高中数学必修一《指数函数及其性质》说
人教版高中数学必修1(A版) 指数函数及其性质说课 PPT课件

三、课堂过程
2.启发探究,归纳总结 教师活动: (1)给出两个基本的指数函数,引导学生用列 表描点的办法画出函数的草图。 (2)引导学生根据草图,初步分析指数函数的 图象与性质的联系。 (3)利用几何画板软件动态改变底数a,观察对 函数图象的影响,引导学生深入分析指数函数的 性质并进行总结归纳。 (4)引导学生对所得到的结论进行整理,填写指 数函数图象和性质表格。
指数函数及其性质(第一课时)
一、教材分析
1.《指数函数及其性质》在教材中的地位、 作用和特点
指数函数是进入高中以后学生遇到的第一 个系统研究的函数,对后续的各种基本初等 函数性质的研究,指明了一种研究方向,对 初步培养函数的应用意识打下了良好的学习 基础
一、教材分析
(1)知识目标: ①掌握指数函数的概念; ②掌握指数函数的图象和性质; ③能初步利用指数函数的概念解决实际问题;
一、教材分析
3.教学重点与难点
教学重点:指数函数的图象和性质。 教学难点:指数函数的图象性质与底数a的关系。
二、教法与学法分析
1.教法
充分体现“教师主导、学生主体”的作用
采用启发发现、主动探究的教学模式
二、教法与学法分析
2.学法
1.通过对生活实例的分析再现旧有知识结构, 复习回顾函数性质、指数概念,为理解指数 函数的概念做好准备 2.探究指数函数的图象,通过自主研究 体会知识的形成过程 3.学习过程循序渐进,让学生经历从概念到 图象、 到性质、到应用、再到拓展,先易后 难的学习过程,让学生感觉 到挑战,又学有 所获
Байду номын сангаас
三、课堂过程
5.教学评价,调动气氛 情景导入的表达式评价 回忆指数知识的记忆评价 得出指数函数概念的归纳评价 作图时的准确性评价 解题时的规范性评价 小结时的表述性评价
高一数学指数函数及其性质

《高中数学》
必修1
2.1.2《指数函数及其性质》
教学目标
1 .掌握指数函数的概念,图象和性质; 2 .能由指数函数图象归纳出指数函数的性质; 3 .指数函数性质的简单运用。 教学重点与难点 重点:指数函数的概念及它的图象和性质。 难点:底数a对于函数值变化的影响。 教学方法:导学法
创设问题情景,由一个智力故事激发学生进一步学习的兴趣,引出
了指数函数的定义, 而后用多媒体展示y=2x 和
画法,引导观察图象,归纳性质。接着再利用几何画板动态演示 指数函数的图象,使学生得到一般问题的结论,渗透了由特殊到 一般研究问题的方法,通过对a>1 和0 < a <1的讨论,渗透了分类
1 x y ( ) 的具体 2
情景设计
指数函数
此题即求第x格上麦粒数的个数y 分析:
表达式: y 2
研究:
x
由表达式知道,引起指数上的函数就是指数函数。
类推: 指数函数的定义
引入定义
指数函数
叫做指数函数。
函数
y a x (a 0且a 1)
例1:下列函数中指数函数的个数是: x 1 x 1) 3)
性质应用
指数函数
例1:比较大小:
(3)1.5 0.3,0.81.2
解:由指数函数的性质知1.50.3 > 1.50 =1,而 0.81.2 < 0.80 =1 所以 1.50.3 > 0.81.2
性质应用
m n
指数函数
例题2 若(0.7) (0.7) , 则m和n的关系(B) A:m n B:m n y (0.7) 在(,)为减函数 又 (0.7) (0.7) m n C:m n D:m n
高中数学 第二章 基本初等函数(Ⅰ)2.1.2 指数函数及其性质教材梳理素材 新人教A版必修1

2.1.2 指数函数及其性质疱丁巧解牛知识·巧学·升华 一、指数函数及其性质 1.指数函数的定义一般地,函数y=a x(a >0且a ≠1,x ∈R )叫做指数函数,其中x 是自变量.由于当a=0时,若x >0,a x 恒等于0;若x ≤0,a x无意义. 当a <0时,如y=(-2)x,对x=…,-21,41,21,…在实数范围内函数值不存在. 当a=1时,y=1x=1,是一常量,没有研究的必要.综上可知,当a ≤0或a=1时,不是没有意义,就是没有研究的必要,故规定a >0且a ≠1.只有形如y=a x (a >0且a ≠1)且定义域为R 的函数,才是指数函数,又如y=3·2x ,y=2x-1,y=2x+1等,是由指数函数经过某种变换而得到的,它们都不是指数函数.要点提示 因为指数的概念已经从整数扩充到实数,在底数a >0且a ≠1的情况下,对任意一个x 都有唯一确定的值y 与它对应,所以x 是任意实数. 2.指数函数的图象和性质(1)下面先画指数函数y=2x 及y=0.5x图象列出x,y 的对应值表,用描点法化出图象: x …-3 -2 -1 0 1 2 3 … y=2x 0.13 0.25 0.5 1 2 4 8 y=0.5x84210.50.250.13要点提示 函数y=a x与y=a -x的图象关于y 轴对称.xa >10<a <1图象性质①定义域:R ②值域:(0,+∞)③过点(0,1),即x=0时,y=1 ④在R 上是增函数, 当x <0时,0<y <1; 当x >0时,y >1④在R 上是减函数, 当x <0时,y >1; 当x >0时,0<y <1指数函数的单调性是指数函数性质中应用最广的,运用此性质可以求与指数函数有关的一般函数的值域、单调区间等.指数函数的图象变换有两种:一种是平移变换分上下、左右平移,遵循“左加右减,上加下减”.平移前后的形状没有发生变化,只是位置改变了;另一种是对称变换,它会导致前后的形状发生明显改变.指数函数的图象变换可以推广到我们学过的任何函数. 研究函数的性质,可明确图象的形状;通过函数的图象可以进一步加深对性质的理解.二者相辅相成、缺一不可,可通过解决函数的图象来解决与方程和不等式有关的问题,这时作函数的图象应明确其图象的形状,而确定形状的手段主要有:函数关系式的等价变形、图象的变换、通过研究函数的性质等.要点提示 ①指数函数的图象恒在x 轴上方;②指数函数的单调性取决于它的底数;③y=a x (a >1)在 x >0的方向上增幅越来越快;④指数函数由唯一的常量a 确定.⑤y=a x (0<a<1)在x <0的方向上增幅越来越快.方法点拨 遇到求含有字母的表达式等问题可先用待定系数法确定a ,再求值.深化升华 ①底数相同,指数不同的,可构造指数函数,利用函数的单调性比较大小; ②底数、指数都不相同的,可选一中间值比较大小; ③指数相同,底数不同的可用数形结合法比较大小. 问题·思路·探究问题1 为什么说指数函数的图象是研究函数性质的直观工具?思路:对于指数函数问题,我们不仅仅应该知道其表达式及利用表达式进行计算的问题,而且应注重结合其相应的图象掌握相应的知识且能灵活运用图象来分析问题、解决问题,从而领会图象在指数函数应用方面的作用. 探究:因为通过图象我们可以直观地看到,任取a({a|a>0且a ≠1}),图象始终过定点(0,1),图象始终在x 轴的上方;当a>1时第一象限的图象与0<a<1时第二象限的图象始终在直线y=1的上方,当a>1时第二象限的图象与0<a<1时第一象限的图象始终在直线y=1的下方,当a>1时,图象是上升的,当0<a<1时,图象是下降的.所以应用图象进行数形结合,清晰地刻画了指数函数的性质,它们便于我们记忆起函数性质和变化规律.问题2 函数y=2|x|的图象有什么特征?你能根据它的图象指出其值域和单调区间吗?思路:函数y=a |x|:其图象是关于y 轴对称的,所以只要先把y=a x的y轴右边的图象保留,再将y 轴右边部分关于y轴作出对称部分;就得到了y=a |x|的图象.探究:函数y=2|x|的图象关于y 轴对称,这是因为它的图象由y=2x(x ≥0)的图象和y=(21)x(x<0)的图象合并而成,而y=2x(x>0)与y=(21)x(x<0)的图象关于y 轴对称,所以函数y=2|x|的图象关于y 轴对称,由图象可知值域是[1,+∞),递增区间为[0,+∞),递减区间为(-∞,0]问题3 函数y=a x+h+k(a>0且a ≠1)的图象恒过点(-h,1+k ),为什么?思路:一般地,把函数y=f (x )的图象向右平移m 个单位得函数y=f (x-m )的图象(m ∈R ,m <0就是向右平移|m|个单位);把函数y=f (x )的图象向上平移n 个单位,得到函数y=f (x )+n 的图象(n ∈R ,若n <0,就是向下平移|n|个单位=探究:函数y=a x+h +k(a>0且a ≠1)的图象可由y=a x(a>0且a ≠1)的图象向左(当h>0时)或向右(当h<0时)平移|h|个单位,再向上(当k>0时)或向右(当k<0时)平移|k|个单位而得到,因为y=a x (a>0且a ≠1)的图象恒过点(0,1),所以函数y=a x+h+k(a>0且a ≠1)的图象恒过点(-h,1+k ). 典题·热题·新题例1 下列函数中,哪些是指数函数?①y=4x ②y=x 4 ③y=-4x ④y=4-x ⑤y=(-4)x ⑥y=4x+1 ⑦y=4x +1⑧y=e x ⑨y=4x(x>0)⑩y=(a-1)x(a>1且a ≠2)思路解析:①④⑧⑩为指数函数,其中④y=4-x 从形式上看不是指数函数,将它变形为y=(4-1)x,即y=(41)x.它实质上是指数函数. ②中底数x 不是常数,而4不是变数;③是-1与指数函数4x的乘积;⑤中底数-4<0; ⑥中的指数是x 的函数,不是自变量x ;⑦由y=4x向上平移得到的;⑨x 的范围不是R . 答案:②③⑤⑥⑦⑨不是指数函数.误区警示 像y=4x+1,y=4x +1的图象可由y=2x 的图象通过平移或伸缩变换而得到.而y=a -x从形式上看不是指数函数,将它变形为y=(a -1)x,即y=(a1)x.它实质上是指数函数. 例2 若指数函数y=(2a-1)x是减函数.则a 的范围是多少? 思路解析:由题意可知1>2a-1>0,得21<a <1. 答案:21<a <1 深化升华 解与指数有关的问题时,注意对底数分类讨论,这是考试的一个重点.例3 如右图,在同一坐标系下给出四个指数函数的图象,试比较底数a 、b 、c 、d 的大小.思路解析:作直线x=1与四个图象交于四个点,得四个纵坐标为a 、b 、c 、d ,底数都“跑”到纵轴上去了,可在数轴的位置上直观比较底数的大小,则a >b >1>c >d >0 . 答案:a >b >c >d拓展延伸 在同一坐标系中,画出函数y=3x,y=(31)x ,y=2x,y=(21)x 的图象,比一比,看它们之间有何联系.从图中可以看到,图象向下无限地与x 轴靠拢,即x 轴是指数函数的渐近线.任何两个函数图象都是交叉出现的,交叉点是(0,1).在y 轴的右侧,对同一变量x 而言,底数越大,函数值越大;在y 轴的左侧,情况正好相反,即对同一自变量x 而言,底数越大,函数值越小.以此为依据,可定性地分析在同一坐标系中,底数不同的若干个指数函数的底数的大小关系.怎样定量分析同一坐标系中底数不同的指数函数的底数的大小呢?我们知道,对指数函数y=a x(a >0且a ≠1),当x=1时,y=a ,而a 恰好是指数函数的底数,这就启发我们,不妨作直线x=1,它同各个图象相交,交点的纵坐标就是各指数函数的底数,以此可比较底数的大小.深化升华 (1)渐近线是指逐渐靠拢,但永远不能到达的线.(2)从联系的观点研究不同底数的指数函数图象间的关系,对深化理解指数函数的图象和性质是有帮助的.例4 画出下列函数的图象:(1)y=2x-1+2;(2)y=0.5|x|思路解析:利用指数函数的图象及结合函数图象的变换来处理.答案:(1)利用函数y=2x的图象沿x 轴正半轴平移一个单位,纵坐标不变,再把所得图象沿y 轴的正半轴平移2个单位,横坐标不变,得到y=2x-1+2的图象,如图(1)(注:画出虚直线的目的是体现平移变换).(2)由y=0.5|x|=⎪⎩⎪⎨⎧<=≥-,0,25.0,0,5.0x x xx x作y=0.5x的图象但只取y 轴及其右侧部分,再作y=2x的图象但只取y 轴左侧部分,就得到函数y=0.5|x|的图象,如图(2)所示的实线(注:画出虚线的目的是衬托实线的特征).图(1) 图(2) 深化升华 由指数函数的图象,我们还可以总结出图象的变化规律: ①平移规律若已知y=a x 的图象,则把y=a x 的图象向左平移b (b >0)个单位,则得到y=a x+b的图象.把y=a x 的图象向右平移b (b >0)个单位,则得到y=a x-b 的图象,把y=a x的图象向上平移b(b >0)个单位,则得到y=a x +b 的图象.把y=a x的图象向下平移b (b >0)个单位,则得到y=a x-b 的图象. ②对称规律函数y=a x 的图象与y=a -x 的图象关于y 轴对称,y=a x 的图象与y=-a x的图象关于直线x轴对称.函数y=a x 的图象与y=-a -x的图象关于坐标原点对称.函数y=a |x|:其图象是关于y 轴对称的,所以只要先把y=a x的y轴右边的图象保留;再将y轴右边部分关于y轴对称;就得到了y=a |x|的图象.拓展延伸 一般地,把函数y=f (x )的图象向右平移m 个单位得函数y=f (x-m )的图象(m ∈R ,m <0就是向右平移|m|个单位);把函数y=f (x )的图象向上平移n 个单位,得到函数y=f (x )+n 的图象(n ∈R ,若n <0,就是向下平移|n|个单位=.函数y=f (x )的图象与y=f (-x )的图象关于y 轴对称,函数y=f (x )的图象与函数y=-f (x )的图象关于x 轴对称,函数y=f (x )的图象与函数y=-f (1-x )的图象关于原点对称.函数y=f(|x|):其图象是关于y 轴对称的,所以只要先把y轴右边的图象保留;再将y轴右边部分关于y轴对称;就得到了y=f(|x|)的图象.例5 用函数单调性定义证明函数f (x )=2x在(-∞,+∞)上单调递增. 思路解析:函数单调递增:x 1<x 2⇒f (x 1)<f (x 2);或先论证)()(21x f x f <1,又f (x 2)>0⇒f (x 1)<f (x 2).证明:在(-∞,+∞)上任取x 1<x 2,则)()(21x f x f =2121222x x x x -=,∵x 1-x 2<0,∴212xx -<1.又f (x 2)=2x2>0,∴f (x 1)<f (x 2).∴函数f (x )=2x在(-∞,+∞)上单调递增. 深化升华 在用函数单调性定义证明的过程中,除了作差法也可用作商法比较f (x 1)、f (x 2)的大小.例6 求下列函数的单调区间:(1)y=2425.0--x x ;(2)y=x112+.思路解析:将原函数“拆”成两个简单的函数,再依据复合函数的单调性求解. 解:(1)令u=x 2-4x-2,则y=0.5u.因为y=0.5u为减函数,所以y=2425.0--x x 与u=x 2-4x-2的单调性相反.又由u=x 2-4x-2=(x-2)2-6得u=x 2-4x-2在(-∞,2]为减函数,在[2,+∞)为增函数.所以y=2425.0--x x 在(-∞,2)为增函数,在[2,+∞]为减函数;(2)令u=1+x 1,则y=2u ,因为y=2u为增函数,所以y=x 112+的单调性与u=1+x 1的单调性相同.因为u=1+x1(x ≠0)所以在(-∞,0)及(0,+∞)上均为减函数,所以y=x 112+的单调递减区间为(-∞,0)和(0,+∞).拓展延伸 确定函数的单调性,利用复合函数的单调性的方法或可变形函数解析式,利用已有函数的单调性进行由里及外的层层判断,最终得出函数的单调性.但是要证明单调性必须用单调性定义.本题求函数值域也可以利用解析式变形,由里及外层层求出值域最终而得:y=1212+-x x =1-122+x .x ∈(-∞,+∞)⇒2x >0⇒2x+1>1⇒121+x <1,∴-2<-122+x<0.∴-1<y <1.∴值域为(-1,1).例7 已知函数f (x )=a x(a >0,且a ≠1),根据图象判断21[f (x 1)+f (x 2)]与f (221x x +)的大小,并加以证明.思路解析:对a >1及0<a <1两种情形的指数函数图象,分别取两点A (x 1,f (x 1))、B (x 2,f (x 2))连线段,其中21[f (x 1)+f (x 2)]就是这线段中点M 的函数值,f (221x x +)就是图象上弧线段与直线x=221x x +的交点M 的函数值,如下图.显然无论哪一种情形总有点N 在点M 下方. ∴f (221x x +)<21[f (x 1)+f (x 2)]. 证明:f (x 1)+f (x 2)-2f (221x x +)=2222)(2112121x x x x xx a aaa a -=-++.由x 1≠x 2,∴21x ≠22x .∴2221xxa a -≠0,∴222)(21xxa a ->0.∴f (x 1)+f (x 2)-2f (221x x +)>0. 深化升华 通过数形结合我们不难发现凸凹函数的性质. 若f (x )是凸函数,则f (221x x +)≥21[f (x 1)+f (x 2)]; 若f (x )是凹函数,则f (221x x +)≤21[f (x 1)+f (x 2)]. 例8 方程2x-1=2x 的实数解的个数为( )A. 0个B.1个C.2个D.3个 思路解析:这不是我们所学的代数等式,也不可能转化成代数式,只有数形结合观察图象交点才能解决.答案:2x-1=2x 可化为2x=2x+1,令⎩⎨⎧+==122x y y x 在同一坐标系中画出y=2x及y=2x+1的图象.如右图所示,可以看出它们图象有两个交点.故选C.深化升华 遇到等式两边的形式属于不同类型的函数而且直接处理无法进行时,这时应联想到用数形结合来解决.。
课件人教A版高中数学必修一《指数函数及其性质》实用PPT课件_优秀版

②利用指数函数y=au的单调性求得此函数的值域.
2.求形如y=A·a2x+B·ax+C类函数的值域一般用换元法,设ax=t(t>0)再转
化为二次函数求值域.
反思与感悟
解析答案
跟踪训练 4 (1)函数 f(x)= 1-2x+ x1+3的定义域为( A )
A.(-3,0]
B.(-3,1]
C.(-∞,-3)∪(-3,0] D.(-∞,-3)∪(-3,1]
(2)对称变换:函数y=a-x的图象与函数y=ax的图象关于y轴对称;
函数y=-a-x的图象与函数y=ax的图象关于原点对称;
当x<0时,_________
反思与感悟
解析答案
跟踪训练3 (1)函数y=|2x-2|的图象是( B )
解析 y=2x-2的图象是由y=2x的图象向下平移2个单位长度得到的, 故y=|2x-2|的图象是由y=2x-2的图象在x轴上方的部分不变,下方部分 对折到x轴的上方得到的.
过点_(_0_,__1_)_,即x=_0_时,y=_1_ 若下向列下 各平函移数φ中(φ,>是0)个指单数位函,数则的得是到( y=)ax-φ的图象. 性质 跟一踪般训 地练,3函数(1y)=函a数x y=|2x-2|的图叫象做是指(数函数) ,其中x是自变量,函数的定义域是R.
当x>0时,y>1; 纠(3)错ax心的得系数凡是换1. 元时应立刻写出新元范围,这样才能避免失误.
解析 ∵x2-1≥-1,
解 ∵y=2-x与y=2x的图象关于y轴对称,
④中,y=x3的底为自变量,指数为常数,故④不是指数函数.
其中,指数函数第的个二数章是( 2.1) .2 指数函数及其性质
(3)ax的系数是1.
例2 如图是指数函数①y=ax,②y=bx,③y=cx,④y=dx的图象,则a,b,c,d与1的大小关系是( )
高中数学必修一《指数函数及其性质》PPT课件

②若函数f(x)=(2a-1)x是指数函数,则实数a 的取值范围是什么?
1
由题可得2a-1>0且2a-1≠1, 解得a> 2 且a≠1满足题意。
③已知指数函数f(x)的图象经过点(2,9), 则f(0)、 f(1)、 f(-2)的值分别为多少?
设这f种(x)求=a解x(析a式>0方且法a≠叫1)做,由待f(定2)=系9得数a法2=。9,解得a=3
例2.在同一直角坐标系中,观察函数 y 2 x , y 3x ,
y
(1)x 2
,
y
(1)x 3
y
的图象。
y
1
x
yy
3
3x
y
1 2
x
4
3
y 2x
2
1
-3 -2 -1
01
23
x
-1
指数函数图象的性质
y=ax 图象
a >1
y
0<a<1
y
定义域 值域 定点
o
x
ox
(--∞,+∞) (左右无限延伸)
-1 2 2、若函数 y (k 2)a x 2 b(a 0,且a 1) 是指数函数,则 k
,b
。
3、若指数函数的图象经过点 (4, 1 ), 则 f (3)
8
16
(3,4) 4、函数 y a x3 3(a 0,且a 1) 的图象恒经过定点
。
课堂小结
1.说说指数函数的概念。 2.记住指数函数图象和性质。
特别提醒:
(1) 有些函数貌似指数函数,实际上却不是, 如 y 3x 1
高中数学——《指数函数及其性质》(第一课时)说课稿

《指数函数及其性质》(第一课时)各位评委、老师,大家好!我是来自河南省实验中学的崔爽,今天我说课的题目是《指数函数及其性质》,我将从以下六个方面来实现我的教学设想.一、教学内容分析本节课是(人教A版必修1)第二章第一节的第二课(§2.1.2),根据我所教的学生的实际情况,我将《指数函数及其性质》划分为“指数函数的概念及其性质”和“指数函数及其性质的应用”这两课时,今天我所说的课是第一课时.指数函数是重要的基本初等函数之一,它不仅是今后学习对数函数和幂函数的基础,同时其在生活和生产实际中的应用十分广泛,所以指数函数不仅是教学的重点,同时也是学生体会数学之美和数学在实际生活中的意义的重要课程.二、学生实际情况分析指数函数是在学生系统学习了函数概念,掌握了函数的性质的基础上第一次对一个函数进行全面、系统的研究,因此在初期会给学生带来一定的学习困难,但指数函数的总体难度不大,随着数学思想的建立和对函数知识系统的学习,大部分学生均可熟练掌握.三、设计思想1.函数及其图象在高中数学中占有很重要的位置。
为了突出重点,突破难点,本节课采用列表法、图象法、解析法及图形计算器的实际操作,让学生从不同的角度去研究指数函数,对其有一个全方位的认识,从而达到知识的迁移运用.2.在教学过程中通过自主探究、生生对话、师生对话,培养学生“体会-总结-反思”的数学思维习惯,提高数学素养,激发学生勇于探索的精神.四、学习目标“目标导引教学”是数学学科的教学模式之一,一节好课,首先要解决的是要把学生带到哪里去的问题,所以我对课标中的要求做了详细的分解。
课程标准对本节课的要求是:理解并掌握指数函数的概念;能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点.首先,我从认知层次的三个维度对课标进行了分解,具体如下:依据行为动词,我又从能力层次将课标进行了再分解,具体如下:由此确定的学习目标为:1.通过具体实例,经过合作交流活动得到指数函数的概念,由学生自主归纳总结并对指数函数的概念进行分析;2.借助图形计算器画出具体指数函数的图象,探索、归纳、猜想指数函数的单调性与特殊点;3.学生在数学活动中感受数学思想之美、体会数学方法之重要,培养学生主动学习、合作交流的集体意识.五、教学重点与难点教学重点:指数函数的概念的产生过程;教学难点:用数形结合的方法,从具体到一般地探索概括指数函数性质.六、教学过程本节课我采取“目标、评价、教学一致性”的教学设计,同时采用“点拨式自主学习与合作探究”的教学方法,将学生分成六人小组,每组由一名组长负责,借助五个环节实现本节课的学习目标.具体内容如下:这是我的板书设计我的板书设计分为教师板书和学生板书两块内容,教师板书,我侧重将本节的三个主要内容展示在黑板上,便于学生理解和记忆.学生板书,我将留给学生展示作图成果,便于对学生掌握的情况进行总结和评价.课后实践:教材59页A组第7题(2)、(3);第8题(1)、(4)我将以从上六个方面来实现本节课教学设想,让学生们在快乐中学习,在学习中寻找快乐.谢谢!。
指数函数图像及其性质说课稿

三. 教学目标分析
(一)三维目标 (1)知识目标:使学生理解指数函数的定义,掌握指数函数的 图象和性质,初步学会运用指数函数解决问题
(2)能力目标:
(3)情感目标:
三. 教学目标分析
(二)教学重点:
(1)指数函数的概念 (2)指数函数图像 (3)指数函数的性质及其应用
(三)教学难点:
(1)指数函数概念的理解 (2)如果和作一个全新函数(指数函数)图像 (3)研究一个函数的性质的方法,模式
指数函数及其性质(1)说课稿
由以下五个方面进行说课: 教材分析
学情分析
教学过程分析
教学方法分析
教学目标(重难 点)分析
一. 教材分析
本节内容:承上启下 本章是必修1的第二章,在第一章《集合与函数概念》教材安排学
生学习了集合的初步知识,这是掌握和使用数学语言的基础;函数是描 述客观世界变化规律的重要数学模型,函数的概念和性质也为第三章进 一步学习函数的应用打下基础。作为重要的基本初等函数之一,指数函 数既是函数近代定义及性质的第一次应用,也为今后研究其他函数提供 了方法和模式,为后续的学习奠定基础.指数函数在知识体系中起了承上 启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对 学生进行情感价值观教育的好素材,所以指数函数应重点研究.
设计意图
(四)集体动手 图像探究
• 问题情景(四)
• 小组比赛分组组图8组图 • 教师选择一些进行多媒体投影
(1) 设计意图 (2)
(3)
(五) 集体讨论 性质探究
• 问题情景(六)
• 小组讨论:有何图像特征
(1) 设计意图 (2)
(3)
(四) 集体讨论 性质探究
• 问题情景(六)
高一数学必修一《指数函数及其性质》PPT课件

进行求解,也可以将对数方程转化为指数方程进行求解。
03
指数函数与对数函数在图像上的关系
指数函数的图像与对数函数的图像关于直线y=x对称。
02
指数函数运算规则
同底数指数运算法则
乘法法则
$a^m times a^n = a^{m+n}$,其中$a$是底数,$m$和$n$ 是指数。
除法法则
$a^m div a^n = a^{m-n}$,其中$a neq 0$。
分组让学生讨论指数函数的性质,如定义域、值域、 单调性、奇偶性等,并让他们尝试通过图像观察验证 这些性质。
问题导入
互动问答
通过具体案例,如“细菌繁殖”、“投资回报”等, 让学生应用指数函数的知识进行分析和计算,加深对
指数函数的理解。
案例分析
老师提出问题,学生抢答或点名回答,问题可以涉及 指数函数的计算、性质应用等,以检验学生的学习效 果。
放射性物质衰变模型
放射性物质衰变模型
01
N(t) = N0 * e^(-λt),其中N(t)表示t时刻的放射性物质数量,
N0表示初始放射性物质数量,λ表示衰变常数。
指数函数在放射性物质衰变模型中的应用
02
通过指数函数可以描述放射性物质数量随时间减少的规律。
放射性物质衰变模型的意义
03
对于核能利用、环境保护等领域具有重要的指导意义。
单调性
当a>1时,指数函数在R上是增函数;当0<a<1时,指数函 数在R上是减函数。
指数函数与对数函数关系
01
指数函数与对数函数的互化关系
指数函数y=a^x(a>0且a≠1)与对数函数y=log_a x(a>0且a≠1)是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版高中数学必修一《指数函数及其性质》说课稿各位评委,你们好,今天我说课的内容是普通高中课程标准实验教科书数学必修的第1个模块中第二章的2.1.2指数函数及其性质的第一节课。
下面我从教材分析;教学目标分析;教法、学法分析;教学过程分析;板书设计分析;评价分析等六个方面对本设计进行说明。
一、教材分析1、教材的地位与作用(1)本节内容既是函数内容的深化,又是今后学习对数函数、三角函数的基础,具有非常高的实用价值,在教材中起到了承上启下的关键作用。
(2)在指数函数的研究过程中蕴含了数形结合、分类讨论、归纳推理、演绎推理等数学思想方法,通过学习可以帮助学生进一步理解函数,培养学生的函数应用意识,增强学生对数学的兴趣。
2、教材处理根据学生的认知规律,本节课从具体到抽象,从特殊到一般,由浅入深地进行教学,使学生顺利地掌握知识,发展能力。
在教学过程中,运用多媒体辅助教学,提高教学效率。
本节教材我分两节完成,第一课时为指数函数的定义,图像及性质;第二课时为指数函数的应用。
本节课是第一课时。
3、教学重点、难点教学重点:指数函数的定义、图象、性质.教学难点:指数函数的定义理解,指数函数的图象特征及指数函数性质的归纳、概括。
4、教具、学具准备:多媒体课件。
二、教学目标分析根据教材特点及教学大纲要求,我认为学生通过本节内容的学习要达到以下目标:1、知识目标:①掌握指数函数的概念;②掌握指数函数的图象和性质;③能初步利用指数函数的概念解决实际问题;2、能力目标:①渗透数形结合的基本数学思想方法②培养学生观察、联想、类比、猜测、归纳的能力;3、品德目标:①体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力③领会数学科学的应用价值。
三、教法、学法分析1、教法分析遵循“以学生为主体、教师是数学课堂活动的组织者、引导者和参与者”的现代教育原则。
依据本节为概念学习的特点,探究发现式教学法、类比学习法,并利用多媒体辅助教学,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。
2、学法指导本节课是在学习完“指数”的概念和运算后编排的,针对学生实际情况,我主要在以下几个方面做了尝试:1.再现原有认知结构。
在引入两个实例后,请学生回忆有关指数的概念,帮助学生再现原有认知结构,为理解指数函数的概念做好准备。
2.领会常见数学思想方法。
在借助图象研究指数函数的性质时会遇到分类讨论、数形结合等基本数学思想方法,这些方法将会贯穿整个高中的数学学习。
3.在互相交流和自主探究中获得发展。
在实例的课堂导入、指数函数的性质研究、例题与训练、课内小结等教学环节中都安排了学生的讨论、分组、交流等活动,让学生变被动的接受和记忆知识为在合作学习的乐趣中主动地建构新知识的框架和体系,从而完成知识的内化过程。
4.注意学习过程的循序渐进。
在概念、图象、性质、应用的过程中按照先易后难的顺序层层递进,让学生感到有挑战、有收获,跳一跳,够得着,不同难度的题目设计将尽可能照顾到课堂学生的个体差异。
回忆实例、引入新课一〉指数函数的定义一般地,函数y=a x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R。
提问:在本定义中要注意哪些要点?1 自变量x2 定义域R3 a的范围a>0,且a≠14 定义的形式(对应法则)y=a x进一步提问:为什么规定定义中10≠>aa且?将a如数轴所示分为:0<a,0=a,10<<a,1=a和1>a五部分进行讨论:(1)如果0<a, 比如xy)4(-=,这时对于21,41==xx等,在实数范围内函数值不存在;(2)如果0=a,⎪⎩⎪⎨⎧≤=>无意义时当时当xxaxax,,(3)如果1=a,11==xy,是个常值函数,没有研究的必要;(4)如果10<<a或1>a即10≠>aa且,x可以是任意实数。
因为指数概念已经扩充到整个实数范围,所以在10≠>aa且的前提下,x可以是任意实数,即指数函数的定义域为R。
新课引入后,板书课题,提出指数函数的概念。
对a的范围的具体分析,有利于学生对指数函数一般形式的掌握,并增强学生思维的严谨性,同时为后面研究函数的图象和性质埋下了伏笔。
理解定义练习一1、下列函数是否是指数函数?(1)y=0.2x (2)y=(-2)x (3)y=e x (4)y=(1/3)x(5)y=1x (6)4xy= (7)xy4-= (8) 14+=xy2、课本58页,练习2,3。
生:独立思考,并且小组讨论、交流;师:课堂巡视,个别辅导,针对学生的共同问题集中解决。
练习一让学生正确理解指数函数的定义,有利于打破学生对定义的轻视并使学生头脑中不断完善对定义理解。
提出问题,探求新知师:(1)你能类比前面讨论函数性质时的方法,指出研究指数函数性质的方法吗?(2)怎样得到指数函数的图象?(3)指数函数有哪些性质?教师引导学生回顾需要研究函数的哪些性质,讨论研究指数函数性质的方法,强调数形结合,强调函数图象研究性质中的作用,注意从特殊到一般的思想方法的应用,渗透概括能力的培养.注重学生思维习惯的养成,即应从哪些方面,那些角度去探索一个具体函数。
合作交流,动手画图先看特殊例子(将同学们分两组用描点法分别画出下列函数的图象)第一组:画出xy2=,xy)21(=的图象;第二组:画出xy3=,xy)31(=的图象。
生:独立画图,同学间交流;师:课堂巡视,个别辅导,展示画得较好的部分学生的图象.师:从画出的图象中你能发现函数y=2x的图象和函数xy)21(=的图象有什么关系?可否利用y=2x的图象画出xy)21(=的图象?师:投影展示课本表2-1、2-2以及图2.1-2、2.1-3;生:观察图象及表格,表述自己的发现;师生:概括出根据对称性画指数函数图象的方法.借助几何画板,突出重点和难点,从而增大教学的容量和图象的直观性,帮助学生理解消化新课内容。
学生的主体意识在这里获得充分的体现通过引导学生分析图像特征,帮助学生总结函数性质,培养学生形数结合的能力。
观察图象,研究性质引导学生从以下几个方面看所画出的图像:(1)图像范围;(2)图像经过的特殊点;(3)图像从左向右的变化趋势展开研究。
通过观察分析图像,让学生在讨论中发现指数函数y=a x(a>0且a≠1)的图像特征,并总结指数函数y=a x(a>0且a≠1)的图像特征,然后投影出的指数函数y=a x(a>0且a≠1)的图像特征列表,根据指数函数的图象特征,由特殊到一般的推理方法提炼指数函数的性质,教师边提问`边分析`边整理成表(如下所示)a>1 0<a<1图象性质(1)定义域:R(2)值域:(0,+∞)(3)过点(0,1),即x=0时,y=1(4)在R上是增函数(4)在R上是减函数(说明:教材对于指数函数性质的处理,仅是观察图象发现的,其正确性理应严格证明,但教材不做要求)为了再一次加深学生对性质的理解,我用电脑显示:当a变化时,图象变化的动画过程,在《几何画板》中显示,重现指数函数的特征与性质。
接着,当a 固定的常数,从左到右发展,图象变化的动画过程――《几何画板》的强烈跟踪功能,从而得出是增函数或减函数的性质。
通过两次电脑的动画显示,尤其是让学生自主动手让学生充分体验了同时也渗透了“实践-认识-再实践-再认识”的辩证唯物主义观点。
当堂训练,共同提高练习二.根据指数函数的性质,利用不等号填空:(1) (4/5)3__0 (2) 5-1__0 (3) 70__0(4) (3/100)-3__0 (5) (2/3)2__1 (6) (7/9)-4__1(7)10-1/2__1 (8) 63__1练习三 (1)已知a1/3>1,则a的取值范围是_____________;(2)已知0<b3<1,则b的取值范围是_____________;(3)已知c-3>1,则c的取值范围是_____________;(4)已知0<d-2<1,则d的取值范围是_____________.练习二、三是指数函数性质的简单应用,目的是让学生熟悉一下性质,有利于指数函数第二课时的学习。
例题讲解,提升总结投影:例6:已知指数函数f(x) = x a (0a且1≠a) 的图象经过点(3,π),求f(0),f(1),f(-3)的值。
师:引导学生分析,当函数图象过某点时,该点的坐标满足该函数解析式,即当时,。
生:思考,叙述解决例6的步骤和过程.解:因为f(x) = x a的图象经过点(3,π),所以f(3)=π,即3a=π,解得31π=a,于是f(x)= 3xπ。
所以,f(0)= 0π=1,f(0)= 31π=3π,f(-3)= 1-π=π1。
师:根据本题,你能说出确定一个指数函数需要什么条件吗?师:从方程思想来看,求指数函数就是确定底数,因此只要一个条件,即布列一个方程就可以了。
练习四:1、已知指数函数f(x)的图象过点(3,8),求f(6)的值。
2、已知函数f(x)= x a+b的图象过点(1,3),且在y轴上的截距为2,则求f(x)的解析式?3、已知函数f(x)=a x-1(x≥0)的图象经过点(2,12),其中a>0且a≠0.(1)求a的值;(2)求函数y=f(x)(x≥0)的值域。
让学生先练后讲,巩固学生的解题程序。
明确底数a是确定指数函数的要素。
再次强化指数函数的定义及其性质。
教学信息反馈1、求下列函数的定义域:115)2(3)1(-==xx yy2、函数y=a2x-3+3恒过定点。
3、函数x aaay•+-=)33(2是指数函数 ,则=a________4、如图是指数函数①xy a=,②xy b=,③xy c=,④xy d=的图象,则a,b,c,d的大小关系是()A.1a b c d<<<<B.1b a d c<<<<C.1a b c d<<<<D.1a b d c<<<<通过小测验检查学生对该课内容学习的情况,真实地反馈教学信息,从而在下一节课及时调控,查漏补缺,提高教学质量。
五、板书设计分析课题:指数函数及其性质引例:指数函数的定义练习学生画图:指数函数的性质:练习二练习三例6练习四小结:作业:图像与性质安排在黑板中间,突出重点,有利于学生系统理解和掌握知识,培养学生的理性思维。