初二数学下知识点

合集下载

八年级数学下册知识点总结(全)

八年级数学下册知识点总结(全)

八年级数学下知识点总结函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。

2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法:用图像表示函数关系的方法叫做图像法。

4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

正比例函数和一次函数1、正比例函数和一次函数的概念一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。

特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)这时,y 叫做x 的正比例函数。

2、一次函数的图像所有一次函数的图像都是一条直线。

3、一次函数、正比例函数图像的主要特征:一次函数b kx y +=的图像是经过点(0,b )的直线;正比例函数kx y =的图像是经过原点(0,0)的直线。

(如下图) 4. 正比例函数的性质一般地,正比例函数kx y =有下列性质:(1)当k>0时,图像经过第一、三象限,y 随x 的增大而增大; (2)当k<0时,图像经过第二、四象限,y 随x 的增大而减小。

5、一次函数的性质一般地,一次函数b kx y +=有下列性质: (1)当k>0时,y 随x 的增大而增大 (2)当k<0时,y 随x 的增大而减小 6、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k 。

初二数学下册知识点归纳6篇

初二数学下册知识点归纳6篇

初二数学下册知识点归纳6篇初中数学公式和规律速记口诀篇一最简根式的条件:最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。

特殊点的坐标特征:坐标平面点(某,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;某轴上y为0,某为0在y轴。

象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。

平行轴的直线:平行轴的直线,点的坐标有讲究,直线平行某轴,纵坐标相等横不同;直线平行于y轴,点的横坐标仍照旧。

对称点的坐标:对称点坐标要记牢,相反数位置莫混淆,某轴对称y相反,y轴对称,某前面添负号;原点对称最好记,横纵坐标变符号。

自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。

函数图象的移动规律:若把一次函数解析式写成y=k(某+0)+b,二次函数的解析式写成y=a(某+h)2+k的形式,则可用下面的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”。

一次函数的图象与性质的口诀:一次函数是直线,图象经过三象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,k为正来右上斜,某增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。

二次函数的图象与性质的口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。

若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。

反比例函数的图象与性质的口诀:反比例函数有特点,双曲线相背离得远;k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减。

八年级下学期数学知识点总结

八年级下学期数学知识点总结

八年级下学期数学知识点总结第一章勾股定理定义:如果直角三角形两条直角边分别为a,b,斜边为c,即直角三角形两直角边的平方和等于斜边的平方。

判定:如果三角形的三边长a,b,c满足a +b = c ,那么这个三角形是直角三角形。

定义:满足a +b =c 的三个正整数,称为勾股数。

第二章实数定义:任何有限小数或无限循环小数都是有理数。

无限循环小数称为无理数(有理数总是可以用有限循环小数或无限循环小数来表示)一般地,如果一个正数x的平方等于a,那么这个正数x 就叫做a的算术平方根。

特别地,我们规定0的算术平方根是0。

一般地,如果一个数x的平方等于a,那么这个数x就叫做a的平方根(也叫二次方根) 一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。

求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数。

一般地,如果一个数x的立方等于a,那么这个数x就叫做a的立方根(也叫做三次方根)。

正数的立方根是正数;0的立方根是0;负数的立方根是负数。

求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数。

有理数和无理数统称为实数,即实数可以分为有理数和无理数。

每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。

即实数和数轴上的点是一一对应的。

在数轴上,右边的点表示的数比左边的点表示的数大。

第三章图形的平移与旋转定义:在一个平面内,一个图形沿着一定的方向移动一定的距离,这样的图形移动称为平移。

平移不会改变图形的形状和大小。

经过平移,对应点所连的线段平行也相等;对应线段平行且相等,对应角相等。

在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称旋转中心,转动的角称为旋转角。

旋转不改变图形的大小和形状。

任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。

第四章四边形性质探索定义:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。

初二下数学几何部分知识点背诵

初二下数学几何部分知识点背诵

初二下数学几何部分知识点背诵一、勾股定理1、勾股定理的公式:勾²+股²=弦²用字母表示为:a ²+b ²=c ² (a,b 为直角边,c 为斜边)可变形为:a ²=c ²-b ²b ²=c ²-a ² 可推导出:b a c 22+=a cb 22-= b c a 22-=2、勾股定理的逆定理:如果一个三角形的三边长a,b,c 满足:a ²+b ²=c ²,那么这个三角形就是直角三角形。

(通常我们在验证时要知道,最长的边一定是斜边)勾股定理的逆定理用于判断一个已知三边长的三角形是否是直角三角形。

二、平行四边形1、平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。

通常用表示平行四边形2、平行四边形的性质:①对边平行②对边相等③对角相等④对角线互相平分3、平行四边形的判定方法:①定义法:两组对边分别平行的四边形是平行四边形。

②对边相等法:两组对边分别相等的四边形是平行四边形。

③对角相等法:两组对角分别相等的四边形是平行四边形。

④对角线平分法:对角线互相平分的四边形是平行四边形。

⑤平行相等法:一组对边平行且相等的四边形是平行四边形。

4、三角形的中位线:①定义:连接三角形两边中点的线段叫做三角形的中位线。

②中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半。

三、特殊的平行四边形----矩形1、矩形的定义:有一个角是直角的平行四边形叫做矩形。

2、矩形的性质:①平行四边形有的性质它都有。

②矩形的四个角都是直角。

(特有)③矩形的对角线相等。

(特有)3、直角三角形的重要性质:直角三角形斜边上的中线等于斜边的一半。

4、矩形的判定方法:①定义法:有一个角是直角的的平行四边形是矩形。

②对角线法:对角线相等的平行四边形是矩形。

③直角法:有三个角是直接的四边形是矩形。

初二数学知识点归纳

初二数学知识点归纳

初二数学知识点归纳1. 数的运算- 有理数的加、减、乘、除运算法则- 绝对值的概念和运算- 相反数的概念和运算- 乘方和开方的运算法则2. 代数基础- 代数式的书写规则- 代数式的加减运算- 代数式的乘除运算- 分式的加减乘除运算3. 一元一次方程- 一元一次方程的定义- 一元一次方程的解法- 一元一次方程的应用4. 二元一次方程组- 二元一次方程组的定义- 二元一次方程组的解法(加减消元法和代入消元法) - 二元一次方程组的应用5. 不等式- 不等式的概念- 不等式的解法- 一元一次不等式组的解法- 不等式的应用6. 几何图形- 点、线、面的基本性质- 平面图形的分类- 几何图形的对称性7. 三角形- 三角形的分类- 三角形的内角和定理- 三角形的外角性质- 三角形的边长关系8. 四边形- 四边形的分类- 平行四边形的性质- 矩形、菱形、正方形的性质9. 圆- 圆的基本概念- 圆的周长和面积计算- 圆的切线性质- 圆与圆的位置关系10. 空间几何- 空间几何体的认识- 空间几何体的表面积和体积计算 - 空间几何体的组合与分解11. 函数初步- 函数的概念- 一次函数的图像和性质- 正比例函数和反比例函数12. 概率初步- 概率的基本概念- 简单事件的概率计算- 概率在实际问题中的应用以上是初二数学的主要知识点归纳,涵盖了数的运算、代数基础、方程与不等式、几何图形、空间几何、函数和概率等重要领域,为进一步学习数学打下坚实的基础。

初二数学下册每章知识点总结

初二数学下册每章知识点总结

初二数学下册每章知识点总结
1.有理数
- 正负数的判断和比较
- 有理数的四则运算
- 分数的化简和运算
- 小数与分数之间的转换
- 根数和指数
2.代数基础
- 代数符号和式子的含义
- 代数式的加减法和乘法
- 因式分解和公式的运用
- 一元一次方程组的解法
- 结论的证明与应用
3.平面几何基础
- 点、直线、线段、角的基本概念
- 同位角和相交线性质
- 三角形的分类和性质
- 四边形的分类和性质
- 圆的基本性质和计算公式
4.图形的计算
- 三角形的面积和周长
- 圆的面积和周长
- 直角三角形的勾股定理和解题应用
- 长方形、正方形、平行四边形的计算和比较
- 三视图的绘制和分析
5.统计学基础
- 统计调查的基本方法和过程
- 频数表、频率、频率分布直方图
- 中心倾向度量:平均数、中位数、众数- 散布程度量:极差、方差、标准差
- 误差分析:绝对误差、相对误差、误差限。

初二下册数学知识点归纳

初二下册数学知识点归纳

初二下册数学知识点归纳第十六章二次根式。

1. 二次根式的概念。

- 形如√(a)(a≥slant0)的式子叫做二次根式。

被开方数a必须是非负数,这是二次根式有意义的条件。

例如√(4),√(x + 1)(x≥slant - 1)都是二次根式。

2. 二次根式的性质。

- (√(a))^2=a(a≥slant0),例如(√(3))^2 = 3。

- √(a^2)=| a|=a(a≥slant0) - a(a<0),如√((-2)^2)=| - 2|=2。

3. 二次根式的乘除。

- 二次根式的乘法法则:√(a)·√(b)=√(ab)(a≥slant0,b≥slant0),例如√(2)·√(3)=√(2×3)=√(6)。

- 二次根式的除法法则:(√(a))/(√(b))=√(frac{a){b}}(a≥slant0,b>0),如(√(8))/(√(2))=√(frac{8){2}}=√(4) = 2。

4. 二次根式的加减。

- 先把二次根式化成最简二次根式,然后合并同类二次根式。

最简二次根式需满足被开方数不含分母且被开方数中不含能开得尽方的因数或因式。

例如√(12)=√(4×3)=2√(3),3√(2)+2√(2)=(3 + 2)√(2)=5√(2)。

第十七章勾股定理。

1. 勾股定理。

- 直角三角形两直角边a、b的平方和等于斜边c的平方,即a^2+b^2=c^2。

例如在直角三角形中,a = 3,b = 4,则c=√(3^2)+4^{2}=√(9 + 16)=√(25)=5。

2. 勾股定理的逆定理。

- 如果三角形的三边长a、b、c满足a^2+b^2=c^2,那么这个三角形是直角三角形。

例如三边长为3、4、5的三角形,因为3^2+4^2=5^2,所以它是直角三角形。

3. 勾股数。

- 满足a^2+b^2=c^2的三个正整数,称为勾股数,如3、4、5;5、12、13等。

第十八章平行四边形。

初二数学下册知识点归纳

初二数学下册知识点归纳

初二数学下册知识点归纳篇一:坐标系和图像变换1.坐标系的概念及性质:直角坐标系、极坐标系、空间直角坐标系等;2.坐标系的建立和表示方法:确定坐标原点、确定坐标轴方向及单位长度;3.图像的变换:平移、旋转、镜像和缩放等;4.图形的坐标表示:点的坐标、点的对称、图形的方程求解;5.图形的平移:平移变换公式、平移变换的性质及应用;6.图形的旋转:旋转变换公式、旋转变换的性质及应用;7.图形的镜像:镜像变换公式、镜像变换的性质及应用;8.图形的缩放:缩放变换公式、缩放变换的性质及应用;9.坐标系和图像变换的综合运用:求解图形的位置、大小和方向等问题。

篇二:线段和角1.线段的定义和性质:线段的两个端点、线段的长度、线段的中点等;2.线段的延长和截取:线段的延长线、过线段构造等;3.直线和线段的位置关系:相交、平行和垂直等;4.直线和面的位置关系:直线与平面的交点、直线与面的平行和垂直等;5.角的概念和性质:角的顶点、角的边、角的大小、角的度数等;6.角的分类:钝角、直角、锐角、平角等;7.角的比较:角的大小比较、角的三等分等;8.角的平分线:角的平分线定义、角的平分线的性质及应用;9.线段和角的综合运用:求解线段的长短、角的大小等问题。

篇三:平行和相交关系1.平行线的定义:平行线的特征性质、平行线的判定条件;2.平行线的性质:平行线间的距离、平行线的夹角、平行线与横线的性质等;3.平行线的应用:平行线斜截式方程、解决平行线问题;4.垂直线的定义:垂直线的特征性质、垂直线的判定条件;5.垂直线的性质:垂线的斜率、垂直线的夹角、垂直线与横线的性质等;6.垂线的应用:垂线方程、解决垂线问题;7.相交线的定义:相交线的特征性质、相交线的判定条件;8.相交线的性质:相交线的夹角、相交线的交点等;9.平行和相交关系的综合运用:解决线段和角的推理、证明问题等。

篇四:平面图形的性质1.三角形的分类:三角形的两个特征性质、三角形的分类、三角形的内角和外角等;2.线段比例定理和角平分定理:线段的比例定理、角平分定理的公式及证明;3.相似三角形:相似三角形的定义、相似三角形的判定条件、相似三角形的性质、相似三角形的应用;4.平行四边形和平行线:平行四边形的性质、平行线的相关性质及证明;5.正方形和矩形:正方形的性质、矩形的性质、正方形和矩形的应用;6.等腰三角形和等边三角形:等腰三角形的性质、等边三角形的性质、等腰三角形和等边三角形的应用;7.平面图形的性质综合运用:解决与三角形、平行四边形、正方形和矩形等相关的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

张铭乾 2011-1-16初二下数学知识点回顾分式知识要点 1.分式的有关概念设A 、B 表示两个整式.如果B 中含有字母,式子BA 就叫做分式.注意分母B 的值不能为零,否则分式没有意义分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简2、分式的基本性质,M B M A B A ⨯⨯= MB M A B A ÷÷=(M 为不等于零的整式) 3.分式的运算 (分式的运算法则与分数的运算法则类似). bd bc ad d c b a ±=± (异分母相加,先通分);;;bcad c db a dc b a bd ac d c b a =⋅=÷=⋅ .)(n nn ba b a = 4.零指数)0(10≠=a a 5.负整数指数 ).,0(1为正整数p a a a pp ≠=- 注意正整数幂的运算性质 nn n mn n m n m n m n m n m b a ab a a a a a a a a a ==≠=÷=⋅-+)(,)(),0(,可以推广到整数指数幂,也就是上述等式中的m 、 n 可以是O 或负整数.6、解分式方程的一般步骤:在方程的两边都乘以最简公分母,约去分母,化为整式方程.解这个整式方程..验根,即把整式方程的根代入最简公分母,看结果是不是零,若结果不是0,说明此根是原方程的根;若结果是0,说明此根是原方程的增根,必须舍去.7、列分式方程解应用题的一般步骤:(1)审清题意;(2)设未知数(要有单位);(3)根据题目中的数量关系列出式子,找出相等关系,列出方程;(4)解方程,并验根,还要看方程的解是否符合题意;(5)写出答案(要有单位)。

1. (-5)0 =_____;2. 3-2 =________;3. 当x_________时,分式 1x+1有意义;4. 写出等式中未知的式子:( )c 2+7c = 1c+7 ; 5. 约分:10a 2b 4ab 2 =______________; 6. 分式:1x-1 、1x-2的最简公分母为:______; 7. 若方程x x-4 =2 + a x-4有增根,则增根为x=______; 8. 当x=______时,分式32x-1的值为1 ;9. 若x=2是方程 x-a x+1 = 13的解,则a=______;10. 某种感冒病毒的直径是0.00000034米,用科学记数法表示为_______________米;11. 已知公式:1R = 1R 1 + 1R 2,若R 1 =10,R 2=15,则R=___________; 12. 观察下列各式:22-4 + 66-4 =2,55-4 + 33-4 =2,77-4 + 11-4 =2,1010-4+ -2-2-4=2,依照以上各式形成的规律,在括号内填入正确的数,使等式2020-4 + ( )( )-4=2成立 13. 下列关于x 的方程中,是分式方程的是( )A. 3x=12B. 1x =2C. x+25 = 3+x 4D.3x-2y=1 14. 下列各式中,成立的是( )A. = y xyB. m 6m 2 = m 3C. a 2x bx = a 2bD. a+ 12a- 12 = a+1a-1 15. 要把分式方程:32(x-2) = 1x化为整数方程,方程两边需同时乘以( )A. 2(x-2)B.xC. 2x-4D. 2x (x-2)16. -(-2)0的运算结果为( )A. -1B. 1C. 0D. 217. 化简a 2 - b 2a 2 + ab 的结果为( )A. a-b a+abB. a-b aC. a+b aD. a-b a+b18. 若有m 人a 天可完成某项工程,且每个人的工作效率是相同的,则这样的(m+n )人完成这项工程所需的天数为( )A. a + mB. am m+nC. a m+nD. m+n am19.计算:x+1x 2 -2x+1 ÷x+1x-1 ; 20.计算:x 2+9x x 2 +3x + x 2-9x x 2 +6x+921.解方程:80x+3 = 60x -3 ; 22.解方程:7x +2 +2 = 1-3x x+223.先化简,再求值:(x x -2 + x x+2 )÷4x x -2,其中x=2007.24.已知y = x 2-2x+1x 2 -1 ÷ x 2-x x+1 - 1x+1,试说明在等号右边代数式有意义的条件下不论x 为何值,y 的值不变。

25.为了缓解城市用水紧张及提倡节约用水,某市自07年1月1日起调整居民用水价格,每立方米水费上涨25% 。

该市林老师家06年12月份的水费是18元,而07年1月份的水费是36元,且已知林老师家07年1月份的用水量比06年12月份的用水量多6m 3。

求该市去年..的居民用水价格。

26.已知某项工程由甲、乙两队合作12天可以完成,共需工程费用13800元,乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费比乙队多150元。

⑴甲、乙两队单独完成这项工程分别需要多少天;⑵若工程管理部分决定从两个队中选一个队单独完成此项工程,以节约资金的角度考虑,应选择哪个工程队?请说明理由。

正比例、反比例、一次函数第一象限(+,+),第二象限(-,+)第三象限(-、-)第四象限(+,-);x 轴上的点的纵坐标等于0,反过来,纵坐标等于0的点都在x 轴上,y 轴上的点的横坐标等于0,反过来,横坐标等于0的点都在y 轴上,若点在第一、三象限角平分线上,它的横坐标等于纵坐标,若点在第二,四象限角平分线上,它的横坐标与纵坐标互为相反数;若两个点关于x 轴对称,横坐标相等,纵坐标互为相反数;若两个点关于y 轴对称,纵坐标相等,横坐标互为相反数;若两个点关于原点对称,横坐标、纵坐标都是互为相反数。

1、 一次函数,正比例函数的定义(1)如果y=kx+b(k,b 为常数,且k ≠0),那么y 叫做x 的一次函数。

(2)当b =0时,一次函数y=kx+b 即为y=kx(k ≠0).这时,y 叫做x 的正比例函数。

注:正比例函数是特殊的一次函数,一次函数包含正比例函数。

2、正比例函数的图象与性质(1)正比例函数y=kx(k ≠0)的图象是过(0,0)(1,k )的一条直线。

(2)当k>0时⇔y 随x 的增大而增大⇔直线y=kx 经过一、三象限⇔从左到右直线上升。

当k<0时⇔y 随x 的增大而减少⇔直线y =kx 经过二、四象限⇔从左到右直线下降。

3、一次函数的图象与性质(1) 一次函数y=kx+b(k ≠0)的图象是过(0,b )(-k b ,0)的一条直线。

注:(0,b )是直线与y 轴交点坐标,(-kb ,0)是直线与x 轴交点坐标.(2)当k>0时⇔y 随x 的增大而增大⇔直线y=kx+b(k ≠0)是上升的当k<0时⇔y 随x 的增大而减少⇔直线y =kx+b(k ≠0)是下降的4、一次函数y=kx+b(k ≠0, k b 为常数)中k 、b 的符号对图象的影响(1)k>0, b>0⇔直线经过一、二、三象限(2)k>0, b<0⇔直线经过一、三、四象限(3)k<0, b>0⇔直线经过一、二、四象限(4)k<0, b<0⇔直线经过二、三、四象限5、对一次函数y=kx+b 的系数k, b 的理解。

(1)k(k ≠0)相同,b 不同时的所有直线平行,即直线l 1:y=k 1x+b 1;直线l 2:y=k 2x+b 2( k 1,k 2均不为零,k 1,b 1,k 2, b 2为常数)k 1=k 2 k 1=k 2l 1∥l 2 l 1与l 2重合 b 1≠b 2 b 1=b 2(2)k(k ≠0)不同,b 相同时的所有直线恒过y 轴上一定点(0,b ),例如:直线y=2x+3, y=-2x+3, y=21x+3均交于y 轴一点(0,3) 6、直线的平移:所谓平移,就是将一条直线向左、向右(或向上,向下)平行移动,平移得到的直线k 不变,直线沿y 轴平移多少个单位,可由公式︱b 1-b 2︱得到,其中b 1,b 2是两直线与y 轴交点的纵坐标,直线沿x 轴平移多少个单位,可由公式︱x 1-x 2︱求得,其中x 1,x 2是由两直线与x 轴交点的横坐标。

7、直线y=kx+b(k ≠0)与方程、不等式的联系(1)一条直线y=kx+b(k ≠0)就是一个关于y 的二元一次方程(2)求两直线l 1:y=k 1x+b 1(k 1≠0),l 2:y=k 2x+b 2(k 2≠0)的交点,就是解关于x ,y 的方程组 y=k 1x+b 1 y=k 2x+b 2(3)若y>0则kx+b>0。

若y<0,则kx+b<0(4)一元一次不等式,y 1≤kx+b ≤y 2( y 1,y 2都是已知数,且y 1<y 2)的解集就是直线y=kx+b 上满足y 1≤y ≤y 2那条线段所对应的自变量的取值范围。

(5)一元一次不等式kx+b ≤y 0(或kx+b ≥y 0)( y 0为已知数)的解集就是直线y=kx+b 上满足y ≤y 0(或y ≥y 0)那条射线所对应的自变量的取范围。

8、确定正比例函数与一次函数的解析式应具备的条件(1)由于比例函数y=kx(k ≠0)中只有一个待定系数k ,故只要一个条件(如一对x,y 的值或一个点)就可求得k 的值。

(2) 一次函数y=kx+b 中有两个待定系数k,b ,需要两个独立的条件确定两个关于k,b 的方程,求得k,b 的值,这两个条件通常是两个点,或两对x,y 的值。

9、反比例函数(1) 反比例函数及其图象如果)0,(≠=k k xk y 是常数,那么,y 是x 的反比例函数。

反比例函数的图象是双曲线,它有两个分支,可用描点法画出反比例函数的图象(2)反比例函数的性质当K>0时,图象的两个分支分别在一、三象限内,在每个象限内, y 随x 的增大而减小;当K<0时,图象的两个分支分别在二、四象限内,在每个象限内,y 随x 的增大而增大。

(3)由于比例函数)0,(≠=k k xk y 是常数中只有一个待定系数k ,故只要一个条件(如一对x,y 的值或一个点)就可求得k 的值。

1、函数224y x =+中,自变量x 的取值范围为 . 2、若函数y= -2x m+2是正比例函数,则m 的值是 .3、已知一次函数y=kx+5的图象经过点(-1,2),则k= 。

4、已知点A (3,m )与点B (n ,-2)关于y 轴对称,则m= ,n= .5、点 P (3,-4)关于X 轴对称的点是__________。

相关文档
最新文档