2012年河南省中考模拟数学试题
2012年历年河南省初三数学中考试题及答案

2012年河南省初中学业水平暨高级中等学校招生试卷数学注意事项:1、 本卷共8页,三个大题,满分120分,考试时间100分钟,请用蓝色、黑色水笔或者圆珠笔直接打在试卷上。
2、 答卷前请将密封线内项目填写清楚。
题号 一 二 三总分 1~8 9~15 16 17 18 19 20 21 22 23 分数参考公式:二次函数2(0)y ax bx c a =++≠图象的顶点坐标为24--,24b ac b a a()一、选择题(每小题分,共24分)1、下列各数中,最小的是(A )-2 (B)-0.1 (C)0 (D)|-1|2、如下是一种电子记分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是3、一种花瓣的花粉颗粒直径约为0.0000065米,0.0000065用科学记数法表示为(A )56.510-⨯ (B )66.510-⨯ (C )76.510-⨯ (D )66510-⨯4、某校九年级8位同学一分钟跳绳的次数排序后如下:150,164,168,168,172,176,183,185,则有这组数据中得到的结论错误的是A .中位数为170B 众数为168.C .极差为35D .平均数为1705、在平面直角坐标系中,将抛物线24y x =-先向右平移2个单位,再向上平移2个单位,得到的抛物线解析式为A .2(2)2y x =++B .2(2)2y x =-- C .2(2)2y x =-+D .2(2)2y x =+-6、如图所示的几何体的左视图是7、如图函数2y x =和4y ax =+的图象相交于A(m,3),则不等式24x ax <+的解集为A .32x <B .3x <C .32x > D .3x > 8、如图,已知AB 为O e 的直径,AD 切O e 于点A, »»ECCB =则下列结论不一定正确的是 A .BA DA ⊥ B .OC AE ∥ C .2COE CAE ∠=∠ D .OD AC ⊥二、填空题(本题共10小题,每题5分,共50分)9、计算:02(2)(3)-+-=10、如图,在△ABC ,90C ∠=o ,°50CAB ∠=,按以下步骤作图:①以点A 为圆心,小于AC 的长为半径,画弧,分别交A B ,AC 于点E 、F ;②分别以点E,F 为圆心,大于12EF 的长为半径画弧,两弧相交于点G ;③作射线AG ,交BC 边与点D ,则ADC ∠的度数为 11、母线长为3,底面圆的直径为2的圆锥的侧面积为12、一个不透明的袋子中装有3个小球,它们除分别标有的数字1,3,5不同外,其他完全相同。
河南省2012年中考模拟试题数学试卷

ABO· 河南省2012年中考模拟试题(数学试卷)[绝密:河南省实验中学内部资料] 一:选择题(3x6=18分)1下列各式:①a 0=1;②a 2•a 3=a 5;③2﹣2=﹣;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x 2+x 2=2x 2,其中正确的是( ) A 、①②③ B 、①③⑤C 、②③④D 、②④⑤2下列图形中既是轴对称图形又是中心对称图形的是( )A 、B 、C 、D 、3如图所示,某宾馆大厅要铺圆环形的地毯,工人师傅只测量了与 小圆相切的大圆的弦AB 的长,就计算出了圆环的面积,若测量 得AB 的长为20米,则圆环的而积为( )A .10平方米B .10π平方米C .100平方米D .100π平方米4某工厂为了选拔1名车工参加直径为5㎜精密零件的加工技术比赛,随机抽取甲、乙两名车工加工的5个零件,现测得的结果如下表,平均数依次为、,方差依次为s 甲2、s 乙2,则下列关系中完全正确的是( )A 、<,s 甲2<s 乙2B 、=,s 甲2<s 乙2C 、=,s 甲2>s 乙2D 、>,s 甲2>s 乙25下图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是( )A、B、C、D、6已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①b2﹣4ac>0 ②a >0 ③b>0 ④c>0 ⑤9a+3b+c<0,则其中结论正确的个数是()A、2个B、3个C、4个D、5个二填空题(3x9=27分)1= .2,2010年10月31日,上海世博会闭幕.累计参观者突破7308万人次,创造了世博会历史上新的纪录.用科学记数法表示为人次.(结果保留两个有效数字)3函数中,自变量x取值范围是.4如图,点B、F、C、E在同一条直线上,点A、D在直线BE的两侧,AB∥DE,BF=CE,请添加一个适当的条件:,使得AC=DF.5因式分解:﹣3x2+6xy﹣3y2= .6中国象棋红方棋子按兵种不同分布如下:1个帅,5个兵,“士、象、马、车、炮”各两个,将所有棋子反面朝上放在棋盘中,任取一个不是士、象、帅的概率 . 7如图,A 、B 、C 、D 是⊙O 上的四个点,AB=AC ,AD 交BC 于点E ,AE=3,ED=4,则AB 的长为8某班级为筹备运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下, 有 种购买方案.9如图,△ABC 是边长为1的等边三角形.取BC 边中点E ,作ED ∥AB ,EF ∥AC ,得到四边形EDAF ,它的面积记作S 1;取BE 中点E 1,作E 1D 1∥FB ,E 1F 1∥EF ,得到四边形E 1D 1FF 1,它的面积记作S 2.照此规律作下去,则S 2011= .三:解答题(计75分)16( 8分)先化简,再求值: 4)242(22-÷+-x x x ,其中x 所取的值是在-2<x ≤3 内的一个整数.17.(8分)如图,已知CA =CD ,∠1=∠2. (1)请你添加一个条件,使得△ABC ≌△DEC . 你添加的条件是 ; (2)添加条件后证明:△ABC ≌△DEC .ABCE D12ADE18(本题满分 9分)目前,中学生厌学现象已引起全社会的广泛关注。
2012年河南省初中学业水平考试数学模拟试卷

.
2.据国家统计局统计,2006 年第一季度国内生产总值约为 43 300 亿元,用科学记数法表示 43 300 亿元是 亿元.
3.如图,AB∥CD,∠B=68 ,∠E=20 ,则∠D 的度数为 . (第 3 题) 4.某班 a 名同学参加植树活动,其中男生 b 名(b<a).若只由男生完成,每人需植树 15 棵; 若只由女生完成,则每人需植树 棵. 5.一组数据 5, -2, x, -2, 3, 3, 若每个数据都是这组数据的众数, 则这组数据的平均数是 . 6. 已知等腰三角形的腰长是 6cm,底边长是 8cm,那么以各边中点为顶点的三角形的周长 是 . 7. 请写出一个开口向上, y 轴交点纵坐标为-1, 与 且经过点(1, 3)的抛物线的解析式 . 8. 某学校把学生的纸笔测试、 实践能力两项成绩分别按 60%、 40%的比例计入学期总成绩. 小 明实践能力这一项成绩是 81 分,若想学期总成绩不低于 90 分,则纸笔 i 贝 9 试的成绩至少 是 分. 9.右图是一单位拟建的大门示意图,上部是一段直径为 10 米的圆弧形,下部是矩形 ABCD, 其中 AB=3.7 米,BC=6 米,则 AD 的中点到 BC 的距离是 .00(第 9 题)
PS:双击获取文档,ctrl+A,ctrl+C,然后粘贴到word即可。 未能直接提供word版本,抱歉。
2012 年河南省初中学业水平考试数学模拟试卷
考生注意: 1.考试时间 120 分钟. 2.全卷共三道大题,总分 120 分.
本考场试卷序号 (由监考填写)
题号
一
二
21 22 23 24
三
25 26 27 28
总分
核分人
得分
得分
评卷人
2012河南中考数学试题及答案

2012河南中考数学试题及答案考生须知:1. 本试卷共8页,满分120分,考试时间为120分钟。
2. 考生必须在答题卡上作答,直接在试卷上作答无效。
3. 考试结束后,将本试卷和答题卡一并交回。
一、选择题(本题共10小题,每小题3分,共30分)请在每小题的四个选项中,选择一个最符合题意的答案,并在答题卡上相应的位置涂黑。
1. 下列哪个数是整数?A. 3.14B. 2.01C. -1D. 02. 如果a和b是相反数,那么a+b的值是:A. 0B. 1C. -1D. 23. 下列哪个是完全平方数?A. 23B. 24C. 25D. 264. 一个数的平方根是它本身,这个数是:A. 1B. -1C. 0D. 1或-15. 一个三角形的内角和等于:A. 90°B. 180°C. 360°D. 270°6. 圆的周长公式是:A. C = πrB. C = 2πrC. C = πdD. C = 2πd7. 一个直角三角形的斜边长为5,一条直角边长为3,另一条直角边长为:A. 4B. 2C. √7D. √58. 一个数的绝对值是它本身,这个数是:A. 正数B. 负数C. 零D. 非负数9. 一个数的倒数是它本身,这个数是:A. 1B. -1C. 0D. 1或-110. 下列哪个是二次根式?A. √2B. √(-1)C. √(2x)D. √(3+x)二、填空题(本题共5小题,每小题3分,共15分)请在答题卡上相应的位置填写答案。
11. 一个数的立方根是它本身,这个数是_。
12. 如果x+y=5,x-y=3,那么x²-y²的值是_。
13. 一个正数的平方等于9,这个正数是_。
14. 一个数的相反数是-5,这个数是_。
15. 一个数的绝对值是5,这个数是_。
三、解答题(本题共5小题,共75分)请在答题卡上相应的位置作答。
16.(10分)解方程:2x - 3 = 5x + 1。
2012河南中考数学试题及答案

2012河南中考数学试题及答案2012年河南省中考数学试题一、选择题(每题3分,共36分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 已知一个长方体的长、宽、高分别为8cm、6cm和5cm,其体积是多少立方厘米?A. 240B. 180C. 120D. 1003. 一个数的60%加上它的25%等于它的多少?A. 85%B. 75%C. 65%D. 55%4. 以下哪个表达式等于2x + 3y?A. 3x - 2yB. 2x - 3yC. 3x + 2yD. 4x - 3y5. 如果一个角的补角是它的3倍,那么这个角的度数是多少?A. 30°B. 45°C. 60°D. 90°6. 一个数除以3的商加上2等于这个数本身,这个数是多少?A. 3B. 6C. 9D. 127. 下列哪个选项不是偶数?A. 2B. 4C. 6D. 78. 一个数的1/4与它的1/2的和是1,这个数是多少?A. 4B. 2C. 1D. 89. 一个正方形的面积是64平方厘米,它的周长是多少厘米?A. 32B. 48C. 64D. 1610. 一个等腰三角形的两个底角相等,顶角是80°,那么底角的度数是多少?A. 50°B. 60°C. 70°D. 80°11. 一个数的1/3加上它的1/2等于7/6,这个数是多少?A. 2B. 3C. 4D. 612. 一个圆的直径是14cm,那么它的半径是多少厘米?A. 7B. 14C. 28D. 21二、填空题(每题4分,共40分)13. 一个数的1.5倍是45,这个数是_________。
14. 一个长方形的长是20cm,宽是10cm,它的周长是_________。
15. 一个数的3/4加上它的1/2等于2,这个数是_________。
16. 一个数的2倍减去它的1/3等于11,这个数是_________。
2012年河南省中考数学试卷-答案

【解析】 Rt△ABC 中,由勾股定理求 AB AC2 BC2 10 ,
由旋转的性质,设 AD AD BE x ,则 DE 10 2x ,
∵△ABC 绕 AB 边上的点 D 顺时针旋转 90 得到△ABC ,
∴A A , ADE C 90 ,
河南省 2012 年初中学业水平暨高级中等学校招生考试试卷
数学答案解析
一、选择题 1.【答案】A 【解析】∵正实数都大于 0,∴ | 1| 0 ,又∵正实数大于一切负实数,∴ | 1| 2 ,∴ | 1| 0.1 ∴ | 1| 最大,故 D 不对; 又∵负实数都小于 0,∴ 0 2 , 0 0.1,故 C 不对; ∵两个负实数绝对值大的反而小,∴ 2 0.1,故 B 不对; 【提示】根据正实数都大于 0,负实数都小于 0,正实数大于一切负实数,两个负实数绝对值大的反而小, 进行比较. 【考点】有理数大小比较 2.【答案】C 【解析】根据中心对称和轴对称的定义可得: A.既不是轴对称图形也不是中心对称图形,故 A 选项错误; B.既不是轴对称图形也不是中心对称图形,故 B 选项错误; C.是中心对称图形也是轴对称图形,故 C 选项正确; D.是中心对称图形而不是轴对称图形,故 D 选项错误. 故选:C. 【提示】根据中心对称图形的概念:把一个图形绕某一点旋转180 ,如果旋转后的图形能够与原来的图形 重合,那么这个图形就叫做中心对称图形,由此结合各图形的特点求解. 【考点】中心对称图形,轴对称图形 3.【答案】B 【解析】 0.0000065 6.5106 【提示】绝对值小于 1 的正数也可以利用科学记数法表示,一般形式为 a 10n ,与较大数的科学记数法不 同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的 0 的个数所决定. 【考点】科学记数法—表示较小的数 4.【答案】D 【解析】把数据按从小到大的顺序排列后 150,164,168,168,172,176,183,185,故这组数据的中位 数是 (168 172) 2 170 ,168 出现的次数最多,所以众数是 168,极差为:185 150 35 ; 平均数为: (150 164 168 168 172 176 183 185) 7 170.8 ,故选 D
2012年河南省中招数学模拟试卷 (含答案)

-5-4-3-2-10123456789汉城纽约多伦多伦敦北京2012年河南省中招数学模拟试卷一、选择题(每题3分,共15分)1. 北京等5个城市的国际标准时间(单位:小时)可在数轴上表示如下:如果将两地国际标准时间的差简称为时差,那么( )(A)汉城与纽约的时差为13小时(B)汉城与多伦多的时差为13小时(C)北京与纽约的时差为14小时(D)北京与多伦多的时差为14小时2.在一个不透明的口袋中装有若干个只有颜色不同的球,如果口袋中装有4个红球,且摸出红球的概率为13,那么袋中共有球的个数为()(A)12 个(B)9 个(C)7 个(D)6个3. 下列体育运动标志中,从图案看不是轴对称图形的有()个.A.4 B.3 C.2 D.14.如图是由5个大小相同的正方体摆成的立方体图形,它的左视图...是( )(A) (B) (C) (D)5. 小慧今天到学校参加初中毕业会考,从家里出发走10分钟到离家500米的地方吃早餐,吃早餐用了20分钟;再用10分钟赶到离家1000米的学校参加考试.下列图象中,能反映这一过程的是( )二、填空题(每题3分,共30分)6. 记者从市科技局获悉,2007年哈尔滨市将继续加大科技投入力度,科技经费投入总量达到1.395亿元,比上年增加近22%,为近年来增加比例最高的一次。
1.395亿元用科学计数法表示为 元。
(保留三位有效数字)7. 函数x x y --+=321中自变量x 的取值范围是 。
8. 分解因式22363y xy x ++= 。
9. 上午九时,一条船从A 处出发,以每小时40海里的速度向正东方向航行,9时30分到达B 处,从A 、B 两处分别测得小岛M 在北偏东45°和北偏东15°方向,则B 处船与小岛M 的距离是 海里.10. 某种出租车的收费标准是:起步价7元(即行驶距离不超过3km 都需付7元车费),超过3km 以后,每增加1㎞,加收2.4元(不足1km 按1km 计),某人乘这种车从甲地到乙地共支付车费19元,那么,他行程的最大值是 。
2012年河南省中考数学试卷(含解析)

2012年河南省中考数学试卷一、选择题下列各数中,最小的数是()✌. . . . 如下是一种电子计分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是()✌. . . .一种花瓣的花粉颗粒直径约为 米, 用科学记数法表示为()✌. . . . 某校九年级 位同学一分钟跳绳的次数排序后如下: , , , , , , , .则由这组数据得到的结论中错误的是()✌.中位数为 .众位数为.极差为 .平均数为 在平面直角坐标系中,将抛物线⍓⌧ 先向右平移两个单位,再向上平移两个单位,得到的抛物线的解析式是()✌.⍓(⌧) .⍓(⌧) .⍓(⌧) .⍓(⌧) 如图所示的几何体的左视图是()✌. . . .如图,函数⍓⌧和⍓♋⌧ 的图象相交于点✌(❍, ),则不等式 ⌧<♋⌧ 的解集为()✌.⌧< .⌧< .⌧> .⌧>如图,已知✌是 的直径,✌切 于点✌, .则下列结论中不一定正确的是()✌. ✌✌. ✌☜. ☜ ✌☜. ✌二、填空题计算: ( ) ♉♉♉♉♉♉♉♉♉♉ .如图,在 ✌中, , ✌.按以下步骤作图:♊以点✌为圆心,小于✌的长为半径画弧,分别交✌、✌于点☜、☞;♋分别以点☜、☞为圆心,大于☜☞的长为半径画弧,两弧相交于点☝;♌作射线✌☝交 边于点 .则 ✌的度数为 ♉♉♉♉♉♉♉♉♉♉ .三、解答题 母线长为 ,底面圆的直径为 的圆锥的侧面积为 ♉♉♉♉♉♉♉♉♉♉ .四、填空题一个不透明的袋子中装有三个小球,它们除分别标有的数字 , , 不同外,其它完全相同.任意从袋子中摸出一球后放回,再任意摸出一球,则两次摸出的球所标数字之和为 的概率是 ♉♉♉♉♉♉♉♉♉♉ . 如图,点✌、 在反比例函数⍓( > ,⌧> )的图象上,过点✌、 作⌧轴的垂线,垂足分别为 、☠,延长线段✌交⌧轴于点 ,若 ☠☠,✌的面积为 ,则 的值为 ♉♉♉♉♉♉♉♉♉♉ . 如图,在 ♦✌中, ,✌, .把 ✌绕✌边上的点 顺时针旋转 得到 ✌,✌交✌于点☜.若✌☜,则✌☜的面积是♉♉♉♉♉♉♉♉♉♉.如图,在 ♦✌中, ✌ , , .点 是 边上的一动点(不与点 、 重合),过点 作 ☜交✌于点☜,将 沿直线 ☜翻折,点 落在射线 上的点☞处.当 ✌☜☞为直角三角形时, 的长为♉♉♉♉♉♉♉♉♉♉.五、解答题先化简,然后从 <⌧<的范围内选取一个合适的整数作为⌧的值代入求值. 月 日是世界无烟日.某市卫生机构为了了解❽导致吸烟人口比例高的最主要原因❾,随机抽样调查了该市部分 岁的市民.如图是根据调查结果绘制的统计图,根据图中信息解答下列问题:( )这次接受随机抽样调查的市民总人数为 ♉♉♉♉♉♉♉♉♉♉ ;( )图 中的❍的值是 ♉♉♉♉♉♉♉♉♉♉ ;( )求图 中认为❽烟民戒烟的毅力弱❾所对应的圆心角的度数;( )若该市 岁的市民约有 万人,请你估算其中认为导致吸烟人口比例高的最主要的原因是❽对吸烟危害健康认识不足❾的人数. 如图,在菱形✌中,✌, ✌,点☜是✌边的中点.点 是✌边上一动点(不与点✌重合),延长 ☜交射线 于点☠,连接 、✌☠.( )求证:四边形✌☠是平行四边形;( )填空:♊当✌的值为♉♉♉♉♉♉♉♉♉♉时,四边形✌☠是矩形;∙∙∙∙∙∙∙∙∙∙♋当✌的值为♉♉♉♉♉♉♉♉♉♉时,四边形✌☠是菱形. 甲、乙两人同时从相距 千米的✌地前往 地,甲乘汽车,乙骑摩托车,甲到达 地停留半小时后返回✌地.如图是他们离✌地的距离⍓(千米)与时间⌧(时)之间的函数关系图象.( )求甲从 地返回✌地的过程中,⍓与⌧之间的函数关系式,并写出自变量⌧的取值范围;( )若乙出发后 小时和甲相遇,求乙从✌地到 地用了多长时间?某宾馆为庆祝开业,在楼前悬挂了许多宣传条幅.如图所示,一条幅从楼顶✌处放下,在楼前点 处拉直固定.小明为了测量此条幅的长度,他先在楼前 处测得楼顶✌点的仰角为 ,再沿 方向前进 米到达☜处,测得点✌的仰角为 .已知点 到大厦的距离 米, ✌ .请根据以上数据求条幅的长度(结果保留整数.参考数据:♦♋⏹ ☟,♦♓⏹ ☟,♍☐♦ ☟ ).某中学计划购买✌型和 型课桌凳共 套.经招标,购买一套✌型课桌凳比购买一套 型课桌凳少用 元,且购买 套✌型和 套 型课桌凳共需 元. ( )求购买一套✌型课桌凳和一套 型课桌凳各需多少元?( )学校根据实际情况,要求购买这两种课桌凳总费用不能超过 元,并且购买✌型课桌凳的数量不能超过 型课桌凳数量的,求该校本次购买✌型和 型课桌凳共有几种方案?哪种方案的总费用最低?类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.原题:如图 ,在平行四边形✌中,点☜是 的中点,点☞是线段✌☜上一点, ☞的延长线交射线 于点☝.若 ,求的值.( )尝试探究在图 中,过点☜作☜☟✌交 ☝于点☟,则✌和☜☟的数量关系是♉♉♉♉♉♉♉♉♉♉ , ☝和☜☟的数量关系是 ♉♉♉♉♉♉♉♉♉♉ ,的值是 ♉♉♉♉♉♉♉♉♉♉ .( )类比延伸如图 ,在原题的条件下,若 ❍(❍> ),则的值是♉♉♉♉♉♉♉♉♉♉ (用含有❍的代数式表示),试写出解答过程. ( )拓展迁移如图 ,梯形✌中, ✌,点☜是 的延长线上的一点,✌☜和 相交于点☞.若 ♋, ♌,(♋> ,♌> ),则的值是♉♉♉♉♉♉♉♉♉♉ (用含♋、♌的代数式表示).如图,在平面直角坐标系中,直线⍓⌧与抛物线⍓♋⌧ ♌⌧ 交于✌、 两点,点✌在⌧轴上,点 的纵坐标为 .点 是直线✌下方的抛物线上一动点(不与✌、 点重合),过点 作⌧轴的垂线交直线✌于点 ,作 ✌于点 .( )求♋、♌及♦♓⏹ ✌的值;( )设点 的横坐标为❍;♊用含有❍的代数式表示线段 的长,并求出线段 长的最大值;♋连接 ,线段 把 分成两个三角形,是否存在适合的❍的值,使这两个三角形的面积之比为 : ?若存在,直接写出❍的值;若不存在,说明理由.年河南省中考数学试卷试卷的答案和解析答案:✌试题分析:试题分析:根据正实数都大于 ,负实数都小于 ,正实数大于一切负实数,两个负实数绝对值大的反而小,进行比较.试题解析:因为正实数都大于 ,所以> ,又因为正实数大于一切负实数,所以> ,所以> 所以最大,故 不对;又因为负实数都小于 ,所以 > , > ,故 不对;因为两个负实数绝对值大的反而小,所以 < ,故 不对;故选✌.答案:试题分析:试题分析:根据中心对称图形的概念:把一个图形绕某一点旋转 ,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,由此结合各图形的特点求解.试题解析:根据中心对称和轴对称的定义可得:✌、既不是轴对称图形也不是中心对称图形,故✌选项错误;、既不是轴对称图形也不是中心对称图形,故 选项错误;、是中心对称图形也是轴对称图形,故 选项正确;、是中心对称图形而不是轴对称图形,故 选项错误.故选: .答案:试题分析:试题分析:绝对值小于 的正数也可以利用科学记数法表示,一般形式为♋ ⏹,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的 的个数所决定. ;故选: .答案:试题分析:试题分析:根据找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;极差就是这组数中最大值与最小值的差以及平均数的计算公式,对每一项进行分析即可.试题解析:把数据按从小到大的顺序排列后 , , , , , , , ,所以这组数据的中位数是( ) ,出现的次数最多,所以众数是 ,极差为: ;平均数为:( ) ,故选 .答案:试题分析:试题分析:根据二次函数图象左加右减,上加下减的平移规律进行解答即可. 试题解析:函数⍓⌧ 向右平移 个单位,得:⍓(⌧) ;再向上平移 个单位,得:⍓(⌧) ;故选 .答案:试题分析:试题分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.试题解析:从左向右看,得到的几何体的左视图是中间无线条的矩形.故选 .答案:✌试题分析:试题分析:先根据函数⍓⌧和⍓♋⌧的图象相交于点✌(❍, ),求出❍的值,从而得出点✌的坐标,再根据函数的图象即可得出不等式 ⌧<♋⌧的解集.函数⍓⌧和⍓♋⌧ 的图象相交于点✌(❍, ), ❍,❍,点✌的坐标是(, ),不等式 ⌧<♋⌧ 的解集为⌧<;故选✌.答案:试题分析:试题分析:分别根据切线的性质、平行线的判定定理及圆周角定理对各选项进行逐一判断即可.试题解析: ✌是 的直径,✌切 于点✌,✌✌,故✌正确;,☜✌ ✌,✌,✌ ✌,☜✌ ✌,✌☜,故 正确;☜是所对的圆心角, ✌☜是所对的圆周角,☜ ✌☜,故 正确;只有当 时 ✌,故本选项错误.故选 .答案:试题分析:试题分析:本题涉及零指数幂、乘方等考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式 .故答案为 .答案:试题分析:试题分析:根据已知条件中的作图步骤知,✌☝是 ✌的平分线,根据角平分线的性质解答即可.试题解析:解法一:连接☜☞.点☜、☞是以点✌为圆心,小于✌的长为半径画弧,分别与✌、✌的交点,✌☞✌☜;✌☜☞是等腰三角形;又 分别以点☜、☞为圆心,大于☜☞的长为半径画弧,两弧相交于点☝;✌☝是线段☜☞的垂直平分线,✌☝平分 ✌,✌,✌;在 ✌中, , ✌,✌(直角三角形中的两个锐角互余);解法二:根据已知条件中的作图步骤知,✌☝是 ✌的平分线, ✌, ✌;在 ✌中, , ✌,✌(直角三角形中的两个锐角互余);故答案是: . 答案:试题分析:试题分析:圆锥的侧面积 底面周长 母线长 .试题解析:底面圆的直径为 ,则底面周长 ⇨,圆锥的侧面积 ⇨ ⇨.故答案为 ⇨答案:试题分析:试题分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球所标数字之和为 的情况,然后利用概率公式求解即可求得答案.试题解析:画树状图得:共有 种等可能的结果,两次摸出的球所标数字之和为 的有:( , ),( , ),( , ),两次摸出的球所标数字之和为 的概率是: .故答案为:. 答案:试题分析:试题分析:设 的长度为♋,利用反比例函数解析式表示出✌的长度,再求出 的长度,然后利用三角形的面积公式列式计算恰好只剩下 ,然后计算即可得解.试题解析:设 ♋,点✌在反比例函数⍓,✌,☠☠, ♋,✌ ❿❿✌ ♋ ,解得 .故答案为: . 答案:试题分析:试题分析:在 ♦✌中,由勾股定理求得✌,由旋转的性质可知✌✌,设✌✌☜⌧,则 ☜⌧,根据旋转 可证 ✌☜✌,利用相似比求⌧,再求 ✌☜的面积.♦✌中,由勾股定理求✌ ,由旋转的性质,设✌✌☜⌧,则 ☜ ⌧,✌绕✌边上的点 顺时针旋转 得到 ✌,✌ ✌, ✌☜ ,✌☜✌,,即 ,解得⌧ ,✌☜ ☜✌ ( ) ,故答案为: .答案:试题分析:试题分析:首先由在 ♦✌中, ✌, , ,即可求得✌的长、 ✌☜☞与 ✌的度数,然后分别从从 ✌☞☜与 ☜✌☞去分析求解,又由折叠的性质与三角函数的知识,即可求得 ☞的长,继而求得答案.根据题意得: ☜☞ , ☞,☜☞☜,☜,☞☜ ☜☞, ☜☞ ☞☜ ,✌☜☞ ☜☞,在 ♦✌中, ✌ , , ,✌❿♦♋⏹ , ✌,如图♊若 ✌☞☜ ,在 ♦✌中, ✌ ,☜☞ ✌☞ ☞✌ ✌☞ ,☞✌ ☜☞ ,☞✌❿♦♋⏹ ☞✌ ,☞ ;如图♋若 ☜✌☞ ,则 ☞✌ ✌ ,☞✌❿♦♋⏹ ☞✌ ,☞ ,✌☜☞为直角三角形时, 的长为: 或 .答案:试题分析:试题分析:先将括号外的分式进行因式分解,再把括号内的分式通分,然后按照分式的除法法则,将除法转化为乘法进行计算.试题解析:原式 ⑤ 分❿⑤分<⌧<,且⌧为整数,若使分式有意义,⌧只能取 和 ⑤ 分当⌧ 时,原式 .【或:当⌧ 时,原式 】⑤ 分 答案:试题分析:试题分析:( )由条形图可得认为政府对公共场所吸烟的监管力度不够的有 人,有扇形统计图可得认为政府对公共场所吸烟的监管力度不够占 ,总数 ;( )用总人数 认为对吸烟危害健康认识不足的人数所占百分比即可; ( )认为❽烟民戒烟的毅力弱❾所对应的圆心角的度数 认为❽烟民戒烟的毅力弱❾的人数所占百分比即可;( )利用样本估计总体的方法,用 万 样本中认为对吸烟危害健康认识不足的人数所占百分比.试题解析:( )这次接受随机抽样调查的市民总人数为: ;( )利用总人数 认为对吸烟危害健康认识不足的人数所占百分比,得出:❍ ;( )根据 认为❽烟民戒烟的毅力弱❾的人数所占百分比,得出❽烟民戒烟的毅力弱❾所对应的圆心角的度数为: ;( )根据 万 样本中认为对吸烟危害健康认识不足的人数所占百分比,得出❽对吸烟危害健康认识不足❾的人数为: (万人). 答案:试题分析:试题分析:( )利用菱形的性质和已知条件可证明四边形✌☠的对边平行且相等即可;( )♊有( )可知四边形✌☠是平行四边形,利用有一个角为直角的平行四边形为矩形即 ✌,所以✌✌时即可;♋当平行四边形✌☠的邻边✌时,四边形为菱形,利用已知条件再证明三角形✌是等边三角形即可.( )证明: 四边形✌是菱形,☠✌,☠☜ ✌☜, ☠☜ ✌☜,又 点☜是✌边的中点,☜✌☜,☠☜☹✌☜,☠✌,四边形✌☠是平行四边形;( )♊当✌的值为 时,四边形✌☠是矩形.理由如下:✌ ✌,✌ ✌,✌ ,平行四边形✌☠是矩形;故答案为: ;♋当✌的值为 时,四边形✌☠是菱形.理由如下:✌,✌✌,✌是等边三角形,✌,平行四边形✌☠是菱形,故答案为: . 答案:试题分析:试题分析:( )首先设⍓与⌧之间的函数关系式为⍓⌧♌,根据图象可得直线经过( , )( , ),利用待定系数法把此两点坐标代入⍓⌧♌,即可求出一次函数关系式;( )利用甲从 地返回✌地的过程中,⍓与⌧之间的函数关系式算出⍓的值,即可得到 小时时骑摩托车所行驶的路程,再根据路程与时间算出摩托车的速度,再用总路程 千米 摩托车的速度可得乙从✌地到 地用了多长时间. ( )设甲从 地返回✌地的过程中,⍓与⌧之间的函数关系式为⍓⌧♌,根据题意得:,解得,⍓⌧ ( ♎⌧♎ );( )当⌧时,⍓ .骑摩托车的速度为 (千米 时),乙从✌地到 地用时为 (小时).答案:试题分析:试题分析:设✌⌧米.根据 ✌☜, ✌☜得到☜✌⌧,然后在 ♦✌中得到♦♋⏹.求得⌧.然后在 ♦✌中,利用勾股定理求得✌即可.设✌⌧米.✌☜ , ✌☜ ,☜✌⌧米在 ♦✌中,♦♋⏹ ,即♦♋⏹ .⌧☟ .即✌☟ 米在 ♦✌中,✌☟ 米.答:条幅的长度约为 米.答案:试题分析:试题分析:( )根据购买一套✌型课桌凳比购买一套 型课桌凳少用 元,以及购买 套✌型和 套 型课桌凳共需 元,得出等式方程求出即可; ( )利用要求购买这两种课桌凳总费用不能超过 元,并且购买✌型课桌凳的数量不能超过 型课桌凳数量的,得出不等式组,求出♋的值即可,再利用一次函数的增减性得出答案即可.试题解析:( )设✌型每套⌧元,则 型每套(⌧ )元.由题意得: ⌧(⌧ ) .解得:⌧ ,⌧ .即购买一套✌型课桌凳和一套 型课桌凳各需 元、 元;( )设购买✌型课桌凳♋套,则购买 型课桌凳( ♋)套.由题意得:,解得: ♎♋♎ .♋为整数,♋ 、 、 .共有 种方案,设购买课桌凳总费用为⍓元,则⍓ ♋( ♋) ♋ . < ,⍓随♋的增大而减小,当♋ 时,总费用最低,此时 ♋ ,即总费用最低的方案是:购买✌型 套,购买 型 套.答案:试题分析:试题分析:( )本问体现❽特殊❾的情形, 是一个确定的数值.如答图 ,过☜点作平行线,构造相似三角形,利用相似三角形和中位线的性质,分别将各相关线段均统一用☜☟来表示,最后求得比值;( )本问体现❽一般❾的情形, ❍不再是一个确定的数值,但( )问中的解题方法依然适用,如答图 所示.( )本问体现❽类比❾与❽转化❾的情形,将( )( )问中的解题方法推广转化到梯形中,如答图 所示.试题解析:( )依题意,过点☜作☜☟✌交 ☝于点☟,如右图 所示.则有 ✌☞☜☟☞,,✌ ☜☟.✌,☜☟✌,☜☟,又 ☜为 中点,☜☟为 ☝的中位线,☝☜☟..故答案为:✌ ☜☟; ☝☜☟;.( )如右图 所示,作☜☟✌交 ☝于点☟,则☜☞☟✌☞.❍,✌❍☜☟.✌,❍☜☟.☜☟✌,☜☟☝.,☝☜☟..故答案为:.( )如右图 所示,过点☜作☜☟✌交 的延长线于点☟,则有☜☟✌.☜☟,☜☟,♌,♌☜☟.又 ♋,✌♋♋♌☜☟.☜☟✌,✌☞☜☟☞,♋♌,故答案为:♋♌.答案:试题分析:试题分析:( )已知直线✌的解析式,首先能确定✌、 点的坐标,然后利用待定系数法确定♋、♌的值;若设直线✌与⍓轴的交点为☜,☜点坐标易知,在 ♦✌☜中,能求出♦♓⏹ ✌☜,而 ✌☜ ✌,则 ✌的正弦值可得.( )♊已知 点横坐标,根据直线✌、抛物线的解析式,求出 、 的坐标,由此得到线段 的长;在 ♦中,根据( )中 ✌的正弦值,即可求出 的表达式,再根据所得函数的性质求出 长的最大值.♋在表达 、 的面积时,若都以 为底,那么它们的面积比等于边上的高的比.分别过 、 作 的垂线,首先求出这两条垂线段的表达式,然后根据题干给出的面积比例关系求出❍的值.( )由⌧ ,得⌧, ✌( , ).由⌧ ,得⌧ , ( , ).⍓♋⌧ ♌⌧ 经过✌、 两点,,则抛物线的解析式为:⍓⌧ ⌧ ,设直线✌与⍓轴交于点☜,则☜( , ).⍓轴,✌ ✌☜.♦♓⏹ ✌♦♓⏹ ✌☜ .( )♊由( )知,抛物线的解析式为⍓⌧ ⌧ .则点 (❍,❍ ❍ ). 已知直线✌:⍓⌧,则点 (❍,❍ ).❍ (❍ ❍) ❍ ❍ (❍ )♦中, ❿♦♓⏹ ✌☯(❍ ) ❿ (❍ )长的最大值为:.♋如图,分别过点 、 作 ☞, ☝,垂足分别为☞、☝.♦♓⏹ ✌,♍☐♦ ✌,又 ☞ ✌♍☐♦ ☞ ,在 ♦☞中, ☞ (❍ ❍ ).又 ☝ ❍,.当 时,解得❍;当 时,解得❍.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年河南省初中学业水平暨高级中等学校招生考试模拟试卷
数 学
注意事项:
1. 本试卷共8页,三大题,满分120分,考试时间100分钟请用蓝、黑色钢笔或圆珠 笔直接答在试卷上.
参考公式:二次函数2
(0)y ax bx c a =++≠图象的顶点坐标为2
4(,)24b ac b a a
--. 一、选择题(每小题3分,共18分)
下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.
1.3
1
-
的相反数是 【 】(A )3 (B ) 3- (C )
31 (D )3
1- 2.下列计算不正确的是 【 】 (A )422-=-- (B )1)2()2
1
(=-⨯- (C )2)2(0=-- (D )22=- 3.要使二次根式
3+x 有意义,字母x 必须满足的条件是 【 】
(A )3->x (B )x ≥3- (C )x >3 (D )x ≥3 4.下列说法正确的是 【 】 (A )为了解河南省中学生的心理健康情况,应该采用普查的方式 (B )如果x 1与x 2的平均数是4,那么x 1+1与x 2+5的平均数是10
(C )在参加“美化郑州”的植树活动中,一班六个绿化小组植树的棵数分别是: 8 , 8 , 6 , 10 , 7 , 8 , 9 ,则这组数据的众数和中位数都是 8
(D )某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,亩产量的方差分别是2
S
甲= 0.01 ,
2S 乙= 0 .1 ,则乙组数据比甲组数据稳定
5.已知在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个绿色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是绿色球的概率为 【 】
(A )34 (B )23 (C )916 (D )12
6.如图,一次函数1
22
y x =-
+的图像上有两点A 、B ,A 点的横坐标为2,B 点的横坐标为(042)a a a <<≠且,过点A 、B 分别作x 轴的垂线,垂足为点C 、D ,AOC BOD ∆∆、的面积分别为12S S 、
(A )21S S >(C )21
S S <
二、填空题 7. 78.方程
3-x x 9.如图,直线则∠1的度数是 __________.
10.如图,是一个简单的运算程序.若输入x 的值为 −2,则输出的数值为 ________.
11.如图,在□ABCD 中,cm AB 9=,cm BC 6=,∠BAD 的平分线与CD 边相交于点M ,则MC 等于_______ cm .
12.如图,有一边长为cm 4的等边三角形纸片,要从中剪出三个面积相等的扇形,那么若用剪下的一个..
扇形ADE (阴影部分)围成一个圆锥,该圆锥的底面圆的半径r 是 cm .
13. 如图,是一个正六棱柱的主视图和左视图,根据图示的数据可计算出图中m 的数值
为 ________. 【第9题图】
【第12题图】
【第10题图】
输出结果
【第11题图】
A
B
D
C
M
14.如图,在矩形ABCD 中,对角线AC 、BD 交与O 点,42==AB AC ,点E 是AD 边的中点,点P 是CD 边上一动点,则△OEP 的周长最小值是 .
15.如图,正方形ABCD 中,12=AB ,
点M 在边
CD 上,且DM CD 3=.将△ADM 沿AM 对折至△ANM ,延长MN 与边BC 交于点P ,连结AP 、CN .则CNP ∆的面积为 .
三、解答题 (本大题共8个小题,满分75分) 16.(8分)先化简22(
)5525x x x x x x -÷---,然后从不等组⎩⎨⎧<--≥18
323x x 的解集中,选取一个你认为符合题意....
的x 的值代入求值.
17. (9分)如图,将平行四边形ABCD 的边DC 延长到点E ,使CE=DC ,连接AE ,交BC 于点F .
⑴求证:△ABF ≌△ECF ;
⑵若∠AFC=2∠D ,连接AC 、BE .求证:四边形ABEC
【第14题图】
A B D E C
O
P
B 【第17题图】 【第15题图】
18.(9分)某中学初三(1)班数学兴趣小组为了解该校学生喜欢球类活动的情况,随机抽取了300名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的球类),并将调查的结果绘制成如下的两幅不完整的统计图.
请根据图中提供的信息,解答下面的问题:
(1)被调查的学生中喜欢“足球”的有 人,在扇形图中,表示“篮球”的扇形的圆心角为 度;
(2) 如果该校有3600名学生,利用样本估计喜欢“其他球类”的学生约有_________人; (3) 如果数学兴趣小组在这3个主要球类中任选两项球类在全校学生中进行“才艺秀”表演,求恰好选到“篮球”和“足球”的概率(用树状图或列表法分析解答).
19.(9分)如图,流经郑州市的金水河某段的两岸互相平行,河岸1l 上有一排观赏灯,已知相邻两灯之间的距离m AB 60=,某人在河岸2l 的C 处测得︒=∠60ACE ,然后沿河岸向右走了m 140到达D 处,测得︒=∠30BDE .求金水河该段的宽度AE .(结果保留三个有效1.732≈≈).
乒乓球 20%
足球
其他球类
篮球
【第18题图】 【第19题图】
20. (9分)如图, 一次函数b x k y +=11)0(1≠k 与坐标轴交于)32,0( A 和B )0,2(两
点,与反比例函数x
k y 2
2
=
)0(2≠k 的图象交与点C 、),1(a D -. 求:(1)根据图象直接写出1k = ,=b ,2k = ; (2)根据函数图象可知,当1y >2y 时,x 的取值范围是 ; (3)将△OBC 绕点O 逆时针方向旋转α角(α为锐角),得到△OB ′C ′,当α为多少度时OC ′⊥AB ,并求此时线段AB ′的长.
【第20题图】
21.(10分)某学生用品超市,计划购进甲、乙两种学生书包共80件进行销售,购货资金不少于2090元,但不超过2096元,两种学生书包的成本和售价如下表:
假设所购两种学生书包可全部售出,请回答下列问题:
⑴该商店对这两种学生书包有哪几种进货方案?
⑵该商店如何进货获得利润最大?
⑶根据市场调查,每件乙种学生书包的售价不会改变,每件甲种学生书包的售价将会提
a ),该商店又将如何进货获得的利润最大?
高a元(0
22. (10分)如图,在Rt △ABC 中,∠ACB =90°,∠BAC =30°,AB =4,点P 是斜边AB 上一个动点,点D 是CP 的中点,延长BD 至E ,使DE =BD ,连结AE .
⑴ 求四边形PCEA 的面积;
⑵ 当AP 的长为何值时,四边形PCEA 是平行四边形; ⑶ 当AP 的长为何值时,四边形PCEA 是直角梯形.
【第22题图】
C E
23.(11分)如图,已知抛物线()()2
1,00,4.y x bx c A C =-++-经过点和
(1)求该抛物线的解析式;
(2)直线1+=x y 与抛物线相交于A 、D 两点,点P 是抛物线上一个动点,点P 的横坐标是m ,且31<<-m ,设ADF ∆的面积为S ,求S 的最大值及对应的m 值;
(3)点M 是直线AD 上一动点,直接写出使ACM ∆为等腰三角形的点M 的坐标.
【第23题图】。