人教版高中数学必修一2.1.1《指数与指数幂的运算》ppt课件

合集下载

人教A版数学必修一2.1.1《指数与指数幂的运算》课件.pptx

人教A版数学必修一2.1.1《指数与指数幂的运算》课件.pptx

数a的n次方实数方根是一个负数,这时,a的n次方根
只有一个,记为 x n a
(2) 2 4
2 4
(3) 2 9
3 9
( 4 ) 2 64
4 64
x6 12
x 6 12
结论:当n为偶数时,正数a的n次方根有两个,它们互
为相反数。正数a的正n次实数方根用符号表n示a;
a 负的n次实数方根用符号表示n,它们可以合并
2、正数的正分数指数幂的意义是:
m
a n n am
3.正数的负分数指数幂的意义是:
m
a n
1
m
a 0, m, n N *, 且n 1
an
4.0的正分数指数幂等于0,0的负分数指数幂没有意义。
5.整数指数幂的运算性质对有理指数幂仍然适用。
(1)aras=ar+s(a>0,r,s∈Q); (2)(ar)s=ars(a>0,r,s∈Q); (3)(ab)r=arbr(a>0,b>0,r∈Q).
m
18 2
不一定等于
(m
1 2
)8
,因
1
为当 m<0 时,m2 没有意义.
(2)在(ar)s=ars(a>0,r,s∈Q)中,r,s还可以进一步推广 到无理数、实数.
课后练习 课后习题
小结 此类问题的解答首先应去根号,这就要求将被开方 部分化为完全平方的形式,结合根式性质求解.
分数指数幂
1、根式有意义,就能写成分数指数幂的形式,如:
10
12
5 a10 a2 a 5 a 0 ; 3 a12 a4 a 3 a 0
2
1
5
3 a2 a 3 a 0; b b 2 b 0; 4 c5 c4 c 0;

人教A版数学必修一2.1.1指数与指数幂的运算(二).pptx

人教A版数学必修一2.1.1指数与指数幂的运算(二).pptx

m
(1) a n
1
m
(a>0,m,n∈N*,且n>1).
an
(2)0的正分数指数幂等于0;
(3)0的负分数指数幂无意义.
3.有理数指数幂的运算性质:
am an amn (m, n Q), (am )n amn (m, n Q), (ab)n an bn (n Q).
无理数指数幂
复习引入
2.根式的运算性质:
复习引入
2.根式的运算性质: ①当n为奇数时,
复习引入
2.根式的运算性质:
①当n为奇数时, n an a;
复习引入
2.根式的运算性质:
①当n为奇数时, n an a;
当n为偶数时,
复习引入
2.根式的运算性质:
①当n为奇数时, n an a;
当n为偶数时, n
2.对正数的负分数指数幂和0的分数指数 幂的规定:
m
(1) a n
1
m
(a>0,m,n∈N*,且n>1).
an
2.对正数的负分数指数幂和0的分数指数 幂的规定:
m
(1) a n
1
m
(a>0,m,n∈N*,且n>1).
an
(2)0的正分数指数幂等于0;
2.对正数的负分数指数幂和0的分数指数 幂的规定:
an
| a |
a(a 0) a(a 0).
复习引入
2.根式的运算性质:
①当n为奇数时, n an a;
当n为偶数时, n
an
| a |
a(a 0) a(a 0).
②当n为任意正整数时,
复习引入
2.根式的运算性质:
①当n为奇数时, n an a;

高中数学 2.1.11《指数与指数幂的运算》课件 新人教A版必修1

高中数学 2.1.11《指数与指数幂的运算》课件 新人教A版必修1
0的奇次方根是_____,偶次方根是______ 。
第七页,共13页。
当n为奇数(jī shù)时,a的n次方n 根a
是当n为偶数时。,正数a的n次方根(fānggēnna)


负0的数任没何有(偶rè次nh方é)根次(方fā根ng都gē是n)。n,0即 0

试试:b4 a, 则a的4次方根为____; b3 a, 则a的3次方根为____;
y (1 7.3%)x 1.073x (x N*, x 20)
y (1 7.3%)10 1.07310
第三页,共13页。
实例 3:我们(wǒ men)知道考古学家是通过生 物化石的研究判断生物的发展和进化的,他 们究竟是怎样判断生物所处的年代呢?
当生物死亡后,体内碳14每过5730年大约
-125的3次方根是____;
10000的4次方根是____。
第八页,共13页。
思考(sīkǎo)1:
知识(zhī shi)探 究(分三别)等于什么?
一般地,
等于什么? ( n a )n a
思考2:
分别等于什么?
一般地,n an 等于什么?
当n是奇数时, n an a
{ 当n是偶数时, n an | a |
第 sh知ù)识(zhī shi)探 模实型例应(sh用ílì背) 1景:某市人口平均究年增(长一率)为
1.25℅,1990 年人口数为a 万,则 x年后人
口数为多少y 万a?(11.25%)x 1.0125x a(x N )
实例2:国务院发展研究中心在2000 年分 析,我国未来20年GDP(国内生产总值) 年平均增长率达7.3℅, 则x年后GDP 为 2000年的多少倍?10年后呢?

人教A版高中数学必修一课件:2.1.1 指数与指数幂的运算

人教A版高中数学必修一课件:2.1.1 指数与指数幂的运算
有理指数幂的运算性质,对于无理数指数幂都适用
(四).实数指数幂的运算性质
a ar s a (a rs 0, r, s R)
(ar )s ars (a 0, r, s R)
(ab)r a br r (a 0,b 0, r R)
练习: (1).用根式的形式表示下列各式(a>0):
m3n3 m2 n3
(3) a 2 (a 0); a3 a2
(4)(3 25 125) 4 5
2
3
1

a2
1
3
2 1 2
a 2 3
a2 a2
(53 52 ) 54
2
1
3
1
53 54 52 54
5
a6 6 a5
21
31
5
5
53 4 52 4 512 54
a a
(a 0) (a 0)
(Ⅱ)讲授新课 1.引入:
(±2)2=4
2,-2 叫4的平方根(即2次方根),
其中:2叫做4的算术平方根(正的2次方根) -2叫做4的负的平方根(负的2次方根)
23=8
2叫8的立方根(即3次方根)
(-2)3=-8
-2叫-8的立方根(即3次方根)
25=32
五.练习:
课本P59习题2.1A组1,2题
练习
(1)3 64 __-_4___ 5 32 ____2___; (2)4 81 ___3___ 4 81 ___-_3__;;
(3) (4 3)4 3______(5 6)5 ___6___;
(4) 5 a10 _a_2___ 3 a12 _____a4__;

人教A高中数学必修一2.1.1指数与指数幂的运算

人教A高中数学必修一2.1.1指数与指数幂的运算

练一练
3 3 27
2 3 8
2 5 32
22 4
3 2 9 2 416
视察思考:你能得到什么结论?
得出结论
3 3 27 2 3 8
2 5 32
x5 11
3 3 27 2 3 8 2 5 32
x 5 11
结论:当 n为奇数时,记为 x n a
得出结论
22 4 3 2 9 2 4 16
2.根式的概念:式子n a 叫做根式,其中 n 叫做根指
数,a 叫做被开方数.
3.根式的性质:(1)当 n a有意义时,(n a)n a
(2)当 n 是奇数时, n an a
n 当
是偶数时,n an
a
a(a 0) a(a 0)
选做题: 化简计算:
a
(3) 5 a b5 ;
(4) 6 (a b)6
课堂练习二:化简下列各式 :
(1) 5 32
(2) (3)4 (3) ( 2 3)2 (4)
52 6 化简计算: 3 2 2 3 2 2
课时小结
本节课同学们有哪些收获呢?
1. n次方根的概念: 一般地,如果xn a ,那么 x 叫 a的 n次方根,其中 n 1 且 n N*.
第二章 基本初等函数(Ⅰ)
2.1 指数函数 2.1.1 指数与指数幂的运算
第1课时 根式
学习目标
1.理解n次方根及根式的概念,掌握根式性质. 2.能利用根式的性质对根式进行化简.
平方根
如果 x2 a,那么 x 叫做 a的平方根,
正数的平方根有两个,它们互为相反数.
记作 a
如:4的平方根是±2,即 2 4
n 次方根存在吗?有几个?怎么表示? 若 a是负数呢?

人教A版数学必修一2.1.1指数与指数幂的运算1.ppt

人教A版数学必修一2.1.1指数与指数幂的运算1.ppt
na
na
na
2.对 n an 与( n a )n两式的理解
(1)( )n:当n为大于1的奇数时,( )n对任意a∈R都有意义,
na
na
且( )n=a,当n为大于1的偶数时,( )n只有当a≥0时才有意
义,n且a ( )n=a(a≥0).
na
(2) :n a对任意a∈R都有意义,且当n为大于1的奇数时,
13 23 .2 92 .3(5 2)5.4 x2 2xy y2 .
【解析】(1)
3 23 2.
2 92 9 9.
3(5 2)5 2.
4
x2 2xy y2
x
y2
x
y
x y,x y 0, x y,x y<0.
2.化简求值:
(1)
3.14 2+ 3.14 2 .
(2)
【解4析】m (1n)4+3 m n3 .
【解析】选C.A,Bn ,aD选项中,没有指明n的奇偶性,D中a的正负也没有
说明,故不正确.
3.81的4次方根是
.
【解析】81的4次方根是±3.
答案:±3
4.根式
的根指数是
,被开方数是
.
m 1
【解析】根据根式的概念可知,2是根指数,m+1是被开方数.
答案:2 m+1
【知识探究】 知识点 根式与根式的性质 观察如图所示内容,回答下列问题:
空白演示
在此输入您的封面副标题
第二章 基本初等函数(Ⅰ) 2.1 指数函数
2.1.1 指数与指数幂的运算
第1课时 根 式
【知识提炼】 1.n次方根
定义 一般地,如果xn=a,那么_x_叫做a的_n_次__方__根__,其中n>1,且n∈N*

2.1.1指数与指数幂的运算(必修一 数学 优秀课件)

2.1.1指数与指数幂的运算(必修一 数学 优秀课件)

a
性质:
(1)当n是奇数时,正数的n次方根是一个正数, 负数的n次方根是一个负数. (2)当n是偶数时,正数的n次方根有两个,它们 互为相反数. (3)负数没有偶次方根, 0的任何次方根都是0. 记作 n 0 = 0.
(4)
(
n
a)
5
n
a
4
2 32 _______ 81 _______ 3

(
>0, 是
无理数)是一个确定的实数. 有理数指数幂的
运算性质同样适用于无理数指数幂.
思考:请说明无理数指数幂
2
3
的含义。
1、已知 x
3
3 6 1 a ,求 a 2ax x 的值。
2
2、计算下列各式
(1)
a b a b
2
1 2
1 2
1 2
1 2

a b a b
rs
r
(a b) a b (a 0, b 0, r Q)
r
例2、求值
8
2 3
;
25

1 2
;
1 2
5
16 ; 81

3 4
例3、用分数指数幂的形式表示下列各式(其中a>0):
(1) a
3
a ( 2) a
2
3
a
2
(3) a a
3
3 x y 2
)
7、若10x=2,10y=3,则10
2 6 3

B 8、a , b ,下列各式总能成立的是( R
A .( a
6 6 6

2 2 8 2 2 8 b) a b B. ( a b ) a b

2.1.1指数与指数幂的运算(一)课件

2.1.1指数与指数幂的运算(一)课件
n n n n
9 ( 3 8)3 ____. -8 ( 9) ____, n n ( a) a
2
(1)
5
25 2,
3
( 2 3 2. )
(2) 32 3,
(3)2 3,
(3)2 3.
(3) 4 24 2, 4 (2)4 2, 4 2 4 2. ( )
x 2 x 2 ( x 2) x 2. x 2 0, 则有 x 2 0, 或 | x 2 | x 2. x 2, x 2, 或 即 x 2, 或x ≥ 2. x 2 ≥ 0. 所以x的取值范围是 x 2, 或x ≥ 2.
§2.1.1指数与指数幂的运算
回顾初中知识,什么是平方根?立方根?
①如果一个数的平方等于a,则这个数叫做 a
的平方根. 例:22=4 2,-2叫4的平方根. 2=4 (-2) ②如果一个数的立方等于a,则这个数叫做a 的立方根. 2叫8的立方根. 例:23=8 (-2)3=-8 -2叫-8的立方根.
§2.1.1指数与指数幂的运算
3.三个公式 (1) an Nhomakorabean
a;
(2) n a n a;
(3) a | a | .
n n
4.若xn=a , x怎样用a表示?
n a, n为奇数, n a , n为偶数, a 0, x a 0, 0, 不存在, n为偶数, a 0.
2
(4) 5 2 6 ( 2 3 3 2. )
2
§2.1.1指数与指数幂的运算
例2.填空: (1)在 6 ( 2)2 n , 5 a 4 , 3 a 4 , 4 ( 3)2 n1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5 2 的不足近似值
9.518 269 694 9.672 669 973
5 22
9.735 171 039 9.738 305 174 9.738 461 907 9.738 508 928 9.738 516 765 9.738 517 705 9.738 517 736
的不足近似值 2 1.4 1.41
2
n>1),那么 83 表示一个什么数? 12 32 , 45 分别表示什么根式?
思考5:你认为如何规定
n
am
(a>0,m,n∈N,
且n>1)的含义?
思考6:怎样理解零的分数指数幂的意义?
2
3
3
思考7: (2)3 , (2)2 , (2)5 都有意义吗?
n
当 a 0 时,am (m, n N *, n 1) 何时无意义?
2.1.1 指数与指数幂的运算
问题提出
1.什么叫a的n次方根?
2.设 n N, n 1,则 an , a0 (a 0), an (a 0)
的含义分别如何?
3.整数指数幂有哪些运算性质?
设 m, n Z ,则 am an amn ;
(am )n amn ;(ab)n an bn .
2
25
1 2
;(3)
(1 )5 ;(4)
2
(16
)
3 4
81
.
例2 化简下列各式的值
21
11
15
(1) (2a 3 b2 )(6a 2 b3 ) (3a 6 b6 )(a, b 0)
(2)(m
1 4
n
3 8
)8
(m,
n
0)
(3) 3 25 125 4 25
(4) a2 (a 0)
a 3 a2
小结作业:
1.指数幂的运算性质适应于实数指数幂. 2.对根式的运算,应先化为分数指数幂,再 根据运算性质进行计算,计算结果一般用分 数指数幂表示.
练习:2,3. 习题2.1A组:2.
知识探究(二):有理数指数幂的运算性质
34
思考1: 22 23 =?一般地 ar as (a 0, r, s Q) 等于什么?
34
思考2: (2 2 ) 3=?一般地 (ar )s (a 0, r, s Q) 等于什么?
22
思考3:23 33 =?一般地 ar as (a 0, r, s Q) 等于什么?
1.414 1.414 2 1.414 21 1.414 213 1.414 213 5 1.414 213 56 1.414 213 562
思考2:观察上面两个图表,5 2是一个确定的
数吗?
思考3:有理指数幂的运算性质适应于无式的值
2
(1) 27 3
;(2)
思考4:一般地 ar as (a 0, r, s Q) 等于什么?
知识探究(三):无理数指数幂的意义
思考1:我们知道 2 =1.414 21356…,
那么5
2
5 22
的大小如何确定?
2
的过剩近似值
的过剩近似值 5 2
1.5
11.180 339 89
1.42
9.829 635 328
1.415
4. 53 ,5 2 有意义吗?
知识探究(一):分数指数幂的意义
思考1:设a>0,5 a10 , a8 ,4 a12 分别等于什么?
思考2:观察上述结论,你能总结出什么规律?
思考3:按照上述规律,根式 4 53 ,3 75 , 5 a7
分别可写成什么形式?
n
思考4:我们规定:n am a m (a>0,m,n∈N且
9.750 851 808
1.414 3
9.739 872 62
1.414 22
9.738 618 643
1.414 214
9.738 524 602
1.414 213 6
9.738 518 332
1.414 213 57
9.738 517 862
1.414 213 563 9.738 517 752
相关文档
最新文档