高中数学必修一指数与指数幂的运算 第1-3课时教案

合集下载

人教版高中数学必修1第2章2.1.1 指数与指数幂的运算(1)教案

人教版高中数学必修1第2章2.1.1  指数与指数幂的运算(1)教案

第二章基本初等函数(Ⅰ)2.1 指数函数2.1.1 指数与指数幂的运算(一)教学目标分析:知识目标:(1)了解根式的概念,方根的概念及二者的关系;(2)理解分数指数幂的概念,掌握有理数指数幂的运算性质,并能运用性质进行计算和化简。

过程与方法:通过对实际问题的探究过程,感知应用数学解决问题的方法,理解分类讨论思想、化归与转化思想在数学中的应用。

情感目标:通过对数学实例的探究,感受现实生活对数学的需求,体验数学知识与现实的密切联系。

重难点分析:重点:n次根式的性质和化简难点:n次根式的性质及应用互动探究:一、课堂探究:1、问题情境设疑探究一、根据国务院发展研究中心2000年发表的《未来20年我国发展前景分析》判断,未来20年,我国GDP(国内生产总值)年平均增长率可望达到7.3%,那么,在2001 ~ 2020年,各年的GDP可望为2000年的多少倍?如果把我国2000年GDP 看成是1个单位,2001年为第一年,那么: 1年后(即2001年),我国的GDP 可望为2000年的(17.3%)+倍;2年后(即2002年),我国的GDP 可望为2000年的2(17.3%)+倍; 3年后(即2003年),我国的GDP 可望为2000年的___________倍; 4年后(即2004年),我国的GDP 可望为2000年的___________倍; ……设x 年后我国的GDP 为2000年的y 倍,那么*(17.3%) 1.073(,20)x x y x N x =+=∈≤即从2000年起,x 年后我国的GDP 为2000年的1.073x 倍。

想一想,正整数幂1.073x 的含义是什么?它具有哪些运算性质。

探究2、当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”,根据此规律,人们获得了生物体内碳14含量P 与死亡年数t 之间的关系57301() (2)t P =(*),考古学家根据这个式子可以知道,生物死亡t 年后,体内碳14含量P 的值。

最新人教版高中数学必修1第二章《指数与指数幂的运算》教案1

最新人教版高中数学必修1第二章《指数与指数幂的运算》教案1

《指数与指数幂的运算》教案1
教学目标:
1. 理解根式的概念;运用根式的性质进行简单的化简、求值;
2. 掌握由特殊到一般的归纳方法,培养学生观察、分析、抽象等认知能力.通过与初中所学的知识进行类比,理解根式的概念,培养学生观察分析,抽象的能力,渗透“转化”的数学思想;
3. 通过运算训练,养成学生严谨治学,一丝不苟的学习习惯,让学生体验数学的简洁美和统一美.
教学重点难点:
1.重点:根式的概念 .
2.难点:根式的概念的理解.
教法与学法:
1.教法选择:讲授法、类比分析法.
2.学法指导:讨论法、发现法.
教学过程:
【设置情境,激发探索】
【作法总结,变式演练】
【思维拓展,课堂交流】
【归纳小结,课堂延展】
教学设计说明
1.教材地位分析:学生在初中已学习了数的开平方、开立方以及二次根式的概念,学习了正整数指数幂、零指数幂、负整数指数幂的概念,以及整数指数幂的运算法则.现是在此基础上,将平方根与立方根的概念扩充到n次方根,将二次根式的概念扩充到一般根式的概念,将整数指数幂扩充到有理指数幂,进一步将指数的取值范围扩充到实数.“根式”是“指数与指数幂的运算”第一课时,主要学习根式的概念和性质.根式是后面学习所必备的.
2.学生现实分析:学生在初中已经学习了二次、三次方根的概念和性质,根式的内容是这些内容的推广,方根和根式的概念和性质难以理解.所以要结合已学内容,列举具体实例,设计大量的类比和练习题目加以理解.。

人教版高中数学必修1教材《指数与指数幂的运算》教案

人教版高中数学必修1教材《指数与指数幂的运算》教案

2.1.1 指数与指数幂的运算(一)(一)教学目标1.知识与技能(1)理解n次方根与根式的概念;(2)正确运用根式运算性质化简、求值;(3)了解分类讨论思想在解题中的应用.2.过程与方法通过与初中所学的知识(平方根、立方根)进行类比,得出n次方根的概念,进而学习根式的性质.3.情感、态度与价值观(1)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯;(2)培养学生认识、接受新事物的能力.(二)教学重点、难点1.教学重点:(1)根式概念的理解;(2)掌握并运用根式的运算性质.2.教学难点:根式概念的理解.(三)教学方法本节概念性较强,为突破根式概念的理解这一难点,使学生易于接受,故可以从初中已经熟悉的平方根、立方根的概念入手,由特殊逐渐地过渡到一般的n次方根的概念,在得出根式概念后,要引导学生注意它与n次方根的关系,并强调说明根式是n次方根的一种表示形式,加强学生对概念的理解,并引导学生主动参与了教学活动.故本节课可以采用类比发现,学生合作交流,自主探索的教学方法.(四)教学过程备选例题例1 计算下列各式的值. (1)33)(a;(2 (1n >,且n N*∈) (3)1n >,且n N *∈) 【解析】(1)a a =33)(.(2)当n =3π-; 当n =3π-. (3)||x y -, 当x y ≥时,x y -; 当x y <时,y x -. 【小结】(1)当n 为奇数时,a a nn =; 当n 为偶数时,⎩⎨⎧<-≥==)0()0(||a a a a a a nn(2)不注意n 的奇偶性对式子nn a 值的影响,是导致错误出现的一个重要原因.故要在理解的基础上,记准、记熟、会用、活用.例2 求值:【分析】需把各项被开方数变为完全平方形式,然后再利用根式运算性质;==+--=||2|2=2(2=【小结】开方后带上绝对值,然后根据正负去掉绝对值.。

高中数学2.1.1指数与指数幂的运算(1)教案新人教版必修1

高中数学2.1.1指数与指数幂的运算(1)教案新人教版必修1

2.1.1 (1)指数与指数幕的运算(教学设计)内容:根式教学目标1、知识与技能:理解根式的概念及性质,能进行根式的运算,提高根式的运算能力。

2、过程与方法:通过由特殊到一般,由平方根、立方根,采用类比的方法过渡到n次方根;通过对“当n是偶数时,n a n |a| a (a 0)”的理解,培养学生分类讨论的意识。

a (a 0)3、态度情感价值关:通过运算训练,培养学生严谨的思维,一丝不苟的学习习惯。

教学重点:对根式概念、性质的理解,运用根式的性质化简、运算。

教学难点:当n是偶数时,n a n | a | a (a的得出及运用a (a 0)教学过程一、创设情境,新课引入:问题1 (课本P48问题1):从2000年起的未来20年,我国国内生产总值年平均增长率可达到7.3%.那么,在2001 ―― 2020年,各年的国内生产总值可望为2000年的多少倍?引导学生逐年计算,并得出规律:设x年后我国的国内生产总值为2000年的y倍,那么y 1.073x(x N*, x 20).问题2 (课本P58问题2):当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.1-L根据此规律,人们获得了生物体内碳14含量P与死亡年数t之间的关系P (-)5730.21 1 1当生物死亡了5730, 2 5730, 3 5730 ,…年后,它体内碳14的含量P分别为?,(才2, (?)3,….是正整数1 1 1指数幕.它们的值分别为1 1 1,….2 4 8一6000 一10000 一1000001 ----- 1 ----------- 1 ------------当生物死亡600 0年,10000年,100000年后,它体内碳14的含量P分别为(―)5730,(_) 5730,(_) 5730,这些式子的意义又是什么呢?这些正是本节课要学习的内容.二、师生互动,新课讲解:1、问题引入:(1)若x2a,则x叫a的_」如:2是4的平方根一个正数的平方根有—个,它们互为____________ 数;负数没有平方根;零的平方根是一(2)若x3a,则x叫a的.女口:2是8的立方根,一2是一8的立方根。

高中数学指数与指数幂的运算教案(第三课时)新课标 人教版 必修1(A)

高中数学指数与指数幂的运算教案(第三课时)新课标 人教版 必修1(A)

指数与指数幂的运算(第三课时)教学目标1.掌握根式与分数指数幂的互化;2.熟练运用有理指数幂运算性质进行化简、求值;3.培养学生的数学应用意识。

教学重点:有理指数幂运算性质运用。

教学难点:化简、求值的技巧 教学方法:启发引导式 教学过程 (I )复习回顾1.分数指数幂的概念,以及有理指数幂的运算性质2.用分数指数幂表示下列各式(a>0,x>0) (II )讲授新课例1.计算下列各式(式中字母都是正数)分析:(1)题可以仿照单项式乘除法进行,首先是系数相乘除,然后是同底数幂相乘除,并且要注意符号。

(2)题先按积的乘方计算,后按幂的乘方计算,等熟练后可简化计算步骤。

对于计算的结果不强求统一用什么形式来表示,没有特别要求,就用分数指数幂的形式表示。

如果有特殊要求,可根据要求给出结果,但:① 结果不能同时含有根式和分数指数;②不能同时含有分母和负指数; ③ 根式需化成最简根式。

例2.计算下列各式:分析:(1)题把根式化成分数指数幂的形式,再计算。

nm anm a-(2)题先把根式化成分数指数幂的最简形式,然后计算。

例3.求值:分析:(1)题需把各项被开方数变为完全平方形式,然后再利用根式运算性质;要求:例3学生先练习,后讲评,讲评时需向学生强调求值过程中的变形技巧。

(III)课堂练习计算下列各式:要求:学生板演练习,做完后老师讲评。

(IV)课时小结通过本节学习,要求大家能够熟练运用有理数幂运算性质进行化简、求值,并掌握一定的解题技巧,如凑完全平方、寻求同底幂等方法。

(V)课后作业第二教材有关题目。

人教版高中数学必修1-2.1《指数与指数幂的运算(第1课时)》教学设计

人教版高中数学必修1-2.1《指数与指数幂的运算(第1课时)》教学设计

2.1指数函数2.1.1指数与指数幂的运算(第一课时)(胡文娟)一、教学目标 (一)核心素养通过指数运算符号的使用与运算法则的总结,培育学生数学抽象、数学运算、逻辑推理的核心素养,为指数函数学习打下坚实基础. (二)学习目标1.理解根式的概念并掌握运用根式的性质进行化简. 2.理解分数指数幂的概念.3.掌握根式与分数指数幂之间的互化. (三)学习重点1.根式与分数指数幂概念的理解. 2.分数指数幂的运算性质. (四)学习难点根式与分数指数幂的互化. 二、教学设计 (一)课前设计 1.预习任务(1)读一读:阅读教材第49页至第51页,填空:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中1>n ,且*N ∈n .式子n a 叫做根式,其中a 叫做被开方数,n 叫做根指数.当n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数. 当n 为偶数时,正数的n 次方根有两个,这两个数互为相反数. 式子n a 叫做根式.这里n 叫做根指数,a 叫做被开方数.(2)计算下列各式①364-;②44)6(1-;③)0,0(55≥≥+b a b a )( 观察上面的计算结果,你得到的结论是: (用字母表达).详解: ①44)4()4(6433-=-⨯-⨯-=-)(; ②61)6(1)6(1)6(1)6(161)6(144444=-⨯-⨯-⨯-=⎪⎭⎫ ⎝⎛-=-; ③()()()()()b a b a b a b a b a b a b a +=+⋅+⋅+⋅+⋅+=+555)( 结论:n 为奇数,R a a a n n ∈=,;n 为偶数,⎩⎨⎧<-≥=0,0a a a a a n n ,.2.预习自测(1)若x 表示实数,则下列说法正确的是( )A .x 一定是根式B .x -一定不是根式C .56x 一定是根式D .3x -只有当0≥x 才是根式【知识点】根式的定义. 【数学思想】【解题过程】根据根式定义可得C 正确. 【思路点拨】根据根式的定义直接判断.【答案】C .(2)=-552)(( ) A .4 B .2 C .4- D .2-【知识点】根式的化简. 【数学思想】【解题过程】()()()()()2222222555-=-⋅-⋅-⋅-⋅-=-)(. 【思路点拨】根据根式的运算性质直接进行计算.【答案】D .(3)将235写为根式,则正确的是( )A .325B .35 C .523 D .35【知识点】根式与分数指数幂的互化.【数学思想】【解题过程】32355=【思路点拨】运用根式与分数指数幂的互化关系. 【答案】D .(4)将536写为分数指数幂的形式,则正确的是( ) A .356 B .536 C .156D .26【知识点】根式与分数指数幂的互化.【数学思想】 【解题过程】535366=【思路点拨】运用根式与分数指数幂的互化关系. 【答案】B .(二)课堂设计 1.知识回顾 (1)平方根一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根(square root )或二次方根. (2)立方根一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根(cube root )或三次方根.(3)正数有两个平方根,他们互为相反数,其中正的平方根称为算术平方根;0的平方根是0;负数没有平方根. 任何一个数都有唯一一个立方根,并且这个立方根的符号与原数相同. 2.问题探究探究一 根式的概念与根式的化简 ●活动① 回顾理解方根与根式的概念在初中,我们学习过二次方根概念:一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根(square root )或二次方根.其中,a 叫做被开方数.当a ≥0时,a 表示a 的算术平方根.我们也学习过三次方根的概念:一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根(cube root )或三次方根.提问:如果一个数的4次方等于a ,那么这时候这个数叫做什么呢? 这个数叫做a 的四次方根.追问:如果一个数的n 次方等于a ,那么这时候这个数又叫做什么呢?(抢答)一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且*N ∈n .式子n a 叫做根式,其中a 叫做被开方数,n 叫做根指数.【设计意图】通过回顾已学知识,从特殊到一般,让学生自己总结归纳,加深学生对根式的理解. ●活动② 根式的性质*,1)n n ∈N >表示n a 的n 次方根,等式a a n n =一定成立吗?如果不一定成立,那么n n a 等于什么?(分小组讨论)若00a ==n 为奇数时,a a n n =n 为偶数时,⎩⎨⎧<-≥==0,0,a a a a a a n n也就是说,当n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数;当n 为偶数时,正数的n 次方根有两个,这两个数互为相反数. 追问:a a n n =)(一定成立吗?很明显,当根式有意义的情况下a a n n =)(一定成立.综上,根式的性质有:00)1(=n ,a a n n =))(2(,a a n n =)3((n 为大于1的奇数),⎩⎨⎧<-≥==)0()0()4(a a a a a a n n (n 为大于1的偶数).【设计意图】通过学生自主讨论探究归纳总结,得出根式的化简方法,加深印象. 探究二 分数指数幂的概念★ ●活动① 探究分数指数幂的概念当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”,根据此规律,人们获得了生物体内碳14含量P 与死亡年数t 之间的关系5730)21(tP =,考古学家根据这个式子可以知道,生物死亡t 年后,体内碳14含量P 的值. 例如:当生物死亡了5730,2×5730,3×5730,……年后,它体内碳14的含量P分别为21,2)21(,3)21(,……当生物死亡了6000年,10000年,100000年后,根据上式,它体内碳14的含量P 分别为57306000)21(,573010000)21(,5730100000)21(.问题:以上三个数的含义到底是什么呢?考古学家正式利用有理数指数幂的知识,计算出生物死亡6000年,10000年,100000年后体内碳14含量P 的值.例如,当t =6000时,600057301()0.4842p ==≈(精确到0.001),即生物死亡6000年后,其体内碳14的含量约为原来的48.4%.归纳:分数指数幂是一个数的指数为分数.【设计意图】从生活中的实际例子到数学语言,从特殊到一般,体会概念的提炼,抽象过程.探究三 根式与分数指数幂的互化 ●活动① 根式与分数指数幂的互化5102552510)(a a a a ===,4123443412)(a a a a ===问题:(1)从上两个例子你能发现什么结论?结论:当根式的被开方数的指数能被根指数整除时,根式可以写成根指数被开方数的指数a 的形式(2))(0,,4532>c c b a 如何表示?3232a a =,21b b =,4545c c =规定)1,,,0(*>∈>=n N n m a a a n m nm你能得出正数的负分数指数幂的根式表示形式吗?1*()0,,,1)m m nnaa a m n N n --==>∈>正数的分数指数幂是根式的另一种表示形式. 思考:负数的分数指数幂呢能不能用根式表示?不能,例如问题(2)中45c ,若c 为负数,则在实数范围内是不存在的. 0的正分数指数幂等于0,0的负分数指数幂没有意义.【设计意图】从给出的例子让学生总结出正数的负分数指数幂,检查反馈学生对正数的分数指数幂概念的理解,加深对正数的分数指数幂的认识. ●活动② 巩固基础,检查反馈例1 化简327-的值是( ). A .3 B .-3 C .±3 D .-9 【知识点】根式的化简求值. 【数学思想】【解题过程】3327333-=-=-)(. 【思路点拨】根据根式的运算法则直接进行计算. 【答案】B .同类训练552)()(b a b a -+-的值是( ). A .0 B .)(2b a - C .0或)(2b a - D .b a - 【知识点】根式的化简求值.【数学思想】分类讨论思想 【解题过程】【思路点拨】根据根式的运算性质直接进行计算.【答案】C .【设计意图】检查反馈学生对根式的定义以及根式的性质的理解,进一步掌握根式的化简.例2 当x -2有意义时,化简964422+--+-x x x x 的结果为( )A .52-x B .12--xC .1-D .x 25-【知识点】根式的化简求值.【数学思想】【解题过程】x -2有意义即是说02≥-x ,则2≤x ,这442+-x x x x -=-=222)(,同理x x x x -=-=+-339622)(,所以原式1-=. 【思路点拨】根据n 为偶数时,⎩⎨⎧<-≥==0,0,a a a a a a n n 对根式进行化简求值.【答案】C . 同类训练 若21<a ,则化简()4212-a 的结果是( ) A .12-aB .12--aC .a 21-D .a 21--【知识点】根式的化简.【数学思想】【解题过程】21<a ,则012<-a ,()a a a 2112122142-=-=-)(.【思路点拨】根据n 为偶数时,⎩⎨⎧<-≥==0,0,a a a a a a n n 对根式进行化简求值.【答案】C .●活动③ 强化提升、灵活应用例3 下列互化中正确的是( )A .)0(21≠-=-x x x )( B .)0(3162<=y y yC .)0,()(4343≠=-y x xy y x )( D .331x x -=【知识点】根式与分数指数幂的互化.【数学思想】【解题过程】A 选项)0(21≠-=-x x x ,B 选项)0(3162<-=y y y )(,D 选项331x x =.【思路点拨】熟练掌握根式与分数指数幂的互化关系.【答案】C .同类训练 下列等式能成立的是( )A .7717)(m n mn=B .31242)2(-=-C .43433)(y x y x +=+D .833)43(23=【知识点】根式的化简,根式与分数指数幂的互化.【数学思想】【解题过程】A 选项777)(-m n m n=,B 选项31242)2(=-,C 选项显然不成立. 【思路点拨】熟练掌握根式与分数指数幂的互化关系.【答案】D .例4 求下列各式的值:(1)5.03132)972()27125()027.0(-+(2)1416)31()16174()23(30----⋅+【知识点】根式的化简运算,根式与分数指数幂的互化.【数学思想】【解题过程】(1)原式09.0)35()35()3.0(233323=-+=(2)原式3903322==-= 【思路点拨】熟练掌握根式与分数指数幂的互化关系. 【答案】(1)09.0;(2).同类训练 求下列各式的值:(1)03115.03)27102(1.0)972(π-++--(2)313125.01041027.010)833(81)87(3)0081.0(⨯-⎥⎦⎤⎢⎣⎡+⨯⎥⎦⎤⎢⎣⎡⨯----【知识点】根式的化简运算,根式与分数指数幂的互化.【数学思想】【解题过程】(1)原式53113103+73412=+-=+=; (2)原式983)323(31310)103(10)23(1331)103(133334444-=-+⨯-=⨯-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⨯-=. 【思路点拨】熟练掌握根式与分数指数幂的互化关系.【答案】(1)11312;(2)98-. 【设计意图】通过计算,加强学生对根式的性质的运用以及对根式与分数指数幂的互化过程的熟练掌握. 3.课堂总结 知识梳理(1)一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且*N ∈n .式子n a 叫做根式,其中a 叫做被开方数,n 叫做根指数.(2)正数的分数指数幂(正数的分数指数幂是根式的另一种表示形式):)1,N ,,0(*>∈>=n n m a a a n m nm ,1*()0,,N ,1)m m nna a a m n n --==>∈>重难点归纳(1)在进行根式化简时一定注意当n 为奇数时,a a n n =,n 为偶数时,⎩⎨⎧<-≥==0,0,a a a a a a nn . (2)根式化简过程中常出现乘方与开放并存,要注意两者的顺序何时可以交换,何时不能交换,并且幂指数不能随便约分.(3)在进行根式与分数指数幂的互化时,)1,N ,,0(*>∈>=n n m a a a n m nm*0,,N ,1)mnaa m n n -=>∈>,其中m ,n 的位置切勿记反.(三)课后作业 基础型 自主突破1.设a n n m ,1,,>N ∈*是正实数,则下列各式中正确的有( ). ①nmnma a =;②10=a ;③nmnm aa1=-A .3个B .2个C .1个D .0个 【知识点】根式与分数指数幂的互化,分数指数幂. 【数学思想】【解题过程】由分数指数幂的概念判断.【思路点拨】弄清根式与分数指数幂之间的互化关系. 【答案】A . 2.已知432=-x则x 等于( )A .8±B .81± C .443 D .322±【知识点】根式的化简运算,根式与分数指数幂的互化. 【数学思想】【解题过程】814143232332±=±=±==---)(x x【思路点拨】掌握根式的化简运算以及根式与分数指数幂之间的互化关系. 【答案】B .3.下列说法中正确的个数是( )①-2是16的四次方根 ②正数的n 次方根有两个 ③a 的n 次方根就是n a④a a n n =(≥a 0) A .0B .1C .2D .3【知识点】n 次方根和n 次根式的概念. 【数学思想】分类讨论思想.【解题过程】①是正确的,由4(2)16-=可验证;②不正确,要对n 分奇偶讨论;③不正确,a 的n 次方根可能有一个值,可能有两个值,而n a 只表示一个确定的值,它叫根式;④正确,根据根式运算的依据,当n 为奇数时,n n a =a 是正确的,当n 为偶数时,若a ≥0,则有n n a =a .综上,当a ≥0时,无论n 为何值均有n n a =a 成立.【思路点拨】根据方根与根式的定义直接进行判断. 【答案】C .4.若式子4321--)(x 有意义,则x 的取值范围是( ) A .R x ∈ B .21≠x C .21>x D .21<x【知识点】根式与分数指数幂的互化. 【数学思想】分类讨论思想. 【解题过程】434321121)()(x x -=--,若4321--)(x 有意义,则021>-x ,即21<x . 【思路点拨】化分数指数幂为根式,由根式内的代数式大于0求得x 的范围. 【答案】D . 5.计算下列各式:(1)44481⨯ (2)63125.132⨯⨯【知识点】根式与分数指数幂的互化,根式的化简求值. 【数学思想】【解题过程】(1)62323481444444=⨯=⨯=⨯;(2)633362363322332232332125.132⨯⨯⨯=⨯⨯⨯=⨯⨯6323332613121=⨯=⨯⨯⨯=.【思路点拨】运用根式的化简法则进行求解. 【答案】(1)6;(2)6.6.化简625625++-=________. 【知识点】根式的化简. 【数学思想】【解题过程】32232362562522=++-=++-)()(.【思路点拨】根号里面的部分用完全平方公式化简,再根据根式的化简得出结果. 【答案】32. 能力型 师生共研7.a a a n n n n 2)(=+时, 实数a 和正整数n 所应满足的条件. 【知识点】根式与分数指数幂的互化及其化简运算. 【数学思想】分类讨论思想【解题过程】由a a a n n n n 2)(=+,若n 为奇数,a a a a a n n n n 2)(=+=+,上式成立;若n 为偶数,则a ≥0,a a a a a n n n n 2)(=+=+,上式成立. 【思路点拨】利用指数的运算法则,对n 为奇数或偶数进行讨论. 【答案】n R a ,∈为正奇数或a ≥0,n 为正偶数. 8.已知*N ∈n ,化简()111112----++++++=L _____.【知识点】根式的化简运算. 【数学思想】转化与化归思想. 【解题过程】原式)21)(21(21-+-=++L1112312-+=-+++-+-=n n n【思路点拨】运用以前所学过的分母有理化将原式化简,将复杂问题简单化. 【答案】11-+n . 探究型 多维突破 9.已知32323232-+=+-=y x ,, 求下列各式的值. (1)xy y x +; (2)22y xy x +-.【知识点】根式的化简求值. 【数学思想】转化与化归思想.【解题过程】(1)194347347347347)32(32)32(322222=-+++-=-+++-=+)()(x y y x ;(2)19332323232323232322222=-++-+⋅+--+-=+-)()(y xy x 【思路点拨】直接将已知的等式带入要求的式子中,在运用根式的性质将式子化简.【答案】(1)194;(2)193.10.若0,0>>y x 且满足y xy x 152=-,求yxy x y xy x +-++322的值.【知识点】根式与分数指数幂的互化及其化简求值. 【数学思想】转化与化归思想.【解题过程】y xy x 152=-即为()()035=+-y x yx ,因为0,0>>y x ,故05=-y x ,所以y x 25=,321632525325225232222==+-++⨯=+-++yyyy y y y y yxy x y xy x .【思路点拨】运用分数指数幂进行根式计算. 【答案】3. 自助餐1.式子a a 1-经过计算可得到( )A .a -B .aC .-aD .-a -【知识点】根式的化简. 【数学思想】【解题过程】由原式知a <0,因此2a =|a |=-a ,故a =a -,于是aa 1-=-)1(2aa -=-a -.【思路点拨】负数的偶次方根等于其相反数. 【答案】D .2.下列说法正确的是( ). A .64的6次方根是2 B .664的运算结果是2±C .1>n 且*N ∈n 时,a a n n =)(对于任意实数a 都成立D .1>n 且*N ∈n 时,式子n n a 对于任意实数a 都有意义 【知识点】方根与根式的概念,根式的化简. 【数学思想】分类讨论思想.【解题过程】A 选项考察的是正数的偶次方根有两个,且互为相反数,B 选项的运算结果应该是2,C 选项当a 为负数则不成立.【思路点拨】根据方根与根式的概念,根式的化简进行判断. 【答案】D .3.当8<x <10时,=-+-22)10()8(x x __________. 【知识点】根式的化简. 【数学思想】【解题过程】2)8(-x 8-=x 8-=x ,2)10(-x x x -=-=1010. 【思路点拨】当n 为偶数时,n n a =a . 【答案】2.4.化简:=-+20122011)23()23(____________. 【知识点】根式的化简求值. 【数学思想】【解题过程】原式20112222⎡⎤=+⋅-⋅=-⎣⎦))).【思路点拨】根据根式的运算性质直接进行计算. 【答案】32-.5.求使下列等式成立的x 的取值范围. (1)1212--=--x x x x (2)2)2()4)(2(2+-=--x x x x 【知识点】根式的化简运算. 【数学思想】 【解题过程】(1)12--x x 成立的条件为⎩⎨⎧>-≥-0102x x 或⎩⎨⎧<-≤-0102x x ,解得2≥x 或1<x ,而12--x x 成立的条件为⎩⎨⎧>-≥-0102x x ,解得2≥x ,所以等式成立条件为2≥x . (2)原等式可变形为2)2()2()2(2+-=+-x x x x ,而使得a a -=2成立的条件是0≤a ,结合偶次根式的定义域即可得到⎩⎨⎧≥+≤-0202x x ,解得22≤≤-x .【思路点拨】明确a a n n =成立的条件. 【答案】(1)2≥x ;(2)22≤≤-x .6.计算下列各式(式中字母都是正数) (1)0143231)12(3256)71(027.0-+-+-----(2)23241)32()827(0081.0+--【知识点】根式与分数指数幂的互化化简求值. 【数学思想】转化与化归思想. 【解题过程】(1)原式[]191316449310131)4()7()103(43421313=+-+-=+-+--⎥⎦⎤⎢⎣⎡=---(2)原式103949410394)23(10394)23()103(2323414=+-=+-=+⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡=--【思路点拨】正确运用根式与分数指数幂的互化法则. 【答案】(1)19;(2)103.。

高一数学必修1教材《指数与指数幂的运算》教学设计

2.1.1指数与指数幂的运算 第1课时《根式》一、 教学目标1、知识目标:理解n 次方根和n 次根式的概念及其性质,能根据性质进行简单的根式计算。

2、能力目标:通过对根式的学习,使学生能进一步认清各种运算间的联系,提高归纳,概括的能力。

3、情感态度与价值观:通过对根式的化简,使学生了解由特殊到一般的解决问题的方法,渗透分类讨论的思想。

二、 教学重点:n 次方根的概念及其取值规律教学难点:n 次方根的概念及其运算根据的研究.三、 过程与方法:教学方法:启发探索式.(一)、预习自学1、指数幂的定义 :a 的正整数指数幂=na (其中R a n N n ∈>∈,1,*)a 的零次幂=0a (其中a ) a 的负整数指数幂=-n a (其中a )2、平方根与立方根的定义:(1)平方根:如果 ,那么 叫做 的平方根。

正数a的平方根有 个,它们 ,记作 ,0的平方根是 ,负数 。

(2)立方根:如果 ,那么 叫做 的立方根。

正数a 的立方根是一个 ,负数a 的立方根是一个 ,0的立方根是 ,实数a 的立方根记作 。

3、n 次方根的概念:一般的,如果 其中( ) 当n 是奇数时 , 记作当n 时偶数时 记作 负数 0的 ,记作 4、根式的概念:(1)定义:(2)性质 ⅰ) =n na )( ,ⅱ)当n 为奇数时=n n a ,n 为偶数时=n n a5、预习书P50例16、小试牛刀:化简下列各式:(1)38- (2))(222b a b ab a <+-(3)66)2(+x (4))1()31(2<--x xx (二)质疑、解疑1、式子n a 中a 的取值范围由什么决定?2、式子n a 的符号一定是正的吗?有什么规律?3、式子nn a )(中a 的取值范围是实数集R 吗?化简结果是什么?4、式子n n a 中a 的取值范围是实数集R 吗?化简结果一定是非负的吗?(三)实践1、根式有意义的条件:求347311aaa a ++-+-的值2、根式的化简与求值(1)计算 3048334160625.0--+π(2)如果,5-<m 化简251012)6(244++++--m m m m(3)设,33<<-x 求961222++-+-x x x x 的值(四)师生小结(五)验收:优化设计活页卷62页四、 课后反思2.1.1指数与指数幂的运算 第2课时《分数指数幂》一、教学目标1、 知识目标:能认识到分数指数是指数概念由整数向有理数的一次推广,了解它是根式的一种新的写法,能正确进行根式与分数指数幂的互化。

指数与指数幂的运算(第一课时)教案

2.1 指数函数2.1.1 指数与指数幂的运算(第一课时)一、教材分析:本节是高中数学新人教版必修1的第二章2.1指数函数的内容. 二、学习目标:①理解n 次方根与根式的概念;②正确运用根式运算性质化简、求值; ③了解分类讨论思想在解题中的应用.三、教学重点:理解有理数指数幂的含义及其运算性质.四、教学难点:理解方根和根式的概念,掌握根式的性质,会进行简单的求n 次方根的运算.五、课时安排:2课时 六、教学过程(一)、自主导学(课堂导入)1、设计问题,创设情境问题:当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内碳14含量P 与死亡年数t 之间的关系,这个关系式应该怎样表示呢?我们可以先来考虑这样的问题:①当生物死亡了5730,2×5730,3×5730,…年后,它体内碳14的含量P 分别为原来的多少?21,,...)21(,)21(32 ②当生物体死亡了6000年,10000年,100000年后,它体内碳14的含量P 分别为原来的多少?573010000057301000057306000)21(,)21(,)21(③由以上的实例来推断生物体内碳14含量P 与死亡年数t 之间的关系式应该是什么?573021tp ⎪⎭⎫ ⎝⎛=考古学家根据上式可以知道,生物死亡t 年后,体内碳14含量P 的值.那么这些数21,,...)21(,)21(32,573010000057301000057306000)21(,)21(,)21(,573021t p ⎪⎭⎫ ⎝⎛=的意义究竟是什么呢?这正是我们将要学习的知识.2、学生探索,尝试解决问题1:什么是一个数的平方根?什么是一个数的立方根?一个数的平方根有几个,立方根呢?若x2=a,则x叫做a的平方根.同理,若x3=a,则x叫做a的立方根.根据平方根、立方根的定义,正实数的平方根有两个,它们互为相反数.问题2:如果x4=a,x5=a,又有什么样的结论呢?如果一个数的4次方等于a,那么这个数叫做a的4次方根;如果一个数的5次方等于a,那么这个数叫做a的5次方根.问题3:①如果x2=a,那么x叫做a的平方根;②如果x3=a,那么x叫做a的立方根;③如果x4=a,那么x叫做a的4次方根.你能否据此得到一个一般性的结论?一般地,如果x n=a,那么x叫做a的n次方根.问题4:上述结论中的n的取值有没有什么限制呢?方根的定义:一般地,如果x n=a,那么x叫做a的n次方根,其中n>1,且n∈N*.3、信息交流,揭示规律试根据n次方根的定义分别求出下列各数的n次方根.(多媒体显示,学生完成)(1)25的平方根是±5;(2)27的立方根是3;;(3)-32的5次方根是-2;(4)16的4次方根是±2;(5)a6的立方根是a2;(6)0的7次方根是0.问题5:观察并分析以上各数的方根,你能发现什么?①以上各数的对应方根都是整数;②第(1)(4)题的答案有两个,第(2)(3)(5)(6)题的答案只有一个;③第(1)(4)题的答案中的两个根互为相反数.问题6:请仔细分析上述各题,并结合问题5中同学们发现的结论,你能否得到一个一般性的结论?一个数的奇次方根只有一个;一个数的偶次方根有两个,且互为相反数.问题7:是否任何一个数都有偶次方根?0的n次方根如何规定更合理?因为任何一个数的偶次方都是非负数,所以负数没有偶次方根;0的n次方等于0,所以0的n次方根等于0.问题8:同学们能否把所得到的结论再总结得具体一些呢?n次方根的性质实际上是平方根和立方根性质的推广,因此跟立方根和平方根的情况一样,方根也有如下性质:(1)当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数.这时,a的n次.(2)当n是偶数时,正数的n次方根有两个,这两个数互为相反数.这时,正数a的正的n次,负的n.正的n次方根与负的na>0).注:①负数没有偶次方根;②0的任何次方根都是0,记作n 0=0;③当a ≥0时,n a ≥0,所以类似416=±2的写法是错误的. 另外,我们规定:式子n a 叫做根式,其中n 叫做根指数,a 叫做被开方数. 问题9:利用上面所学n 次方根的知识,能否求出下列各式的值? (1)(5)2;(2)38-;(3)416;(4)33)3(-a (a>0). (1)5;(2)-2;(3)2;(4)a-3.问题10:上面的计算涉及了哪几类问题? 主要涉及了(a)n 与n a 的问题.组织学生结合例题及其解答,进行分析讨论,归纳出以下结论: (1)(n a )n =a.例如,(3)3=27,(-2)5=-32. (2)当n 是奇数时,nn a =a ;当n 是偶数时,nna =|a|=⎩⎨⎧<-≥)0(,)0(,a a a a 例如,33)2(-=-2,442=2;553=3,()883-=|-3|=3.4、类比前面的学习,给出并讲解分数指数幂的定义和运算性质 分数指数幂 正数的分数指数幂的意义 规定:)1,,,0(*>∈>=n N n m a a an m nm)1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.(1).有理指数幂的运算性质①r a ·s r r a a +=),,0(Q s r a ∈>;②rss r a a =)(),,0(Q s r a ∈>;③srra a ab =)( ),0,0(Q r b a ∈>>.引导学生解决本课开头实例问题 让学生先看并一起分析讲解例题.(教材例2、例3、例4、例5)说明:让学生熟练掌握根式与分数指数幂的互化和有理指数幂的运算性质运用. 4. 无理指数幂结合教材实例利用逼近的思想理解无理指数幂的意义.指出:一般地,无理数指数幂),0(是无理数αα>a a 是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.(二) 、合作学习让学生合作做练习,教师巡视指导然后讲解例题.【例1】求下列各式的值:(1)33)8(-;(2)2)10(-; (3)44)3(π-;(4)2)(b a -(a>b ).解:(1)33)8(-=-8;(2)2)10(-=10-=10;(3)44)3(π-=;33-=-ππ(4)2)(b a -=.b a b a -=- 例2、 计算下列各式的值. (1)33)(a ;(2 (1n >,且n N *∈)(3)1n >,且n N *∈) 【解析】(1)a a =33)(.(2)当n =3π-;当n =3π-.(3)||x y -,当x y ≥时,x y -;当x y <时,y x -.【小结】(1)当n 为奇数时,a a nn =;当n 为偶数时,⎩⎨⎧<-≥==)0()0(||a a a a a a nn(2)不注意n 的奇偶性对式子n na 值的影响,是导致错误出现的一个重要原因.故要在理解的基础上,记准、记熟、会用、活用.(三)、当堂检测 1.课本.321,54题、、p2、(P 56,例2)求值:①238;②1225-;③51()2-;④3416()81-.学生思考,口答,教师板演、点评. 2、解:① 223338(2)=2323224⨯===; ② 1122225(5)--=12()121555⨯--===; ③ 5151()(2)2---=1(5)232-⨯-==;④334()44162()()813-⨯-=3227()38-==3、用分数指数幂的形式表或下列各式(a >0)①3a 2a 分析:先把根式化为分数指数幂,再由运算性质来运算.解:①117333222a a a a a +=⋅==②2223a a a =⋅28233aa +==;③421332()a a ====.(四)、课堂小结(教师根据学生具体的的学习接受情况提问并和学生一起做总结概括)先让学生独自回忆,然后师生共同总结.本节主要学习了根式与分数指数幂以及指数幂的运算,分数指数幂是根式的另一种表示形式,根式与分数指数幂可以进行互化.在进行指数幂的运算时,一般地,化指数为正指数,化根式为分数指数幂,化小数为分数进行运算,便于进行乘除、乘方、开方运算,以达到化繁为简的目的,对含有指数式或根式的乘除运算,还要善于利用幂的运算法则. 以下是本节课重要知识点及需要理解的概念: 1.分数指数是根式的另一种写法. 2.无理数指数幂表示一个确定的实数.3. 掌握好分数指数幂的运算性质,其与整数指数幂的运算性质是一致的.1.复习课本P 48~50内容,熟悉巩固有关概念和性质;2.课本P 59习题2.1A 组第1、2、4题. 八、教学反思:。

高中数学人教版必修一:2.1.1指数与指数幂的运算教学设计

数学教学设计检查结果及修改意见:合格[ ] 不合格[ ]组长(签字):检查日期:年月日精美句子1、善思则能“从无字句处读书”。

读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。

读大海,读出了它气势磅礴的豪情。

读石灰,读出了它粉身碎骨不变色的清白。

2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。

幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。

幸福是“零落成泥碾作尘,只有香如故”的圣洁。

幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。

幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。

幸福是“人生自古谁无死,留取丹心照汗青”的气节。

3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。

4、成功与失败种子,如果害怕埋没,那它永远不能发芽。

鲜花,如果害怕凋谢,那它永远不能开放。

矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。

蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。

航船,如果害怕风浪,那它永远不能到达彼岸。

5、墙角的花,当你孤芳自赏时,天地便小了。

井底的蛙,当你自我欢唱时,视野便窄了。

笼中的鸟,当你安于供养时,自由便没了。

山中的石!当你背靠群峰时,意志就坚了。

水中的萍!当你随波逐流后,根基就没了。

空中的鸟!当你展翅蓝天中,宇宙就大了。

空中的雁!当你离开队伍时,危险就大了。

地下的煤!你燃烧自己后,贡献就大了6、朋友是什么?朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。

朋友是成功道路上的一位良师,热情的将你引向阳光的地带;朋友是失败苦闷中的一盏明灯,默默地为你驱赶心灵的阴霾。

人教版高一数学必修一2.指数与指数幂的运算第一、二、三课时


2.当根式的被开方数的指数不能被根指数整除 时,根式也可以写成分数指数幂的形式.
2
如: 3 a2 a3;
1
5
b b 2 (b 0); 4 c 5 c 4 (c 0).
分数指数幂
2.1.1 指数与指数幂的运算
1)规定正数的正分数指数幂的意义:
m
a n n a m (a 0, m`n N ,且n 1)
生 物 体 内 碳14含 量 与 死 亡 年 数t之 间 的 关 系
P
(
1
)
t 5730
由 此 可 知 2:
当 生 物 死 亡 了1年 ,2年 ,10年 , ,10000年 后 , 该
生 物 体 内 碳14的 含 量P的 值 分 别 是
P
(
1
)
1 5730
,
2
P
(
1
)
2 5730
,
2
P
(
1
)
10 5730
3.求下列各式的值 : (1)6 ( x y)6 ; (2)3 (27); (3) ( 2 3)2 ; (4) x6 .
4.下 列 各 式 中,正 确 的 是( C )
A.6 (2)2 3 2 B.4 (3 )4 3
C .(3 2 )3 2 D.6 (2a 1)6 2a 1
讨论:5 2的结果?
2.1.1 指数与指数幂的运算
由上表不难发现: 当 2的不足近似值从小于 2的方向逼近 2时,
5 2的近似值从小于5 2的方向逼近5 2; 当 2的过剩近似值从大于 2的方向逼近 2时,
5 2的近似值从大于5 2的方向逼近5 2.
结论:一般地,无理指数幂a (a 0,是无理数)是一个确定
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 基本初等函数(Ⅰ)本章教材分析教材把指数函数、对数函数、幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,从而让学生体会建立和研究一个函数模型的基本过程和方法,学会运用具体的函数模型解决一些实际问题.本章总的教学目标是:了解指数函数模型的实际背景,理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算;理解指数函数的概念和意义,掌握f(x)=a x 的符号及意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质(单调性、值域、特别点),通过应用实例的教学,体会指数函数是一种重要的函数模型;理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用;通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x 的符号及意义,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特殊点);知道指数函数y=a x 与对数函数y=log a x 互为反函数(a >0,a≠1),初步了解反函数的概念和f -1(x)的意义;通过实例了解幂函数的概念,结合五种具体函数y=x,y=x 2,y=x 3,y=x -1,y=x 21的图象,了解它们的变化情况.本章的重点是三种初等函数的概念、图象及性质,要在理解定义的基础上,通过几个特殊函数图象的观察,归纳得出一般图象及性质,这种由特殊到一般的研究问题的方法是数学的基本方法.把这三种函数的图象及性质之间的内在联系及本质区别搞清楚是本章的难点.教材注重从现实生活的事例中引出指数函数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情境创设.在学习对数函数的图象和性质时,教材将它与指数函数的有关内容作了比较,让学生体会两种函数模型的增长区别与关联,渗透了类比思想.建议教学中重视知识间的迁移与互逆作用.教材对反函数的学习要求仅限于初步的知道概念,目的在于强化指数函数与对数函数这两种函数模型的学习,教学中不宜对其定义做更多的拓展.教材对幂函数的内容做了削减,仅限于学习五种学生易于掌握的幂函数,并且安排的顺序向后调整,教学中应防止增加这部分内容,以免增加学生的学习负担.通过运用计算机绘制指数函数的动态图象,使学生进一步体会到信息技术在数学学习中的作用,教师要尽量发挥电脑绘图的教学功能.教材安排了“阅读与思考”的内容,有利于加强数学文化的教育,应指导学生认真研读.本章教学时间约需14课时,具体分配如下(仅供参考)2.1.1 指数与指数幂的运算整体设计教学分析我们在初中的学习过程中,已了解了整数指数幂的概念和运算性质.从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n 次方根的定义,从而把指数推广到分数指数.进而推广到有理数指数,再推广到实数指数,并将幂的运算性质由整数指数幂推广到实数指数幂.教材为了让学生在学习之外就感受到指数函数的实际背景,先给出两个具体例子:GDP的增长问题和碳14的衰减问题.前一个问题,既让学生回顾了初中学过的整数指数幂,也让学生感受到其中的函数模型,并且还有思想教育价值.后一个问题让学生体会其中的函数模型的同时,激发学生探究分数指数幂、无理数指数幂的兴趣与欲望,为新知识的学习作了铺垫.本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)、数形结合的思想(用指数函数的图象研究指数函数的性质)等,同时,充分关注与实际问题的结合,体现数学的应用价值.根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.三维目标1.通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质.掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质.培养学生观察分析、抽象类比的能力.2.掌握根式与分数指数幂的互化,渗透“转化”的数学思想.通过运算训练,养成学生严谨治学,一丝不苟的学习习惯,让学生了解数学来自生活,数学又服务于生活的哲理.3.能熟练地运用有理指数幂运算性质进行化简、求值,培养学生严谨的思维和科学正确的计算能力.4.通过训练及点评,让学生更能熟练掌握指数幂的运算性质.展示函数图象,让学生通过观察,进而研究指数函数的性质,让学生体验数学的简洁美和统一美.重点难点教学重点:(1)分数指数幂和根式概念的理解.(2)掌握并运用分数指数幂的运算性质.(3)运用有理指数幂性质进行化简、求值.教学难点:(1)分数指数幂及根式概念的理解.(2)有理指数幂性质的灵活应用.课时安排3课时教学过程第1课时指数与指数幂的运算(1)导入新课思路 1.同学们在预习的过程中能否知道考古学家如何判断生物的发展与进化,又怎样判断它们所处的年代?(考古学家是通过对生物化石的研究来判断生物的发展与进化的,第二个问题我们不太清楚)考古学家是按照这样一条规律推测生物所处的年代的.教师板书本节课题:指数函数——指数与指数幂的运算.思路2.同学们,我们在初中学习了平方根、立方根,那么有没有四次方根、五次方根…n次方根呢?答案是肯定的,这就是我们本堂课研究的课题:指数函数——指数与指数幂的运算.推进新课新知探究提出问题(1)什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?(2)如x4=a,x5=a,x6=a根据上面的结论我们又能得到什么呢?(3)根据上面的结论我们能得到一般性的结论吗?(4)可否用一个式子表达呢?活动:教师提示,引导学生回忆初中的时候已经学过的平方根、立方根是如何定义的,对照类比平方根、立方根的定义解释上面的式子,对问题②的结论进行引申、推广,相互交流讨论后回答,教师及时启发学生,具体问题一般化,归纳类比出n次方根的概念,评价学生的思维.讨论结果:(1)若x2=a,则x叫做a的平方根,正实数的平方根有两个,它们互为相反数,如:4的平方根为±2,负数没有平方根,同理,若x3=a,则x叫做a的立方根,一个数的立方根只有一个,如:-8的立方根为-2.(2)类比平方根、立方根的定义,一个数的四次方等于a,则这个数叫a的四次方根.一个数的五次方等于a,则这个数叫a的五次方根.一个数的六次方等于a,则这个数叫a的六次方根.(3)类比(2)得到一个数的n次方等于a,则这个数叫a的n次方根.(4)用一个式子表达是,若x n=a,则x叫a的n次方根.教师板书n次方根的意义:一般地,如果x n=a,那么x叫a的n次方根(n-throot),其中n>1且n∈N*.可以看出数的平方根、立方根的概念是n次方根的概念的特例.提出问题(1)你能根据n次方根的意义求出下列数的n次方根吗?(多媒体显示以下题目).①4的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根.(2)平方根,立方根,4次方根,5次方根,7次方根,分别对应的方根的指数是什么数,有什么特点?4,±8,16,-32,32,0,a6分别对应什么性质的数,有什么特点?(3)问题(2)中,既然方根有奇次的也有偶次的,数a有正有负,还有零,结论有一个的,也有两个的,你能否总结一般规律呢?(4)任何一个数a的偶次方根是否存在呢?活动:教师提示学生切实紧扣n次方根的概念,求一个数a的n次方根,就是求出的那个数的n次方等于a,及时点拨学生,从数的分类考虑,可以把具体的数写出来,观察数的特点,对问题(2)中的结论,类比推广引申,考虑要全面,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.讨论结果:(1)因为±2的平方等于4,±2的立方等于8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分别是±2,±2,±2,2,-2,0,a2.(2)方根的指数是2,3,4,5,7…特点是有奇数和偶数.总的来看,这些数包括正数,负数和零. (3)一个数a的奇次方根只有一个,一个正数a的偶次方根有两个,是互为相反数.0的任何次方根都是0.(4)任何一个数a的偶次方根不一定存在,如负数的偶次方根就不存在,因为没有一个数的偶次方是一个负数.类比前面的平方根、立方根,结合刚才的讨论,归纳出一般情形,得到n次方根的性质:①当n为偶数时,a的n次方根有两个,是互为相反数,正的n次方根用n a表示,如果是负数,表示,正的n次方根与负的n次方根合并写成±n a(a>0).负的n次方根用n a②n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时a的n次方根用符号n a表示.③负数没有偶次方根;0的任何次方根都是零.上面的文字语言可用下面的式子表示:a 为正数:⎪⎩⎪⎨⎧±.,,,n n a n a n a n a n 次方根有两个为的为偶数次方根有一个为的为奇数 a 为负数:⎪⎩⎪⎨⎧.,,,次方根不存在的为偶数次方根只有一个为的为奇数n a n a n a n n 零的n 次方根为零,记为n 0=0.可以看出数的平方根、立方根的性质是n 次方根的性质的特例.思考根据n 次方根的性质能否举例说明上述几种情况?活动:教师提示学生对方根的性质要分类掌握,即正数的奇偶次方根,负数的奇次方根,零的任何次方根,这样才不重不漏,同时巡视学生,随机给出一个数,我们写出它的平方根,立方根,4次方根等,看是否有意义,注意观察方根的形式,及时纠正学生在举例过程中的问题.解答:答案不唯一,比如,64的立方根是4,16的四次方根为±2,-27的5次方根为527-,而-27的4次方根不存在等.其中527-也表示方根,它类似于n a 的形式,现在我们给式子n a 一个名称——根式.根式的概念: 式子n a 叫根式,其中a 叫被开方数,n 叫根指数. 如327-中,3叫根指数,-27叫被开方数.思考n n a 表示a n 的n 次方根,等式n n a =a 一定成立吗?如果不一定成立,那么n n a 等于什么? 活动:教师让学生注意讨论n 为奇偶数和a 的符号,充分让学生多举实例,分组讨论.教师点拨,注意归纳整理. 〔如33)3(-=327-=-3,44)8(-=|-8|=8〕.解答:根据n 次方根的意义,可得:(n a )n =a.通过探究得到:n 为奇数,n n a =a.n 为偶数,n n a =|a|=⎩⎨⎧<-≥.0,,0,a a a a 因此我们得到n 次方根的运算性质:①(n a )n =a.先开方,再乘方(同次),结果为被开方数.②n 为奇数,n n a =a.先奇次乘方,再开方(同次),结果为被开方数.n 为偶数,n n a =|a|=a,⎩⎨⎧<-≥.0,,0,a a a a 先偶次乘方,再开方(同次),结果为被开方数的绝对值. 应用示例 思路1例1求下列各式的值: (1)33)8(-;(2)2)10(-;(3)44)3(π-;(4)2)(b a -(a>b).活动:求某些式子的值,首先考虑的应是什么,明确题目的要求是什么,都用到哪些知识,关键是啥,搞清这些之后,再针对每一个题目仔细分析.观察学生的解题情况,让学生展示结果,抓住学生在解题过程中出现的问题并对症下药.求下列各式的值实际上是求数的方根,可按方根的运算性质来解,首先要搞清楚运算顺序,目的是把被开方数的符号定准,然后看根指数是奇数还是偶数,如果是奇数,无需考虑符号,如果是偶数,开方的结果必须是非负数.解:(1)33)8(-=-8; (2)2)10(-=10; (3)44)3(π-=π-3; (4)2)(b a -=a-b(a>b).点评:不注意n 的奇偶性对式子n n a 的值的影响,是导致问题出现的一个重要原因,要在理解的基础上,记准,记熟,会用,活用.变式训练求出下列各式的值: (1)77)2(-; (2)33)33(-a (a≤1); (3)44)33(-a .解:(1)77)2(-=-2, (2)33)33(-a (a≤1)=3a-3, (3)44)33(-a =⎩⎨⎧<-≥-.1,33,1,33a a a a 点评:本题易错的是第(3)题,往往忽视a 与1大小的讨论,造成错解.思路2例1下列各式中正确的是( ) (1)44a =a;(2)62)2(-=32-;(3)a 0=1; (4)105)12(-=)12(-.活动:教师提示,这是一道选择题,本题考查n 次方根的运算性质,应首先考虑根据方根的意义和运算性质来解,既要考虑被开方数,又要考虑根指数,严格按求方根的步骤,体会方根运算的实质,学生先思考哪些地方容易出错,再回答.解:(1)44a =a,考查n 次方根的运算性质,当n 为偶数时,应先写n n a =|a|,故本题错. (2)62)2(-=32-,本质上与上题相同,是一个正数的偶次方根,根据运算顺序也应如此,结论为62)2(-=32,故本题错.(3)a 0=1是有条件的,即a≠0,故本题也错.(4)是一个正数的偶次方根,根据运算顺序也应如此,故本题正确.所以答案选(4).点评:本题由于考查n 次方根的运算性质与运算顺序,有时极易选错,选四个答案的情况都会有,因此解题时千万要细心. 例223++223-=_________活动:让同学们积极思考,交流讨论,本题乍一看内容与本节无关,但仔细一想,我们学习的内容是方根,这里是带有双重根号的式子,去掉一层根号,根据方根的运算求出结果是解题的关键,因此将根号下面的式子化成一个完全平方式就更为关键了,从何处入手?需利用和的平方公式与差的平方公式化为完全平方式.正确分析题意是关键,教师提示,引导学生解题的思路. 解:223+=2)2(221++=2)21(+=2+1. 223-=122)2(2+-=2)12(-=2-1. 所以223++223-=22.点评:不难看出223-与223+形式上有些特点,即是对称根式,是B A 2±形式的式子,我们总能找到办法把其化成一个完全平方式.思考上面的例2还有别的解法吗?活动:教师引导,去根号常常利用完全平方公式,有时平方差公式也可,同学们观察两个式子的特点,具有对称性,再考虑并交流讨论,一个是+,一个是-,去掉一层根号后,相加正好抵消.同时借助平方差,又可去掉根号,因此把两个式子的和看成一个整体,两边平方即可,探讨得另一种解法.另解:利用整体思想,x=223++223-,两边平方得x 2=3+22+3-22+2(223+)(223-)=6+222)22(3-=6+2=8,所以x=22.点评:对双重二次根式,特别是B A 2±形式的式子,我们总能找到办法将根号下面的式子化成一个完全平方式,问题迎刃而解,另外对B A B A 22-±+的式子,我们可以把它们看成一个整体利用完全平方公式和平方差公式去解.变式训练 若12a -a 2+=a-1,求a 的取值范围.解:因为12a -a 2+=a-1,而12a -a 2+=2)1(-a =|a-1|=a-1,即a-1≥0,所以a≥1.点评:利用方根的运算性质转化为去绝对值符号,是解题的关键.知能训练(教师用多媒体显示在屏幕上)1.以下说法正确的是( )A.正数的n 次方根是一个正数B.负数的n 次方根是一个负数C.0的任何次方根都是零D.a 的n 次方根用n a 表示(以上n >1且n ∈N *).答案:C2.化简下列各式: (1)664;(2)42)3(-;(3)48x ;(4)636y x ;(5)2y)-(x .答案:(1)2;(2)9;(3)x 2;(4)|x|y ;(5)|x-y|.3.计算407407-++=__________. 解:407407-++ =2222)2(252)5()2(252)5(+•-++•+ =22)25()25(-++ =5+2+5-2- =25.答案:25拓展提升 问题:n n a =a 与(n a )n =a (n >1,n ∈N )哪一个是恒等式,为什么?请举例说明.活动:组织学生结合前面的例题及其解答,进行分析讨论,解决这一问题要紧扣n 次方根的定义.通过归纳,得出问题结果,对a 是正数和零,n 为偶数时,n 为奇数时讨论一下.再对a 是负数,n 为偶数时,n 为奇数时讨论一下,就可得到相应的结论.解答:①(n a )n =a (n >1,n ∈N ).如果x n =a (n >1,且n ∈N )有意义,则无论n 是奇数或偶数,x=n a 一定是它的一个n 次方根,所以(n a )n =a 恒成立.例如:(43)4=3,33)5(-=-5. ②n na =⎩⎨⎧.|,|,,为偶数当为奇数当n a n a 当n 为奇数时,a ∈R ,n n a =a 恒成立. 例如:552=2,55)2(-=-2. 当n 为偶数时,a ∈R ,a n ≥0,n n a 表示正的n 次方根或0,所以如果a≥0,那么n n a =a.例如443=3, 40=0;如果a <0,那么n n a =|a|=-a,如2(-3)=23=3. 即(n a na )n =a (n >1,n ∈N )是恒等式,n n a =a (n >1,n ∈N )是有条件的.点评:实质上是对n 次方根的概念、性质以及运算性质的深刻理解.课堂小结学生仔细交流讨论后,在笔记上写出本节课的学习收获,教师用多媒体显示在屏幕上.1.如果x n =a,那么x 叫a 的n 次方根,其中n >1且n ∈N *.用式子n a 表示,式子n a 叫根式,其中a 叫被开方数,n 叫根指数.(1)当n 为偶数时,a 的n 次方根有两个,是互为相反数,正的n 次方根用n a 表示,如果是负数,负的n 次方根用-n a 表示,正的n 次方根与负的n 次方根合并写成±n a (a >0).(2)n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数,这时a 的n 次方根用符号n a 表示.(3)负数没有偶次方根.0的任何次方根都是零.2.掌握两个公式:n 为奇数时,(na )n =a,n 为偶数时,n n a =|a|=⎩⎨⎧<-≥.0,,0,a a a a 作业课本P 59习题2.1A 组 1.补充作业:1.化简下列各式: (1)681;(2)1532-;(3)48x ;(4)642b a .解:(1)681=643=323=39; (2)1532-=1552-=32-; (3)48x =442)(x =x 2; (4)642b a =622)|(|b a •=32||b a •.2.若5<a<8,则式子22)8()5(---a a 的值为__________.分析:因为5<a<8,所以22)8()5(---a a =a-5-8+a=2a-13.答案:2a-13. 3.625625-++=__________.分析:对双重二次根式,我们觉得难以下笔,我们考虑只有在开方的前提下才可能解出,由此提示我们想办法去掉一层根式, 不难看出625+=22)(3+=3+2. 同理625-=22)(3-=3-2.所以625++625-=23.答案:23设计感想学生已经学习了数的平方根和立方根,根式的内容是这些内容的推广,本节课由于方根和根式的概念和性质难以理解,在引入根式的概念时,要结合已学内容,列举具体实例,根式n a 的讲解要分n 是奇数和偶数两种情况来进行,每种情况又分a>0,a<0,a=0三种情况,并结合具体例子讲解,因此设计了大量的类比和练习题目,要灵活处理这些题目,帮助学生加以理解,所以需要用多媒体信息技术服务教学.第2课时 指数与指数幂的运算(2)导入新课思路1.碳14测年法.原来宇宙射线在大气层中能够产生放射性碳14,并与氧结合成二氧化碳后进入所有活组织,先为植物吸收,再为动物吸收,只要植物和动物生存着,它们就会不断地吸收碳14在机体内保持一定的水平.而当有机体死亡后,即会停止吸收碳14,其组织内的碳14便以约5 730年的半衰期开始衰变并消失.对于任何含碳物质只要测定剩下的放射性碳14的含量,便可推断其年代(半衰期:经过一定的时间,变为原来的一半).引出本节课题:指数与指数幂的运算之分数指数幂.思路 2.同学们,我们在初中学习了整数指数幂及其运算性质,那么整数指数幂是否可以推广呢?答案是肯定的.这就是本节的主讲内容,教师板书本节课题——指数与指数幂的运算之分数指数幂.推进新课新知探究提出问题(1)整数指数幂的运算性质是什么?(2)观察以下式子,并总结出规律:a >0, ①510a =352)(a =a 2=a 510; ②8a =24)(a =a 4=a 28; ③412a =443)(a =a 3=a 412; ④210a =225)(a =a 5=a 210. (3)利用(2)的规律,你能表示下列式子吗?435,357,57a ,n m x (x>0,m,n ∈N *,且n>1).(4)你能用方根的意义来解释(3)的式子吗?(5)你能推广到一般的情形吗?活动:学生回顾初中学习的整数指数幂及运算性质,仔细观察,特别是每题的开始和最后两步的指数之间的关系,教师引导学生体会方根的意义,用方根的意义加以解释,指点启发学生类比(2)的规律表示,借鉴(2)(3),我们把具体推广到一般,对写正确的同学及时表扬,其他学生鼓励提示.讨论结果:(1)整数指数幂的运算性质:a n =a·a·a·…·a,a 0=1(a≠0);00无意义;a -n =n a1(a≠0);a m ·a n =a m+n ;(a m )n =a mn ;(a n )m =a mn ;(ab)n =a n b n . (2)①a 2是a 10的5次方根;②a 4是a 8的2次方根;③a 3是a 12的4次方根;④a 5是a 10的2次方根.实质上①510a =a 510,②8a =a 28,③412a =a 412,④210a =a 210结果的a 的指数是2,4,3,5分别写成了510,28,412,510,形式上变了,本质没变. 根据4个式子的最后结果可以总结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式(分数指数幂形式).(3)利用(2)的规律,435=543,357=735,57a =a 57,n mx=x nm .(4)53的四次方根是543,75的三次方根是735,a 7的五次方根是a 57,x m的n 次方根是x nm . 结果表明方根的结果和分数指数幂是相通的. (5)如果a>0,那么a m 的n 次方根可表示为nam =a nm ,即a nm =n a m (a>0,m,n ∈N *,n>1).综上所述,我们得到正数的正分数指数幂的意义,教师板书: 规定:正数的正分数指数幂的意义是a mn =n a m (a>0,m,n ∈N *,n>1).提出问题①负整数指数幂的意义是怎样规定的? ②你能得出负分数指数幂的意义吗?③你认为应怎样规定零的分数指数幂的意义? ④综合上述,如何规定分数指数幂的意义?⑤分数指数幂的意义中,为什么规定a >0,去掉这个规定会产生什么样的后果?⑥既然指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质是否也适用于有理数指数幂呢?活动:学生回想初中学习的情形,结合自己的学习体会回答,根据零的整数指数幂的意义和负整数指数幂的意义来类比,把正分数指数幂的意义与负分数指数幂的意义融合起来,与整数指数幂的运算性质类比可得有理数指数幂的运算性质,教师在黑板上板书,学生合作交流,以具体的实例说明a >0的必要性,教师及时作出评价. 讨论结果:①负整数指数幂的意义是:a -n =n a1(a≠0),n ∈N *. ②既然负整数指数幂的意义是这样规定的,类比正数的正分数指数幂的意义可得正数的负分数指数幂的意义.规定:正数的负分数指数幂的意义是amn -=mn a1=nma 1(a>0,m,n ∈N *,n>1).③规定:零的分数指数幂的意义是:零的正分数次幂等于零,零的负分数指数幂没有意义. ④教师板书分数指数幂的意义.分数指数幂的意义就是:正数的正分数指数幂的意义是a mn =n m a (a>0,m,n ∈N *,n>1),正数的负分数指数幂的意义是amn -=mn a1=nma 1(a>0,m,n ∈N *,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义.⑤若没有a >0这个条件会怎样呢?如(-1)31=3-1=-1,(-1)62=6(-1)2=1具有同样意义的两个式子出现了截然不同的结果,这只说明分数指数幂在底数小于零时是无意义的.因此在把根式化成分数指数时,切记要使底数大于零,如无a >0的条件,比如式子3a 2=|a|32,同时负数开奇次方是有意义的,负数开奇次方时,应把负号移到根式的外边,然后再按规定化成分数指数幂,也就是说,负分数指数幂在有意义的情况下总表示正数,而不是负数,负数只是出现在指数上.⑥规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数. 有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算性质: (1)a r ·a s =a r+s (a>0,r,s ∈Q ), (2)(a r )s =a rs (a>0,r,s ∈Q ), (3)(a·b)r =a r b r (a>0,b>0,r ∈Q ).我们利用分数指数幂的意义和有理数指数幂的运算性质可以解决一些问题,来看下面的例题. 应用示例思路1 例1求值:①832;②2521-③(21)-5;④(8116)43-.活动:教师引导学生考虑解题的方法,利用幂的运算性质计算出数值或化成最简根式,根据题目要求,把底数写成幂的形式,8写成23,25写成52,21写成2-1,8116写成(32)4,利用有理数幂的运算性质可以解答,完成后,把自己的答案用投影仪展示出来. 解:①832=(23)32=2323⨯=22=4; ②2521-=(52)21-=5)21(2-⨯=5-1=51; ③(21)-5=(2-1)-5=2-1×(-5)=32; ④(8116)43-=(32))43(4-⨯=(32)-3=827.点评:本例主要考查幂值运算,要按规定来解.在进行幂值运算时,要首先考虑转化为指数运算,而不是首先转化为熟悉的根式运算,如832=328=364=4. 例2用分数指数幂的形式表示下列各式.a 3·a ;a 2·32a ;3a a (a>0).活动:学生观察、思考,根据解题的顺序,把根式化为分数指数幂,再由幂的运算性质来运算,根式化为分数指数幂时,要由里往外依次进行,把握好运算性质和顺序,学生讨论交流自己的解题步骤,教师评价学生的解题情况,鼓励学生注意总结. 解:a 3·a =a 3·a 21=a213+=a 27;a 2·32a =a 2·a 32=a 232+=a 38;3a a =(a·a 31)21=(a 34)21=a 32. 点评:利用分数指数幂的意义和有理数指数幂的运算性质进行根式运算时,其顺序是先把根式化为分数指数幂,再由幂的运算性质来运算.对于计算的结果,不强求统一用什么形式来表示,没有特别要求,就用分数指数幂的形式来表示,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.。

相关文档
最新文档