程有增根.求值;10522112x x +=--225103x x x x -=+-21233x x x -=---223242mx x x x +=--+m(2)若分式方程有增根.求的值.【练一练】1、若关于x 的方程0111=----x xx m 有增根.则m 的值是 ( ) A 、3B 、2C 、1D 、-12、若关于x 的分式方程1322m x x x++=--有增根.则m 的值是 ( ) A 、1m =- B 、2m = C 、3m = D 、0m =或3m =3、若关于x 的方程0552=-+--x mx x 有增根.则m 的值是 ( )A 、-2B 、-3C 、5D 、3 4、如果方程有增根.那么增根是_____.若方程114112=---+x x x 有增根.则增根是______. 5、已知分式方程5133x mx x+=--有增根.则m 的值为 .6、(1)若关于x 的分式方程x x x m 2132=--+有增根.则该方程的增根为________________; (2)若关于x 的方程2222=-++-xmx x 有增根.则m 的值是__________________.7、若关于x 的分式方程3232-=--x m x x 有增根.则2-m 的值为________________.题型八:分式方程无解问题:【例题14】 若关于x 的分式方程6523212+-=---x x x a x 总无解.求a 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式专题题型一:分式的概念:【例题1】下列各式:5.043,23,33,,22,22-++-+x x y x x xy x x x π,其中分式有______个. ( )A 、1B 、2C 、3D 、4 【练一练】1. 下列式子中,属于分式的是 ( )A 、π1 B 、3x C 、11-x D 、52 2. 下列式子中,2a ,3x ,1m m +,23x +,5π,2a a ,23-.哪些是整式?哪些是分式?整式有:________________________________;分式有:________________________________;题型二:分式有意义,分式值为0:【例题2】 下列各式中,(1)2m m +;(2)1||2m -;(3)239mm --.m 取何值时,分式有意义?【练一练】1. x 为任意实数,分式一定有意义的是 ( )A 、21x x - B 、112-+x x C 、112+-x x D 、11+-x x 2. 若代数式4-x x有意义,则实数x 的取值范围是________________.3. (1)若分式11+x 有意义,则x 的取值范围是________________;(2)已知分式ax x x +--532,当2=x 时,分式无意义,则=a _______________________.4. 若不论x 取何实数,分式mx x x ++-6322总有意义,则m 的取值范围是______________________.【例题3】当x 为何值时,(1)2132x x +-;(2)221x x x +-;(3)224x x +-.各式的值为0.【练一练】 1. 已知分式11+-x x 的值是零,那么x 的值是 ( ) A 、-1 B 、0 C 、1 D 、1±2. 若分式112--x x 的值是零,则x 的值为 ( )A 、-1B 、0C 、1D 、1± 3.(1)如果分式212-+-x x x 的值为零,那么x 的值为_____________________;(2)当=x ______________时,分式123++x x 的值是零;(3)当=x ______________时,分式112--x x 的值为零.【例题4】当x 满足什么条件时,分式2122-++x x x 的值是负数?正数?【练一练】1.(1)若分式1232-a a 的值为负数,则a 的取值范围为__________________;(2)当整数=x _____________时,分式16-x 的值是负整数; (3)已知点)82017,22018(2-++n n n 在第四象限,则n 的取值范围是______________________.2. 当x 为何值时,分式232-+x x 的值为正数?负数?题型三:分式的基本性质I (分子、分母同乘或除以一个不等于0的数或整式):【例题5】 如果把分式yx x232-中的y x ,都扩大3倍,那么分式的值 ( )A 、扩大3倍B 、不变C 、缩小3倍D 、扩大2倍 【例题6】不改变分式的值,将下列分式的分子、分母中的系数化为整数. (1)0.20.020.5x yx y+-(2)11341123x y x y +- 【练一练】 1. 如果把分式yx xy+中的x 和y 都扩大为原来的2倍,那么分式的值 ( ) A 、扩大为原来的4倍 B 、扩大为原来的2倍 C 、不变 D 、缩小为原来的21 2. 如果把分式y x y x ++2中的x 和y 都缩小为原来的31,那么分式的值 ( ) A 、扩大为原来的3倍 B 、缩小为原来的31 C 、缩小为原来的91D 、不变 3. 分式x --11可变形为 ( ) A 、11--x B 、x +-11 C 、x +11 D 、11-x4. 不改变分式的值,将下列分式的分子、分母中的系数化为整数.并将较大的系数化成正数.(1) xx x x 24.03.12.001.032+-(2) yx y x +-5.12.041题型四:分式的基本性质II (约分和通分):【例题7】 约分:(1); (2);(3)1616822-+-a a a ,其中5=a (4)y x y x ---2422,其中1,3==y x【练一练】 1. 约分:(1) 2323510c b a bc a - (2))(3)(2b a b b a a ++- (3)32)()(a x x a -- (4)393--x x (5)2222222y xy x xy y x +-- (6)2222)1()1()1(-+-x x x2. 先化简,再求值:(1) 22)2(1)(4-+--x x x x ,其中7-=x (2)已知212=-=+y x y x ,,求2222222y xy x y x ++-的值.【例题8】 通分: (1)分式abc b a ab 3,1,22的最简公分母是________;(2)分式222,7nm mnn m ---的最简公分母是____________;(3)分式122,1441,1232-+-+a a a a 的最简公分母是______________________; (4)分式2222222,2,bab a cb ab a b b a a +-++-的最简公分母是_____________________________; (5)分式22941,461,461y y y x y x -+-的最简公分母是_____________________________________;(6)分式acbb ac c b a 107,23,5422的最简公分母是__________,通分时,这三个分式的分子分母依次乘以_______________,____________,_______________. 【练一练】 通分:(1)xz xz y x 45,34,2123 (2)32)1(,)1(,1a z a y a x --- (3)42,882,4422-+-+-a c a a b a a a【例题8】已知xy y x 4=-,求yxy x yxy x ---+2232的值【练一练】 1. 若2=+ab b a ,则=++++22224bab a b ab a ___________;若311=-yx ,则代数式=----yxy x yxy x 22142____________;2. 已知311=-y x ,求yxy x y xy x ----2232的值.题型五:分式的加减:【例题9】 计算:(1)22222333a b a b a ba b a b a b +--+- (2)222422x x x x x +-+--(3)222222222a ab b a b b a a b ++---(4)21132a ab + (5)2312224xx x x +-+--(6)211a a a ---.【练一练】 1. (1)111+-+x x x =_________;(2)x y x y x y -+-=_________;(3)2222235ba ab a b a ---+=__________. 2. (1)已知1,3==+ab b a ,则=+a b b a ___________;(2)已知0322=++b ab a ,则=+ab b a __________. 3.(1)22256343333a b b a a ba bc ba c cba +-++- (2)2222()()ab a b b a ---(3)222442242x x x x x x -+-++-+【例题10】 已知34(1)(2)12x A Bx x x x -=+----,求整式A ,B .【练一练】 1. 若11)1)(1(3-++=-+-x Bx A x x x ,求整式A ,B.题型六:分式的乘除:【例题11】 计算:(1)422449158a b xx a b (2)222441214a a a a a a -+--+- (3)222324a b a bc cd -÷(4)2222242222x y x y x xy y x xy -+÷+++.【练一练】 1.计算:(1)32232)()2(y x x y -- (2)x x x x x x +-÷-+-22211122.先化简,再求值:(1),144421422x x x x x ++÷--其中14x =-⋅ (2),a b .b b a a b a b a a 222224)()(+÷--其中,21=a b =-1.3.已知.0)255(|13|2=-+-+b a b a 求323232236().()()a ab b a b b a -÷--的值.题型七:分式方程:【例题12】 解分式方程: (1)10522112x x +=-- (2)225103x x x x -=+- (3)21233x x x -=---【练一练】 (1)0122=-+x x (2)22231--=-x x x(3)x x x -=+--23123 (4)1132-=+-x xx x题型七:分式方程增根问题:【例题13】 (1)若分式方程223242mx x x x +=--+有增根,求m 值;(2)若分式方程2221151k k x x x x x---=---有增根1x =-,求k 的值.【练一练】1、若关于x 的方程0111=----x xx m 有增根,则m 的值是 ( ) A 、3B 、2C 、1D 、-12、若关于x 的分式方程1322m x x x++=--有增根,则m 的值是 ( ) A 、1m =- B 、2m = C 、3m = D 、0m =或3m =3、若关于x 的方程0552=-+--x mx x 有增根,则m 的值是 ( )A 、-2B 、-3C 、5D 、34、如果方程11322xx x -+=--有增根,那么增根是_____.若方程114112=---+x x x 有增根,则增根是______. 5、已知分式方程5133x mx x+=--有增根,则m 的值为 .6、(1)若关于x 的分式方程x x x m 2132=--+有增根,则该方程的增根为________________; (2)若关于x 的方程2222=-++-xmx x 有增根,则m 的值是__________________.7、若关于x 的分式方程3232-=--x m x x 有增根,则2-m 的值为________________.题型八:分式方程无解问题:【例题14】 若关于x 的分式方程6523212+-=---x x x a x 总无解,求a 的值。

相关文档
最新文档