成都2015届高考模拟考试数学文科试卷(一)及答案

合集下载

2015四川高考数学文科试卷带详解

2015四川高考数学文科试卷带详解

2015年普通高等学校招生全国统一考试(四川卷)文科一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的) 1.设集合A ={|12}x x -<<,集合B ={|13}x x <<,则A B =( )A. {|13}x x <-<B. {|11}x x <-<C. {|12}x x <<D. {|23}x x << 【参考答案】A【测量目标】考查集合的并集运算.【试题分析】集合(12)(13)A B =-,,=,,故(13)A B =-,,选A. 2.设向量(24)a =,与向量(6)b x =,共线,则实数x =( ) A.2 B.3 C.4 D.6 【参考答案】B【测量目标】考查向量平行的性质.【试题分析】 由向量平行的性质,有2:4=x :6,解得x =3,选B.3.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )A.抽签法B.系统抽样法C.分层抽样法D.随机数法 【参考答案】C【测量目标】考查抽样方法的适用范围.【试题分析】按照各种抽样方法的适用范围可知,应使用分层抽样.选C.4.设a b ,为正实数,则1a b “>>”是22log log 0a b “>>”的( ) A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 【参考答案】A【测量目标】考查充分、必要条件.【试题分析】1a b >>时,有22log log 0a b >>成立,反之也正确.选A. 5.下列函数中,最小正周期为π的奇函数是( )A.πsin(2)2y x =+B.πcos(2)2y x =+C.sin2cos2y x x =+D.sin cos y x x =+ 【参考答案】B【测量目标】考查三角函数的周期.【试题分析】A 、B 、C 的周期都是π,D 的周期是2π,但A 中,cos2y x =是偶函数,C 中π)4y x +是非奇非偶函数. 故正确答案为B.6.执行如图所示的程序框图,输出S 的值为( )第6题图A. - C.12-D.12【参考答案】D【测量目标】考查算法的程序框图,求值运算能力. 【试题分析】第四次循环后,5k =,输出5π1sin62S ==,选D. 7.过双曲线2213y x -=的右焦点且与x 轴垂直的直线交该双曲线的两条渐近线于A 、B 两点,则|AB |=( )B. C.6 D.【参考答案】D【测量目标】考查双曲线的交点、渐近线.【试题分析】由题意,1,a b ==2c =,渐近线方程为y =,将2x =代入渐近线方程,得y =±AB = D.8.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系e kx b y += (e 2.718= 为自然对数的底数,,k b 为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是( )A.16小时B.20小时C.24小时D.21小时 【参考答案】C【测量目标】考查函数在实际问题中的应用.【试题分析】由题意,22192e 48ebk b+⎧=⎨=⎩得11192e 1e 2b k⎧=⎪⎨=⎪⎩,于是当33x =时 ,()33311eee k bk by +==⋅=31192242⎛⎫⨯= ⎪⎝⎭(小时).9.设实数x y ,满足2102146x y x y x y +≤⎧⎪+≤⎨⎪+≥⎩,则xy 4<的最大值为( )A.252B.492C.12D.14【参考答案】A【测量目标】考查运用线性规划求最值. 【试题分析】画出可行域如图,第9题图在ABC △区域中结合图象可知, 当动点在线段AC 上时xy 取得最大, 此时210x y +=,()112522222x y xy x y +⎛⎫=⋅≤ ⎪⎝⎭22=,当且仅当552x y =,=时取等号,对应点落在线段AC 上, 故最大值为25.2选A. 10.设直线l 与抛物线24y x =相较于A ,B 两点,与圆C :222(5)(0)x y r r -+=>相切于点M ,且M 为线段AB 中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B.(1,4)C.(2,3)D.(2,4) 【参考答案】D【测量目标】考查抛物线、圆、直线的综合问题. 【试题分析】不妨设直线:l x ty m =+, 代入抛物线方程有:2440y ty m --=, 则216160t m ∆=+>,又中点2(2,2)M t m t +,则1MC l k k =-,即232m t =-(当0t ≠时),代入21616t m ∆=+,可得230t ->,即203t <<. 又由圆心到直线的距离等于半径,可得2d r ====由203t <<,可得(2,4)r ∈.选D.二、填空题(每小题5分,共25分,将答案填在答题纸上) 11.设i 是虚数单位,则复数1i i-=_____________.【参考答案】2i【测量目标】考查复数的四则运算. 【试题分析】1i i i 2i i-=+=. 12.2lg0.01log 16=+ _____________.【参考答案】2【测量目标】考查对数函数的求值运算. 【试题分析】2lg0.01log 16242+=-+=.13.已知sin 2cos 0αα+=,则22sin cos cos ααα-的值是______________.【参考答案】-1【测量目标】考查三角函数的求值运算. 【试题分析】由已知可得tan 2α=-,22sin cos cos ααα=-22222sin cos cos 2tan 1411sin cos tan 141ααααααα---===-+++-. 14.在三棱柱111ABC A B C -中,90BAC ∠︒=,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M ,N ,P 分别是AB ,BC ,B 1C 1的中点,则三棱锥P AMN -的体积是______.【参考答案】124【测量目标】空间几何体的体积.【试题分析】由题意,三棱柱是底面为直角边长为1的等腰直角三角形, 高为1的直三棱柱,底面积为12. 如图,三棱锥P AMN -底面积是三棱锥底面积的14,高为1, 故三棱锥P AMN -的体积为111132424⨯⨯=.第14题图15.已知函数()()22x f x g x x ax =,=+ (其中a ∈R ).对于不相等的实数12x x ,,设()()()()12121212,f x f x g x g x m n x x x x --=--=,现有如下命题:①对于任意不相等的实数12x x ,,都有0m >;②对于任意的a 及任意不相等的实数12x x ,,都有0n >; ③对于任意的a ,存在不相等的实数12x x ,,使得m n =; ④对于任意的a ,存在不相等的实数12x x ,,使得m n =-. 其中真命题有___________________(写出所有真命题的序号).【参考答案】①④【测量目标】考查函数与命题判断相结合的问题.【试题分析】对于①,因为()xf x '=2l n2>0恒成立,故①正确.对于②,取8a =-,即()28g x x '=-,当12x x ,<4时,0n <,②错误.对于③,令()()f x g x ''=,即2ln22xx a =+,记()2ln 22x h x x =-,则()()22ln22xh x '=-,存在()00,1x ∈,使得()00h x =,可知函数()h x 先减后增,有最小值. 因此,对任意的a ,m n =不一定成立. ③错误. 对于④,由()()f x g x ''=-,即2ln 22xx a =--,令()2ln 22xh x x =+,则()()22ln 220xh x '=+>恒成立,即()h x 是单调递增函数, 当x →+∞时,()h x →+∞; 当x →-∞时,()h x →-∞.因此,对任意的a ,存在y a =与函数()h x 有交点. ④正确.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤). 16.(本小题满分12分)设数列{}(123)n a n ⋯=,,的前n 项和n S 满足12n n S a a =-,且1231a a a ,+,成等差数列. (1)求数列的通项公式;(2)设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求n T . 【测量目标】(1)考查等差数列与等比数列的概念、等比数列通项公式;(2)考查等比数列前n 项和、运算求解能力. 【试题分析】 (1) 由已知12n n S a a =-, 有1122(2)n n n n n a S S a a n ≥--=-=-, 即12(2)n n a a n ≥-=. 从而21321224a a a a a =,==, 又因为1231a a a ,+,成等差数列, 即1322(1)a a a +=+.所以111+4=2(2+1)a a a ,解得1=2a .所以,数列{}n a 是首项为2,公比为2的等比数列 故=2.n n a (2)由(1)得112n n a =, 所以211122111111222212nn n nT ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=+++==-- .17.(本小题满分12分)一辆小客车上有5个座位,其座位号为1,2,3,4,5,乘客12345,,,,P P P P P 的座位号分别为1,2,3,4,5,他们按照座位号顺序先后上车,乘客1P 因身体原因没有坐自己号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.(1)若乘客1P 坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处);(2)若乘客1P 坐到了2号座位,其他乘客按规则就坐,求乘客1P 坐到5号座位的概率.【测量目标】(1)考查排列组合;(2)考查排列组合、古典概型.【试题分析】 (1)余下两种坐法如下表所示:做到了2号座位,其他乘客按规则就坐,则所有可能坐法可用下表表示为于是,所有可能的坐法共8种.设“乘客5P 坐到5号座位”为事件A ,则事件A 中的基本事件的个数为4, 所以()4182P A ==. 答:乘客5P 坐到5号座位的概率为12. 18.(本小题满分12分)一个正方体的平面展开图及该正方体的直观图的示意图如图所示. (1)请按字母F ,G ,H 标记在正方体相应地顶点处 (不需要说明理由) ; (2)判断平面BEG 与平面ACH 的位置关系.并说明你的结论; (3)证明:直线DF ⊥平面BEG .第18题图【测量目标】(1)考查简单空间图形的直观图,空间想象能力;(2)考查空间线面平行与面面平行的判定与性质,空间想象能力、推理论证能力;(3)考查空间线面垂直的判定与性质,空间想象能力、推理论证能力.【试题分析】(1)点F,G,H的位置如图所示第18题图(2)平面BEG∥平面ACH.证明如下:因为ABCD-EFGH为正方体,所以BC∥FG,BC=FG.又FG∥EH,FG=EH,所以BC∥EH,BC=EH.于是BCEH为平行四边形,所以BE∥CH.又CH⊂平面ACH,BE⊄平面ACH,所以BE∥平面ACH,同理BG∥平面ACH.又BE∩BG=B,所以平面BEG∥平面ACH.第18题图(3)连接FH,因为ABCD-EFGH为正方体,所以DH⊥平面EFGH.因为EG⊂平面EFGH,所以DH⊥EG.又EG⊥FH,DH∩FH=H,所以EG⊥平面BFHD.又DF⊂平面BFHD,所以DF⊥EG.同理DF ⊥BG , 又EG ∩BG =G ,所以DF ⊥平面BEG . 19.(本小题满分12分)已知A 、B 、C 为△ABC 的内角,tan A 、tan B 是关于方程x 2-p +1=0(p ∈R )两个实根. (1)求C 的大小;(2)若AB =3,ACp 的值. 【测量目标】(1)考查韦达定理,解三角形; (2)考查正弦定理的应用,正切值的计算.【试题分析】 (1)由已知,方程210x p -+=的判别式22)4(1)3440p p p ∆≥=--+=+-, 所以2p ≤-或2.3p ≥由韦达定理,有tan tan tan tan 1A B A B p +=,=-, 于是1tan tan 1(1)0A B p p =≠-=--,从而tan()A B +=tan tan 1tan tan A B A B +==-所以tan tan()C A B =-+ 所以60.C ︒=(2)由正弦定理,得sin B =sin AC C AB ==解得45B ︒=或135B ︒=(舍去), 于是18075,A B C ︒︒=--=则tan tan75tan(4530)A ︒︒︒==+=1tan 45tan 3021tan 45tan 303++==-所以tan )1p A B =-+=--20.(本小题满分13分)如图,椭圆E :()222210x y a b a b +=>>的离心率是2,点P (0,1)在短轴CD 上,且1PC PD ⋅=- . (1)求椭圆E 的方程;(2)设O 为坐标原点,过点P 的动直线与椭圆交于A 、B 两点.是否存在常数λ,使得OA OB PA PB λ⋅+⋅ 为定值?若存在,求λ的值;若不存在,请说明理由.第20题图【测量目标】(1)考查椭圆的标准方程,运算求解能力;(2)考查直线方程,推理论证能力、运算求解能力,数形结合、化归与转化、特殊与一般、分类与整合等数学思想.【试题分析】(1)由已知,点C ,D 的坐标分别为(0)(0),b b ,-,,又点P 的坐标为(01),,且1PC PD ⋅=- ,于是2222112b c a a b c ⎧-=-⎪⎪=⎨⎪-=⎪⎩,解得2a b =, 所以椭圆E 方程为22142x y +=. (2)当直线AB 斜率存在时,设直线AB 的方程为1y kx =+,A ,B 的坐标分别为1122()()x y x y ,,,. 联立221421x y y kx ⎧+=⎪⎨⎪=+⎩,得22(21)420k x kx ++-=, 其判别式()224+8(21)0k k ∆=+>. 所以12122242,,2121k x x x x k k +=-=-++ 从而OA OB PA PB λ⋅+⋅ 12121212[(1)(1)]x x y y x x y y λ=+++-- 21212(1)(1)()1k x x k x x λ=+++++()2224(21)21k k λλ--+--=+ 21221k λλ---+=-所以,当1λ=时,212321k λλ---=-+-,此时,OA OB PA PB λ⋅+⋅ 3=-为定值. 当直线AB 斜率不存在时,直线AB 即为直线CD ,此时OA OB PA PB OC OD PC PD λ⋅+⋅=⋅+⋅ 21=3=---.故存在常数1λ=,使得OA OB PA PB λ⋅+⋅ 为定值3-.21.(本小题满分14分)已知函数()222ln 2+f x x x x ax a =-+-,其中0a >.(1)设()g x 为()f x 的导函数,讨论g (x )的单调性;(2)证明:存在(01)a ∈,,使得()0f x ≥在区间(0,)+∞内恒成立,且()0f x =在(1,)+∞内有唯一解. 【测量目标】(1)考查导数的运算、导数在研究函数中的应用、函数的零点;(2) 函数与方程,推理论证能力、运算求解能力、创新意识,数形结合、化归与转化等数学思想.(1)由已知,函数()f x 的定义域为(0)∞,+,()()==2(1ln )g x f x x x a '---,所以()()2122x g x x x-'==-. 当(01)x ∈,时,()0g x '<,()g x 单调递减; 当(1)x ∈∞,+时,()g x '>0,()g x 单调递增.(2)由()'2(1ln )0f x x x a =---=,解得1ln a x x =--.令()x ϕ2222ln 2(1ln )(1ln )(1+ln )2ln x x x x x x x x x x x =-+---+--=-, 则()()110e 2(2e)0ϕϕ<=>,=-,于是存在0(1e)x ∈,,使得()00x ϕ=.令()00001ln a x x u x =--=,其中()1ln (1)u x x x x ≥=--,由()110u x x'≥=-知,函数()u x 在区间(1)∞,+上单调递增, 故()()0001()e e 21u a u x u <=<==-<,即0(01)a ∈,.当0a a =时,有()()()00000f x f x x ϕ'=,==.再由(1)知,()f x '在区间(1)∞,+上单调递增,当0(1)x x ∈, 时,()0f x '<,从而()()00f x f x >=; 当0()x x ∈∞,+时,()'0f x >,从而()()00f x f x >=;又当(01]x ∈,时,()20()2ln 0f x x a x x =-->, 故(0)x ∈∞,+时,()0f x ≥.综上所述,存在(01)a ∈,,使得()0f x ≥,在区间(0+)∞,内恒成立,且()0f x =在区间(1)∞,+内有唯一解.。

2015年高考文科数学四川卷及答案

2015年高考文科数学四川卷及答案

数学试卷 第1页(共15页)数学试卷 第2页(共15页)数学试卷 第3页(共15页)绝密★启用前2015年普通高等学校招生全国统一考试(四川卷)数学(文科)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).第Ⅰ卷1至3页,第Ⅱ卷4至6页,共6页.满分150分.考试时间120分钟.考生作答时,须将答案答在答题卡上.在本试题卷、草稿纸上答题无效.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑. 第Ⅰ卷共10小题.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|12}A x x =-<<,集合{|13}B x x =<<,则A B = ( ) A .{|13}x x -<<B .{|11}x x -<<C .{|12}x x <<D .{|23}x x << 2.设向量a ()2,4=与向量b (),6x =共线,则实数x =( )A .2B .3C .4D .53.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )A .抽签法B .系统抽样法C .分层抽样法D .随机数法4.设,a b 为正实数,则“1a b >>”是“22log log 0a b >>”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件5.下列函数中,最小正周期为π的奇函数是( )A .sin(2)2πy x =+ B .πcos(2)2y x =+ C .sin 2cos2y x x =+D .sin cos y x x =+6.执行如图所示的程序框图,输出S 的值为( )A.2-B.2C .12-D .127.过双曲线2213yx -=的右焦点且与x 轴垂直的直线,交该双曲线 的两条渐近线于A ,B 两点,则||=AB( ) A.3B.C .6D.8.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃) 满足函数关系ekx by +=(e 2.718=…为自然对数的底数,k ,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保 鲜时间是48小时,则该食品在33℃的保鲜时间是( ) A .16小时 B .20小时 C .24小时D .28小时9.设实数x ,y 满足2102146x y x y x y +⎧⎪+⎨⎪+⎩≤,≤,≥,则xy 的最大值为( )A .252B .492C .12D .1610.设直线l 与抛物线24y x =相交于A ,B 两点,与圆222(5)(0)x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是 ( )A .(1,3)B .(1,4)C .(2,3)D .(2,4)第Ⅱ卷(非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚.答在试题卷、草稿纸上无效.第Ⅱ卷共11小题.二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中的横线上.11.设i 是虚数单位,则复数1i i-=__________. 12.2lg0.01log 16+的值是___________.13.已知sin 2cos 0αα+=,则22sin cos cos ααα-的值是___________.14.在三棱柱111ABC A B C -中,90BAC ∠=︒,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M ,N ,P 分别是棱AB ,BC ,11B C 的中点,则三棱锥1P A MN -的体积是__________.15.已知函数()2x f x =,2()g x x ax =+(其中a ∈R ).对于不相等的实数1x ,2x ,设1212()()f x f x m x x -=-,1212()()g x g x n x x -=-,现有如下命题:①对于任意不相等的实数1x ,2x ,都有0m >;②对于任意的a 及任意不相等的实数1x ,2x ,都有0n >; ③对于任意的a ,存在不相等的实数1x ,2x ,使得m n =; ④对于任意的a ,存在不相等的实数1x ,2x ,使得m n =-. 其中的真命题有__________(写出所有真命题的序号).三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤. 16.(本小题满分12分)设数列{}n a (1,2,3,)n =⋅⋅⋅的前n 项和n S 满足12n n S a a =-,且1a ,21a +,3a 成等差数列.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设数列1{}na 的前n 项和为n T ,求n T .17.(本小题满分12分)一辆小客车上有5个座位,其座位号为1,2,3,4,5.乘客1P ,2P ,3P ,4P ,5P 的-------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共15页)数学试卷 第5页(共15页) 数学试卷 第6页(共15页)座位号分别为1,2,3,4,5,他们按照座位号从小到大的顺序先后上车.乘客1P 因身体原因没有坐自己的1号座位,这时司机要求余下的乘客按以下规则就座:如果自己的座位空着,就只能坐自己的座位;如果自己的座位已有乘客就座,就在这5个座位的剩余空位中任意选择座位.(Ⅰ)若乘客1P 坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给;(Ⅱ)若乘客1P 坐到了2号座位,其他乘客按规则就座,求乘客5P 坐到5号座位的概率.18.(本小题满分12分)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由); (Ⅱ)判断平面BEG 与平面ACH 的位置关系,并证明你的结论. (Ⅲ)证明:直线DF ⊥平面BEG19.(本小题满分12分)已知A ,B ,C 为ABC △的内角,tan A ,tan B 是关于x 的方程210x p +-+=(p ∈R )的两个实根. (Ⅰ)求C 的大小.(Ⅱ)若3AB =,AC =p 的值.20.(本小题满分13分)如图,椭圆2222:+1(0)x y E a b a b =>>,点P (0,1)在短轴CD 上,且1PC PD =-.(Ⅰ)求椭圆E 的方程;(Ⅱ)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使 OB PA PB λ+为定值?若存在,求λ的值;若不存在,请说明理由.21.(本小题满分14分)已知函数22()2ln 2f x x x x ax a =-+-+,其中0a >.(Ⅰ)设()g x 是()f x 的导函数,讨论()g x 的单调性;(Ⅱ)证明:存在(0,1)a ∈,使得()0f x ≥恒成立,且()0f x =在区间(1,)+∞内有唯一解.数学试卷 第7页(共15页)数学试卷 第8页(共15页)数学试卷 第9页(共15页)2015年普通高等学校招生全国统一考试(四川卷)数学(文科)答案解析第Ⅰ卷(13)A B =-,【提示】直接利用并集求解法则求解即可. :6x ,解得1)2x x y ⎛≤ ⎝2故最大值为25.2【提示】画出不等式组对应的平面区域,利用基本不等式进行求解即可. 第Ⅱ卷32424【提示】判断三视图对应的几何体的形状,画出图形,利用三视图的数据,求解三棱锥。

2015四川高考文科数学模拟试题

2015四川高考文科数学模拟试题

2015四川高考数学模拟试题(文科)考试时间:120分钟;满分:150分 注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题 共50分)一、选择题(共10小题,每题5分,共50分,在每题给出的四个选项中,只有一个是符合题目要求的)1.已知全集=R U ,集合{|0}A x x =>,{|01}B x x =<<,则()U C A B = ( )A .{01}x x <<B .{0}x x ≤C .{1}x x <D .R2.设i 为虚数单位,则复数51i i-+的共轭复数为( )A .23i -B . 23i +C . 23i --D .23i -+ 3.如果角θ的终边经过点()1,3-,那么θcos 的值是( )A .23-B .21-C . 21D .234.设→→b a ,是两个非零向量,下列选项正确的是( ) A .若a b a b +=-,则→→⊥b a B .若→→⊥b a ,则a b a b +=-C .若a b a b +=-,则存在实数λ,使得→→=a b λ D .若存在实数λ,使得→→=a b λ,则a b a b +=-5.四棱锥的三视图如图所示,则最长的一条侧棱的长度是( )A. 22 B .5 C .13 D .296.已知数列{}n a 为等比数列,若4610a a +=,则()713392a a a a a ++的值为( ) A .10 B .20 C .100 D .2007.从区间()3,3-中任取两个整数a ,b ,设点(),a b 在圆223x y +=内的概率为1P ,从区间()3,3-中任取两个实数a ,b ,直线30ax by ++=和圆223x y +=相离的概率为2P ,则( )A .12P >PB .12P <PC .12P =PD .1P 和2P 的大小关系无法确定 8.设椭圆()0>>b a 的左、右焦点分别为21,F F ,以2F 为圆心,2OF (O 为椭圆中心)为半径作圆2F ,若它与椭圆的一个交点为M ,且1MF 恰好为圆2F 的一条切线,则椭圆的离心率为( )A . 32-B .13-C .22 D .239.函数()f x 在定义域R 上的导函数是()f x ',若()()2f x fx =-,且当(),1x ∈-∞时,()()10x f x '-<,设()0a f =、()2b f =、()2log 8c f =,则 ( )A .a b c <<B .a b c >>C . a c b <<D .c a b <<10.)(x f 是定义在D 上的函数, 若存在区间D n m ⊆],[, 使函数)(x f 在],[n m 上的值域恰为],[kn km ,则称函数)(x f 是k 型函数.给出下列说法:①x x f 43)(-=不可能是k 型函数; ②若函数x x y +-=221是3型函数, 则4-=m ,0=n ;③设函数)0(2)(23≤++=x x x x x f 是k 型函数, 则k 的最小值为94; ④若函数)0(1)(22≠-+=a x a x a a y 是1型函数, 则m n -的最大值为332. 下列选项正确的是( )A .①③B .②③C .②④D .①④第II 卷(非选择题 共100分)二、填空题(共5小题,每题5分,共25分,请将答案填在题中的横线上) 11.命题1sin ,:≤∈∀x R x p 的否定p ⌝是 .12.11320.25331181()lg 4lg 825--⎡⎤++-=⎢⎥⎣⎦错误!未找到引用源。

2015届成都一诊数学试题及答案(文科、理科)

2015届成都一诊数学试题及答案(文科、理科)

成都市2015届高中毕业班第一次诊断性检测数学试题(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{|0}=≥U x x ,集合{1}=P ,则UP =(A )[0,1)(1,)+∞ (B )(,1)-∞ (C )(,1)(1,)-∞+∞ (D )(1,)+∞2.若一个几何体的正视图和侧视图是两个全等的正方形,则这个几何体的俯视图不可能是(A ) (B ) (C ) (D ) 3.已知复数z 43i =--(i 是虚数单位),则下列说法正确的是(A )复数z 的虚部为3i - (B )复数z 的虚部为3 (C )复数z 的共轭复数为z 43i =+ (D )复数z 的模为54.函数31,0()1(),03x x x f x x ⎧+<⎪=⎨≥⎪⎩的图象大致为(A ) (B ) (C ) (D )5.已知命题p :“若22≥+x a b ,则2≥x ab ”,则下列说法正确的是 (A )命题p 的逆命题是“若22<+x a b ,则2<x ab ” (B )命题p 的逆命题是“若2<x ab ,则22<+x a b ” (C )命题p 的否命题是“若22<+x a b ,则2<x ab ” (D )命题p 的否命题是“若22x a b ≥+,则2<x ab ”y xOxyO x y Ox yOGFEHPACBDA B C D 6.若关于x 的方程240+-=x ax 在区间[2,4]上有实数根,则实数a 的取值范围是 (A )(3,)-+∞ (B )[3,0]- (C )(0,)+∞ (D )[0,3]7.已知F 是椭圆22221+=x y a b(0>>a b )的左焦点,A 为右顶点,P 是椭圆上一点,⊥PF x轴.若14=PF AF ,则该椭圆的离心率是 (A )14(B )34 (C )12 (D 8.已知m ,n 是两条不同直线,α,β是两个不同的平面,且//m α,n ⊂β,则下列叙述正确的是(A )若//αβ,则//m n (B )若//m n ,则//αβ (C )若n α⊥,则m β⊥ (D )若m β⊥,则αβ⊥9.若552sin =α,1010)sin(=-αβ,且],4[ππα∈,]23,[ππβ∈,则αβ+的值是 (A )74π (B )94π (C )54π或74π (D )54π或94π10.如图,已知正方体1111ABCD A BC D -棱长为4,点H 在棱1AA 上,且11HA =.在侧面11BCC B 内作边长为1的正方形1EFGC ,P 是侧面11BCC B 内一动点,且点P 到平面11CDDC 距离等于线段PF 的长.则当点P 运动时, 2HP 的最小值是(A )21 (B )22 (C )23 (D )25二、填空题:本大题共5小题,每小题5分,共25分.11.若非零向量a ,b 满足a b a b +=-,则a ,b 的夹角的大小为__________.12.二项式261()x x-的展开式中含3x 的项的系数是__________.(用数字作答)13.在∆ABC 中,内角,,A B C 的对边分别为,,a b c ,若2=c a ,4=b ,1cos 4=B ,则∆ABC 的面积=S __________.14.已知定义在R 上的奇函数()f x ,当0x ≥时,3()log (1)=+f x x .若关于x 的不等式2[(2)](22)f x a a f ax x ++≤+的解集为A ,函数()f x 在[8,8]-上的值域为B ,若“x A ∈”是“x B ∈”的充分不必要条件,则实数a 的取值范围是__________.15.已知曲线C :22y x a =+在点n P (n (0,a n >∈N )处的切线n l 的斜率为n k ,直线n l 交x 轴,y 轴分别于点(,0)n n A x ,(0,)n n B y ,且00=x y .给出以下结论: ①1a =;②当*n ∈N时,n y 的最小值为54; ③当*n ∈N 时,n k <; ④当*n ∈N 时,记数列{}n k 的前n 项和为n S ,则1)<n S .其中,正确的结论有 (写出所有正确结论的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)口袋中装有除颜色,编号不同外,其余完全相同的2个红球,4个黑球.现从中同时取出3个球.(Ⅰ)求恰有一个黑球的概率;(Ⅱ)记取出红球的个数为随机变量X ,求X 的分布列和数学期望()E X .17.(本小题满分12分)如图,ABC ∆为正三角形,EC ⊥平面ABC ,//DB EC ,F 为EA 的中点,2EC AC ==,1BD =.(Ⅰ)求证:DF //平面ABC ;(Ⅱ)求平面DEA 与平面ABC 所成的锐二面角的余弦值. 18.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且22n n S a =-;数列{}n b 满足11b =,12n n b b +=+.*n ∈N .(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)记n n n c a b =,*n ∈N .求数列{}n c 的前n 项和n T .19.(本小题满分12分)某大型企业一天中不同时刻的用电量y (单位:万千瓦时)关于时间t (024t ≤≤,单位:小时)的函数()y f t =近似地满足()sin()(0,0,0)f t A t B A ωϕωϕπ=++>><<,下图是该企业一天中在0点至12点时间段用电量y 与时间t 的大致图象. (Ⅰ)根据图象,求A ,ω,ϕ,B 的值; (Ⅱ)若某日的供电量()g t (万千瓦时)与时间t (小时)近似满足函数关系式205.1)(+-=t t g (012t ≤≤).当该日内供电量小于该企业的用电量时,企业就必须停产.请用二分法计算该企业当日停产的大致时刻(精确度0.1). 参考数据:20.(本小题满分13分)已知椭圆Γ:12222=+by a x (0>>b a )的右焦点为)0,22(,且椭圆Γ上一点M 到其两焦点12,F F 的距离之和为43(Ⅰ)求椭圆Γ的标准方程;(Ⅱ)设直线:(l y x m m =+∈R)与椭圆Γ交于不同两点A ,B ,且32AB =点0(,2)P x 满足=PA PB ,求0x 的值. 21.(本小题满分14分)已知函数2()ln mx f x x =-,2()emx mx g x m =-,其中m ∈R 且0m ≠.e 2.71828=为自然对数的底数.(Ⅰ)当0m <时,求函数()f x 的单调区间和极小值;(Ⅱ)当0m >时,若函数()g x 存在,,a b c 三个零点,且a b c <<,试证明:10e a b c -<<<<<;(Ⅲ)是否存在负数m ,对1(1,)x ∀∈+∞,2(,0)x ∀∈-∞,都有12()()f x g x >成立?若存在,求出m 的取值范围;若不存在,请说明理由.t (时)10 11 12 11.5 11.25 11.75 11.625 11.6875 ()f t (万千瓦时) 2.25 2.4332.5 2.48 2.462 2.496 2.490 2.493 ()g t (万千瓦时)53.522.753.1252.3752.5632.469数学(理科)参考答案及评分意见第Ⅰ卷(选择题,共50分)一、选择题:(本大题共10个小题,每小题5分,共50分)1.A ; 2.C ; 3.D ;4.A ;5.C ;6.B ;7.B ;8.D ;9.A ;10.B .第Ⅱ卷(非选择题,共100分)二、填空题:(本大题共5个小题,每小题5分,共25分)11.90︒ 12.20- 1314.[2,0]- 15.①③④ 三、解答题:(本大题共6个小题,共75分) 16.(本小题满分12分) 解:(Ⅰ)记“恰有一个黑球”为事件A ,则21243641()205⋅===C C P A C .……………………………………………………………4分(Ⅱ)X 的可能取值为0,1,2,则343641(0)205====C P X C (2)分122436123(1)205⋅====C C P X C ………………………………………………………2分1(2)()5===P X P A ………………………………………………………………2分∴X 的分布列为∴X 的数学期望1310121555=⨯+⨯+⨯=EX .…………………………………2分17.(本小题满分12分)(Ⅰ)证明:作AC 的中点O ,连结BO .在∆AEC 中,//=FO 12EC ,又据题意知,//=BD 12EC . ∴//=FO BD ,∴四边形FOBD 为平行四边形. ∴//DF OB ,又⊄DF 平面ABC ,⊂OB 平面ABC .∴//DF 平面ABC .……………………………………4分 (Ⅱ)∵//FO EC ,∴⊥FO 平面ABC .在正∆ABC 中,⊥BO AC ,∴,,OA OB OF 三线两两垂直. 分别以,,OA OB OF 为,,z x y 轴,建系如图. 则(1,0,0)A ,(1,0,2)-E,D . ∴(2,0,2)=-AE,(1=-AD . 设平面ADE 的一个法向量为1(,,z)=x y n ,则110⎧⋅=⎪⎨⋅=⎪⎩AE AD n n,即2200-+=⎧⎪⎨-++=⎪⎩x z x z ,令1=x ,则1,0==z y .∴平面ADE 的一个法向量为1(1,0,1)=n . 又平面ABC 的一个法向量为2(0,0,1)=n .∴121212,2⋅>===cos <n n n n n n .∴平面DEA 与平面ABC8分 18.(本小题满分12分) 解:(Ⅰ)∵22n n S a =- ①当2≥n 时,1122--=-n n S a ②①-②得,122-=-n n n a a a ,即12-=n n a a (2≥n ). 又当1≥n 时,1122=-S a ,得12=a .∴数列{}n a 是以2为首项,公比为2的等比数列,∴数列{}n a 的通项公式为1222-=⋅=n n n a .………………………………………4分又由题意知,11b =,12n n b b +=+,即12+-=n n b b∴数列{}n b 是首项为1,公差为2的等差数列,∴数列{}n b 的通项公式为1(1)221=+-⨯=-n b n n .……………………………2分(Ⅱ)(Ⅱ)由(Ⅰ)知,(21)2=-nn c n (1)分∴231123252(23)2(21)2-=⨯+⨯+⨯++-⋅+-⋅n n n T n n231121232(25)2(23)2(21)2-+=⨯+⨯++-⋅+-⋅+-⋅n n n n T n n n ④由-④得2311222222222(21)2-+-=+⨯+⨯++⋅+⋅--⋅n n n n T n (1)分23112(12222)(21)2-+-=++++--⋅n n n n T n∴12222(21)212+-⋅-=⨯--⋅-n n n T n …………………………………………………1分∴111224222+++-=⋅--⋅+n n n n T n 即1(32)24+-=-⋅-n n T n ∴1(23)24+=-+n n T n∴数列{}n c 的前n 项和1(23)24+=-+n n T n (3)分19.(本小题满分12分) 解:(Ⅰ)由图知12T =,6πω=.………………………………………………………1分 2125.15.22minmax =-=-=y y A ,225.15.22min max =+=+=y y B .……………2分∴0.5sin()26y x πϕ=++.又函数0.5sin()26y x πϕ=++过点(0,2.5).代入,得22k πϕπ=+,又0ϕπ<<,∴2πϕ=.…………………………………2分综上,21=A ,6πω=,2πϕ=,21=B . ………………………………………1分即2)26sin(21)(++=ππt t f .(Ⅱ)令)()()(t g t f t h -=,设0)(0=t h ,则0t 为该企业的停产时间. 由0)11()11()11(<-=g f h ,0)12()12()12(>-=g f h ,则)12,11(0∈t . 又0)5.11()5.11()5.11(<-=g f h ,则)12,5.11(0∈t . 又0)75.11()75.11()75.11(>-=g f h ,则)75.11,5.11(0∈t . 又0)625.11()625.11()625.11(<-=g f h ,则)75.11,625.11(0∈t .又0)6875.11()6875.11()6875.11(>-=g f h ,则)6875.11,625.11(0∈t .…4分……………………………………………1分 ∴应该在11.625时停产.……………………………………………………………1分 (也可直接由)625.11()625.11()625.11(<-=g f h ,0)6875.11()6875.11()6875.11(>-=g f h ,得出)6875.11,625.11(0∈t ;答案在11.625—11.6875之间都是正确的;若换算成时间应为11点37分到11点41分停产) 20.(本小题满分13分)(Ⅰ)由已知2=a=a=c ∴2224=-=b a c .∴椭圆Γ的方程为141222=+y x .…………………………………………………4分 (Ⅱ)由⎪⎩⎪⎨⎧=++=,1412,22y x m x y 得01236422=-++m mx x ① ………………………1分∵直线l 与椭圆Γ交于不同两点A 、B ,∴△0)123(163622>--=m m , 得216<m .设),(11y x A ,),(22y x B ,则1x ,2x 是方程①的两根,则2321mx x -=+, 2123124-⋅=m x x .∴12=-==AB x .又由32AB =,得231294-+=m ,解之2m =±.……………………………3分 据题意知,点P 为线段AB 的中垂线与直线2=y 的交点. 设AB 的中点为),(00y x E ,则432210m x x x -=+=,400mm x y =+=,当2m =时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x -=-+,即1y x =--. 令2=y ,得03x =-.…………………………………………………………………2分当2m =-时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x +=--,即1y x =-+. 令2=y ,得01x =-.………………………………………………………………2分 综上所述,0x 的值为3-或1-. 21.(本小题满分14分)解:(Ⅰ)2222)(ln )ln 21()(ln ln 2)(ln 1ln 2)(x x mx x x x x m x x x x x mx f -⋅=-=⋅--='(0>x 且1≠x ).∴由0)(>'x f ,得21e x >;由0)(<'xf ,得210e x <<,且1≠x .……………………1分∴函数)(x f 的单调递减区间是(0,1),(1e),单调递增区间是),(+∞e .………………2分∴me e f x f 2)()(-==极小值.………………………………………………………………1分(Ⅱ)222(2)(),(0)mx mx mx mxmxe mx e m mx mx g x m e e --'=-=>. ∴()g x 在(,0)-∞上单调递增,2(0,)m 上单调递减,2(,)m+∞上单调递增. ∵函数()g x 存在三个零点.∴20(0)02402()00>⎧>⎧⎪⎪⎪⇒⇒<<⎨⎨<⎪⎪-<⎩⎪⎩m g m e g m m m e .∴02<<me …………………………………………………………………………………3分 由(1)(1)0-=-=-<mmg m me m e .∴22()(1)0=-=-<em em me e g e m m e e.……………………………………………………1分综上可知,()0,(0)0,(1)0<>-<g e g g ,结合函数()g x 单调性及a b c <<可得:(1,0),(0,),(,)a b e c e ∈-∈∈+∞.即10a b e c -<<<<<,得证.…………………………………………………………1分 (III )由题意,只需min max ()()>f x g x ∵2(12ln )()(ln )-'=mx x f x x 由0<m ,∴函数()f x 在12(1,)e 上单调递减,在12(,)e +∞上单调递增.∴12min ()()2==-f x f e me .………………………………………………………………2分 ∵(2)()-'=mxmx mx g x e由0<m ,∴函数()g x 在2(,)m-∞上单调递增,2(,0)m 上单调递减.∴max 224()()==-g x g m m e m .……………………………………………………………2分 ∴242->-me m e m ,不等式两边同乘以负数m ,得22242-<-m e m e.∴224(21)e m e+>,即224(21)m e e >+.由0<m ,解得(21)m e e <-+.综上所述,存在这样的负数(,(21)∈-∞-+m e e 满足题意.……………………………1分成都市2015届高中毕业班第一次诊断性检测数学试题(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{|0}=≥U x x ,集合{1}=P ,则UP =(A )[0,1)(1,)+∞ (B )(,1)-∞ (C )(,1)(1,)-∞+∞ (D )(1,)+∞2.若一个几何体的正视图和侧视图是两个全等的正方形,则这个几何体的俯视图不可能是(A ) (B ) (C ) (D ) 3.命题“若22≥+x a b ,则2≥x ab ”的逆命题是(A )若22<+x a b ,则2<x ab (B )若22≥+x a b ,则2<x ab (C )若2<x ab ,则22<+x a b (D )若2≥x ab ,则22≥+x a b4.函数31,0()1(),03x x x f x x ⎧+<⎪=⎨≥⎪⎩的图象大致为(A ) (B ) (C ) (D ) 5.复数5i(2i)(2i)=-+z (i 是虚数单位)的共轭复数为(A )5i 3- (B )5i 3(C )i - (D )i6.若关于x 的方程240+-=x ax 在区间[2,4]上有实数根,则实数a 的取值范围是y xOxyO x y Ox yO消费支出/元(A )(3,)-+∞ (B )[3,0]- (C )(0,)+∞ (D )[0,3] 7.已知53cos()25+=πα,02-<<πα,则sin 2α的值是 (A )2425 (B )1225 (C )1225- (D )2425-8.已知抛物线:C 28y x =,过点(2,0)P 的直线与抛物线交于A ,B 两点,O 为坐标原点,则OA OB ⋅的值为(A )16- (B )12- (C )4 (D )0 9.已知m ,n 是两条不同直线,α,β是两个不同的平面,且n ⊂β,则下列叙述正确的是(A )若//m n ,m ⊂α,则//αβ (B )若//αβ,m ⊂α,则//m n (C )若//m n ,m α⊥,则αβ⊥ (D )若//αβ,m n ⊥,则m α⊥10.如图,已知正方体1111ABCD A BC D -棱长为4,点H 在棱1AA 上,且11HA =.点E ,F 分别为棱11B C ,1C C 的中点,P 是侧面11BCC B 内一动点,且满足⊥PE PF .则当点P 运动时, 2HP 的最小值是 (A )72- (B )2762- (C )51142- (D )1422-二、填空题:本大题共5小题,每小题5分,共25分. 11.已知100名学生某月饮料消费支出情况的频率分布直方图如右图所示.则这100名学生中,该月饮料消费支出超过150元的人数是________.12.若非零向量a ,b 满足a b a b +=-,则a ,b 的夹A BCD1A 1B 1C 1D HPE F角的大小为__________.13.在∆ABC 中,内角,,A B C 的对边分别为,,a b c ,若2=c a ,4=b ,1cos 4=B .则边c 的长度为__________.14.已知关于x 的不等式()(2)0---≤x a x a 的解集为A ,集合{|22}=-≤≤B x x .若“x A ∈”是“x B ∈”的充分不必要条件,则实数a 的取值范围是__________. 15.已知函数21()()2f x x a =+的图象在点n P (,())n f n (*n ∈N )处的切线n l 的斜率为n k ,直线n l 交x 轴,y 轴分别于点(,0)n n A x ,(0,)n n B y ,且11y =-.给出以下结论: ①1a =-;②记函数()=n g n x (*n ∈N ),则函数()g n 的单调性是先减后增,且最小值为1;③当*n ∈N 时,1ln(1)2n n n y k k++<+; ④当*n ∈N 时,记数列的前n 项和为n S ,则n S <其中,正确的结论有 (写出所有正确结论的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)口袋中装有除编号外其余完全相同的5个小球,编号依次为1,2,3,4,5.现从中同时取出两个球,分别记录下其编号为,m n . (Ⅰ)求“5+=m n ”的概率; (Ⅱ)求“5≥mn ”的概率.17.(本小题满分12分)如图,在多面体ECABD 中,EC ⊥平面ABC ,//DB EC ,ABC ∆为正三角形,F 为EA 的中点,2EC AC ==,1BD =. (Ⅰ)求证:DF //平面ABC ; (Ⅱ)求多面体ECABD 的体积. 18.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且122+=-n n S ;数列{}n b 满足11b =,12n n b b +=+.*n ∈N .(Ⅰ)求数列{}n a 和{}n b 的通项公式;(Ⅱ)记n n n c a b =,*n ∈N .求数列{}n c 的前n 项和n T .19.(本小题满分12分)某大型企业一天中不同时刻的用电量y (单位:万千瓦时)关于时间t (024t ≤≤,单位:小时)的函数()y f t =近似地满足()sin()(0,0,0)f t A t B A ωϕωϕπ=++>><<,下图是该企业一天中在0点至12点时间段用电量y 与时间t 的大致图象. (Ⅰ)根据图象,求A ,ω,ϕ,B 的值; (Ⅱ)若某日的供电量()g t (万千瓦时)与时间t (小时)近似满足函数关系式205.1)(+-=t t g (012t ≤≤).当该日内供电量小于该企业的用电量时,企业就必须停产.请用二分法计算该企业当日停产的大致时刻(精确度0.1). 参考数据:20.(本小题满分13分)已知椭圆Γ:12222=+by a x (0>>b a )的右焦点为)0,22(,且过点(23,0).(Ⅰ)求椭圆Γ的标准方程;(Ⅱ)设直线:()l y x m m =+∈R 与椭圆Γ交于不同两点A 、B ,且32AB =点0(,2)P x 满足=PA PB ,求0x 的值. 21.(本小题满分14分) 已知函数()ln 2mf x x x=+,()2g x x m =-,其中m ∈R ,e 2.71828=为自然对数的底数.(Ⅰ)当1m =时,求函数()f x 的极小值;(Ⅱ)对1[,1]e x ∀∈,是否存在1(,1)2m ∈,使得()()1>+f x g x 成立?若存在,求出m 的取值范围;若不存在,请说明理由;(Ⅲ)设()()()F x f x g x =,当1(,1)2m ∈时,若函数()F x 存在,,a b c 三个零点,且a b c <<,求证: 101ea b c <<<<<.t (时)10 11 12 11.5 11.25 11.75 11.625 11.6875 ()f t (万千瓦时) 2.25 2.4332.5 2.48 2.462 2.496 2.490 2.493 ()g t (万千瓦时)53.522.753.1252.3752.5632.469数学(文科)参考答案及评分意见第Ⅰ卷(选择题,共50分)一、选择题:(本大题共10个小题,每小题5分,共50分)1.A ; 2.C ; 3.D ;4.A ;5.C ;6.B ;7.D ;8.B ;9.C ;10.B .第Ⅱ卷(非选择题,共100分)二、填空题:(本大题共5个小题,每小题5分,共25分)11.30 12.90︒ 13.4 14.[2,0]- 15.①②④ 三、解答题:(本大题共6个小题,共75分) 16.(本小题满分12分)解:同时取出两个球,得到的编号,m n 可能为: (1,2),(1,3),(1,4),(1,5) (2,3),(2,4),(2,5) (3,4),(3,5)(4,5)…………………………………………………………………………………6分(Ⅰ)记“5+=m n ”为事件A ,则 21()105==P A .……………………………………………………………………………3分(Ⅱ)记“5≥mn ”为事件B ,则 37()11010=-=P B .…………………………………………………………………… 3分 17.(本小题满分12分)(Ⅰ)证明:作AC 的中点O ,连结BO .在∆AEC 中,//=FO 12EC ,又据题意知,//=BD 12EC . ∴//=FO BD ,∴四边形FOBD 为平行四边形. ∴//DF OB ,又⊄DF 面ABC ,⊂OB 平面ABC .∴//DF 面ABC .………………………6分 (Ⅱ)据题意知,多面体ECABD 为四棱锥-A ECBD . 过点A 作⊥AH BC 于H .∵⊥EC 平面ABC ,⊂EC 平面ECBD , ∴平面⊥ECBD 平面ABC .又⊥AH BC ,⊂AH 平面ABC ,平面ECBD 平面=ABC BC ,∴⊥AH 面ECBD .∴在四棱锥-A ECBD 中,底面为直角梯形ECBD ,高3=AH .∴1(21)23332-+⨯=⨯⨯=A ECBD V . ∴多面体ECABD 的体积为3.……………………………………………6分 18.(本小题满分12分) 解:(Ⅰ)∵122+=-n n S ① 当2≥n 时,122-=-n n S ② ①-②得,2=n n a (2≥n ).∵当2≥n 时,11222--==nn n n a a ,且12=a .∴数列{}n a 是以2为首项,公比为2的等比数列,∴数列{}n a 的通项公式为1222-=⋅=n n n a .………………………………………4分又由题意知,11b =,12n n b b +=+,即12+-=n n b b ∴数列{}n b 是首项为1,公差为2的等差数列,∴数列{}n b 的通项公式为1(1)221=+-⨯=-n b n n .……………………………2分(Ⅱ)由(Ⅰ)知,(21)2=-nn c n ……………………………………………………1分 ∴231123252(23)2(21)2-=⨯+⨯+⨯++-⋅+-⋅n n n T n n231121232(25)2(23)2(21)2-+=⨯+⨯++-⋅+-⋅+-⋅n n n n T n n n ④由-④得2311222222222(21)2-+-=+⨯+⨯++⋅+⋅--⋅n n n n T n (1)分23112(12222)(21)2-+-=++++--⋅n n n n T n∴12222(21)212+-⋅-=⨯--⋅-n n n T n (1)分∴111224222+++-=⋅--⋅+n n n n T n 即1(32)24+-=-⋅-n n T n ∴1(23)24+=-+n n T n∴数列{}n c 的前n 项和1(23)24+=-+n n T n (3)分19.(本小题满分12分) 解:(Ⅰ)由图知12T =,6πω=.………………………………………………………1分 2125.15.22minmax =-=-=y y A ,225.15.22min max =+=+=y y B .……………2分∴0.5sin()26y x πϕ=++.又函数0.5sin()26y x πϕ=++过点(0,2.5).代入,得22k πϕπ=+,又0ϕπ<<,∴2πϕ=.…………………………………2分综上,21=A ,6πω=,2πϕ=,21=B . ………………………………………1分即2)26sin(21)(++=ππt t f . (Ⅱ)令)()()(t g t f t h -=,设0)(0=t h ,则0t 为该企业的停产时间. 由0)11()11()11(<-=g f h ,0)12()12()12(>-=g f h ,则)12,11(0∈t . 又0)5.11()5.11()5.11(<-=g f h ,则)12,5.11(0∈t . 又0)75.11()75.11()75.11(>-=g f h ,则)75.11,5.11(0∈t . 又0)625.11()625.11()625.11(<-=g f h ,则)75.11,625.11(0∈t .又0)6875.11()6875.11()6875.11(>-=g f h ,则)6875.11,625.11(0∈t .…4分……………………………………………1分 ∴应该在11.625时停产.……………………………………………………………1分 (也可直接由)625.11()625.11()625.11(<-=g f h ,0)6875.11()6875.11()6875.11(>-=g f h ,得出)6875.11,625.11(0∈t ;答案在11.625—11.6875之间都是正确的;若换算成时间应为11点37分到11点41分停产)20.(本小题满分13分)(Ⅰ)由已知得23=a ,又22=c . ∴2224=-=b a c .∴椭圆Γ的方程为141222=+y x .…………………………………………………4分 (Ⅱ)由⎪⎩⎪⎨⎧=++=,1412,22y x m x y 得01236422=-++m mx x ① ………………………1分∵直线l 与椭圆Γ交于不同两点A 、B ,∴△0)123(163622>--=m m , 得216<m .设),(11y x A ,),(22y x B ,则1x ,2x 是方程①的两根,则2321mx x -=+, 2123124-⋅=m x x .∴2222129312(312)21244=+-=⨯--=⨯-+AB kx x m m m . 又由32AB =,得231294-+=m ,解之2m =±.……………………………3分 据题意知,点P 为线段AB 的中垂线与直线2=y 的交点. 设AB 的中点为),(00y x E ,则432210m x x x -=+=,400mm x y =+=,当2m =时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x -=-+,即1y x =--. 令2=y ,得03x =-.…………………………………………………………………2分当2m =-时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x +=--,即1y x =-+. 令2=y ,得01x =-.………………………………………………………………2分综上所述,0x 的值为3-或1-. 21.(本小题满分14分)解:(Ⅰ)1m =时,1()ln ,02=+>f x x x x. ∴221121()22-'=-=x f x x x x ……………………………………………………………………1分由()0'>f x ,解得12>x ;由()0'<f x ,解得102<<x ; ∴()f x 在1(0,)2上单调递减,1(,)2+∞上单调递增. (2)分∴=极小值)(x f 11()ln 11ln 222f =+=-.…………………………………………………… 2分(II )令1()()()1ln 21,,12⎡⎤=--=+-+-∈⎢⎥⎣⎦m h x f x g x x x m x x e ,其中1(,1)2m ∈ 由题意,()0h x >对1,1x e ⎡⎤∈⎢⎥⎣⎦恒成立,∵2221221()1,,122-+-⎡⎤'=--=∈⎢⎥⎣⎦m x x m h x x x x x e ∵1(,1)2m ∈,∴在二次函数222=-+-y x x m 中,480∆=-<m , ∴2220-+-<x x m 对∈x R 恒成立∴()0'<h x 对1,1x e ⎡⎤∈⎢⎥⎣⎦恒成立, ∴()h x 在1,1e ⎡⎤⎢⎥⎣⎦上单减. ∴min 5()(1)ln11212022==+-+-=->m h x h m m ,即45>m .故存在4(,1)5∈m 使()()f x g x >对1,1⎡⎤∀∈⎢⎥⎣⎦x e 恒成立.……………………………………4分(III )()(ln )(2),(0,)2mF x x x m x x=+-∈+∞,易知2x m =为函数()F x 的一个零点, ∵12>m ,∴21>m ,因此据题意知,函数()F x 的最大的零点1>c , 下面讨论()ln 2mf x x x=+的零点情况,∵2212()22m x mf x x x x -'=-=. 易知函数()f x 在(0,)2m 上单调递减,在(,)2m+∞上单调递增.由题知()f x 必有两个零点,∴=极小值)(x f ()ln 1022=+<m mf ,解得20<<m e ,∴122<<m e ,即(,2)2∈eme .…………………………………………………………3分 ∴11(1)ln10,()ln 11102222=+=>=+=-<-=m m em emf f e e .…………………1分又10101010101()ln 10100224---=+=->->m m f e e e e e .101()0,()0,(1)0f e f f e -∴><>.10101e a b c e -∴<<<<<<.101a b c e∴<<<<<,得证.……………………………………………………………1分。

2015年四川省高考数学试卷(文科)附详细解析(1)

2015年四川省高考数学试卷(文科)附详细解析(1)

2015年四川省高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.2.(5分)(2015•四川)设向量=(2,4)与向量=(x,6)共线,则实数x=()2x+﹣7.(5分)(2015•四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B8.(5分)(2015•四川)某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则9.(5分)(2015•四川)设实数x,y满足,则xy的最大值为()10.(5分)(2015•四川)设直线l与抛物线y=4x相交于A、B两点,与圆(x﹣5)+y=r(r>0)相切于点M,11.(5分)(2015•四川)设i是虚数单位,则复数i﹣=.12.(5分)(2015•四川)lg0.01+log216的值是.13.(5分)(2015•四川)已知sinα+2cosα=0,则2sinαcosα﹣cos2α的值是.14.(5分)(2015•四川)在三棱住ABC﹣A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M,N,P分别是AB,BC,B1C1的中点,则三棱锥P﹣AMN的体积是.15.(5分)(2015•四川)已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2,设m=,n=.现有如下命题:①对于任意不相等的实数x1、x2,都有m>0;②对于任意的a及任意不相等的实数x1、x2,都有n>0;③对于任意的a,存在不相等的实数x1、x2,使得m=n;④对于任意的a,存在不相等的实数x1、x2,使得m=﹣n.其中的真命题有(写出所有真命题的序号).三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2015•四川)设数列{a n}(n=1,2,3…)的前n项和S n,满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列的前n项和为T n,求T n.17.(12分)(2015•四川)一辆小客车上有5名座位,其座号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5.他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己1号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.(Ⅰ)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P5坐到5号座位的概率.18.(12分)(2015•四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.(Ⅲ)证明:直线DF⊥平面BEG.19.(12分)(2015•四川)已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.20.(13分)(2015•四川)如图,椭圆E:=1(a>b>0)的离心率是,点P(0,1)在短轴CD上,且•=﹣1(Ⅰ)求椭圆E的方程;(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在常数λ,使得•+λ•为定值?若存在,求λ的值;若不存在,请说明理由.21.(14分)(2015•四川)已知函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.2015年四川省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.2.(5分)(2015•四川)设向量=(2,4)与向量=(x,6)共线,则实数x=()解;因为向量=)与向量=本题考查了向量共线的坐标关系;如果两个向量向量=)与向量)2x+))y=sin2x+cos2x=2x+y=sinx+cosx=).=,的值为.7.(5分)(2015•四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B=1y=﹣,kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则=(9.(5分)(2015•四川)设实数x,y满足,则xy的最大值为()),x=经检验(,的最大值为,10.(5分)(2015•四川)设直线l与抛物线y=4x相交于A、B两点,与圆(x﹣5)+y=r(r>0)相切于点M,,因为直线与圆相切,所以,所以交点与圆心(11.(5分)(2015•四川)设i是虚数单位,则复数i﹣=2i.=i﹣==14.(5分)(2015•四川)在三棱住ABC﹣A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M,N,P分别是AB,BC,B1C1的中点,则三棱锥P﹣AMN的体积是.的的体积是:=.故答案为:.12m=,n=.现有如下命题:①对于任意不相等的实数x1、x2,都有m>0;②对于任意的a及任意不相等的实数x1、x2,都有n>0;③对于任意的a,存在不相等的实数x1、x2,使得m=n;④对于任意的a,存在不相等的实数x1、x2,使得m=﹣n.)递减,在(16.(12分)(2015•四川)设数列{a n}(n=1,2,3…)的前n项和S n,满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列的前n项和为T n,求T n.(Ⅱ)由于=,利用等比数列的前项和公式求得数列(Ⅱ)由(Ⅰ)得=,++=17.(12分)(2015•四川)一辆小客车上有5名座位,其座号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5.他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己1号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.(Ⅰ)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填=.号座位的概率是.(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.两个实根.(Ⅰ)求C的大小,由韦达定理,有,结合=﹣px(.p===,=.((.20.(13分)(2015•四川)如图,椭圆E:=1(a>b>0)的离心率是,点P(0,1)在短轴CD上,且•=﹣1(Ⅰ)求椭圆E的方程;(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在常数λ,使得•+λ•为定值?e=•=,进而可得结论;时•λ••+λ=•=,解得,的方程为:=1,使得+λ•联立,﹣从而+λ•﹣时,﹣此时+λ•此时+λ•=,使得•+λ为定值﹣21.(14分)(2015•四川)已知函数f(x)=﹣2xlnx+x﹣2ax+a,其中a>0.(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;==,≥2015年6月29日。

2015四川高考数学试题(文科解析版)

2015四川高考数学试题(文科解析版)

2015年普通高等学校招生全国统一考试(四川卷)数 学(文史类)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则A B =(A ){}1|3x x -<< (B ){}|11x x -<< (C ){}|12x x << (D ){}|23x x <<【答案】A【解析】∵{|12}A x x =-<<,{|13}B x x =<<,{|13}A B x x ∴=-<<,选A.2.设向量(2,4)a =与向量(,6)bx =共线,则实数x =(A)2 (B)3 (C) 4 (D)6【答案】B【解析】由共线向量()11,a x y =,()22,b x y =的坐标运算可知12210x y x y -=, 即26403x x ⨯-=⇒=,选B.3.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是 (A)抽签法 (B )系统抽样法 (C )分层抽样法 (D )随机数法 【答案】C【解析】因为是为了解各年级之间的学生视力是否存在显著差异,所以选择分层抽样法。

4.设a ,b 为正实数,则“1a b >>”是“22log log a b >”的(A)充要条件 (B)充分不必要条件 (C)必要不充分条件 (D)既不充分也不必要条件 【答案】A【解析】由已知当1a b >>时,22log log 0a b >>∴,“1a b >>”是“22log log a b >”的充分条件。

反过来由22log log 0a b >>,可得1a b >>,∴“1a b >>”是“22log log a b >”的必要条件,综上,“1a b >>”是“22log log a b >”的充要条件,选A.5.下列函数中,最小正周期为π的奇函数是A.sin(22y x π=+B.cos(22y x π=+C.sin 2cos 2y x x =+D.sin cos y x x =+ 【答案】A【解析】A. cos(2)sin 22y x x π=+=-,可知其满足题意;B. sin(2cos 22y x x π=+=,可知其最小正周期为π,偶函数;C. sin 2cos 2)4y x x x π=+=+,最小正周期为π,非奇非偶函数;D. sin cos )4y x x x π=+=+,可知其最小正周期为2π,非奇非偶函数.选A6.执行如图所示的程序框图,输出S 的值是(A) 2- (B) 2(C)-12 (D) 12【答案】D【解析】易得当k =1,2,3,4时执行的是否,当k =5时就执行是的步骤, 所以51sin62S π==,选D. 7.过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则AB =(A(B) (C )6 (D)【答案】D【解析】由题意可知双曲线的渐近线方程为y =,且右焦点(2,0),则直线2x =与两条渐近线的交点分别为A ,B (2,-,∴||AB =,选D. 8. 某食品的保鲜时间y (单位:小时)与储藏温度x (单位:°C )满足函数关系kx by e+=( e=2.718⋅⋅⋅ 为自然对数的底数,k ,b 为常数)。

2015年高考文科数学四川卷有答案

数学试卷 第1页(共15页)数学试卷 第2页(共15页)数学试卷 第3页(共15页)绝密★启用前2015年普通高等学校招生全国统一考试(四川卷)数学(文科)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).第Ⅰ卷1至3页,第Ⅱ卷4至6页,共6页.满分150分.考试时间120分钟.考生作答时,须将答案答在答题卡上.在本试题卷、草稿纸上答题无效.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑. 第Ⅰ卷共10小题.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|12}A x x =-<<,集合{|13}B x x =<<,则A B = ( )A .{|13}x x -<<B .{|11}x x -<<C .{|12}x x <<D .{|23}x x << 2.设向量a ()2,4=与向量b (),6x =共线,则实数x =( )A .2B .3C .4D .53.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )A .抽签法B .系统抽样法C .分层抽样法D .随机数法4.设,a b 为正实数,则“1a b >>”是“22log log 0a b >>”的 ( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件5.下列函数中,最小正周期为π的奇函数是( )A .sin(2)2πy x =+ B .πcos(2)2y x =+ C .sin 2cos2y x x =+D .sin cos y x x =+6.执行如图所示的程序框图,输出S 的值为( )A.2-B.2C .12-D .127.过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则||=AB( ) A.3B.C .6D.8.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系ekx by +=(e 2.718=…为自然对数的底数,k ,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保 鲜时间是48小时,则该食品在33℃的保鲜时间是( ) A .16小时 B .20小时 C .24小时D .28小时9.设实数x ,y 满足2102146x y x y x y +⎧⎪+⎨⎪+⎩≤,≤,≥,则xy 的最大值为( )A .252B .492C .12D .1610.设直线l 与抛物线24y x =相交于A ,B 两点,与圆222(5)(0)x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( )A .(1,3)B .(1,4)C .(2,3)D .(2,4) 第Ⅱ卷(非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚.答在试题卷、草稿纸上无效.第Ⅱ卷共11小题.二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中的横线上.11.设i 是虚数单位,则复数1i i-=__________. 12.2lg0.01log 16+的值是___________.13.已知sin 2cos 0αα+=,则22sin cos cos ααα-的值是___________.14.在三棱柱111ABC A B C -中,90BAC ∠=︒,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M ,N ,P 分别是棱AB ,BC ,11B C 的中点,则三棱锥1P A MN -的体积是__________.15.已知函数()2x f x =,2()g x x ax =+(其中a ∈R ).对于不相等的实数1x ,2x ,设1212()()f x f x m x x -=-,1212()()g x g x n x x -=-,现有如下命题:①对于任意不相等的实数1x ,2x ,都有0m >;②对于任意的a 及任意不相等的实数1x ,2x ,都有0n >; ③对于任意的a ,存在不相等的实数1x ,2x ,使得m n =; ④对于任意的a ,存在不相等的实数1x ,2x ,使得m n =-. 其中的真命题有__________(写出所有真命题的序号).三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤. 16.(本小题满分12分)设数列{}n a (1,2,3,)n =⋅⋅⋅的前n 项和n S 满足12n n S a a =-,且1a ,21a +,3a 成等差数列.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设数列1{}na 的前n 项和为n T ,求n T .-------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共15页)数学试卷 第5页(共15页)数学试卷 第6页(共15页)17.(本小题满分12分)一辆小客车上有5个座位,其座位号为1,2,3,4,5.乘客1P ,2P ,3P ,4P ,5P 的座位号分别为1,2,3,4,5,他们按照座位号从小到大的顺序先后上车.乘客1P 因身体原因没有坐自己的1号座位,这时司机要求余下的乘客按以下规则就座:如果自己的座位空着,就只能坐自己的座位;如果自己的座位已有乘客就座,就在这5个座位的剩余空位中任意选择座位.(Ⅰ)若乘客1P 坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给;(Ⅱ)若乘客1P 坐到了2号座位,其他乘客按规则就座,求乘客5P 坐到5号座位的概率.18.(本小题满分12分)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由); (Ⅱ)判断平面BEG 与平面ACH 的位置关系,并证明你的结论. (Ⅲ)证明:直线DF ⊥平面BEG19.(本小题满分12分)已知A ,B ,C 为ABC △的内角,tan A ,tan B 是关于x 的方程210x p +-+= (p ∈R )的两个实根. (Ⅰ)求C 的大小.(Ⅱ)若3AB =,AC =p 的值.20.(本小题满分13分)如图,椭圆2222:+1(0)x y E a b a b =>>,点P (0,1)在短轴CD 上,且1PC PD =-.(Ⅰ)求椭圆E 的方程;(Ⅱ)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使 OB PA PB λ+为定值?若存在,求λ的值;若不存在,请说明理由.21.(本小题满分14分)已知函数22()2ln 2f x x x x ax a =-+-+,其中0a >.(Ⅰ)设()g x 是()f x 的导函数,讨论()g x 的单调性;(Ⅱ)证明:存在(0,1)a ∈,使得()0f x ≥恒成立,且()0f x =在区间(1,)+∞内有唯一解.数学试卷 第7页(共15页)数学试卷 第8页(共15页)数学试卷 第9页(共15页)2015年普通高等学校招生全国统一考试(四川卷)数学(文科)答案解析第Ⅰ卷(13)A B =-,【提示】直接利用并集求解法则求解即可. :6x ,解得1)2x x y ⎛≤ ⎝2故最大值为25.2【提示】画出不等式组对应的平面区域,利用基本不等式进行求解即可. 第Ⅱ卷32424【提示】判断三视图对应的几何体的形状,画出图形,利用三视图的数据,求解三棱锥数学试卷 第10页(共15页)数学试卷 第11页(共15页)数学试卷 第12页(共15页)12n++=【解析】(Ⅰ)点F G H ,,的位置如图所示(Ⅱ)平面BEG ∥平面ACH ,证明如下:BE BG B =,所以平面(Ⅲ)连接FH EG ⊂平面EFGH FH DH FH H ⊥,=,所以⊂平面BFHD ,所以DF ,又EG BG G =,所以6022=31tan 45tan303tan75tan(4530)1tan 45tan30313++=--=+=【考点】韦达定理,解三角形,正弦定理,正切值数学试卷第13页(共15页)数学试卷第14页(共15页)数学试卷第15页(共15页)。

成都七中2015级高三“一诊”模拟考试数学答案

C D OBE'AH成都七中2015级高三“一诊”模拟考试数学试题参考答案一、选择题:(本大题共10小题,每小题5分,共50分) BAADB ACBAD 二、填空题:(本大题共5小题,每小题5分,共25分) 11. 180 12.12 13. - 14. (-7, 3) 15. ①②③⑤ 三、解答题:本大题共6小题,共75分。

解答应写出文字说明,证明过程或演算步骤。

16、(本小题满分12分)【解析】(I )由已知条件得:cos23cos 1A A +=22cos 3cos 20A A ∴+-=,解得1cos 2A =,角60A =︒ (II )1sin 2S bc A ==4c ⇒=,由余弦定理得:221a =,()222228sin a R A ==25sin sin 47bc B C R ∴==.17、(本小题满分12分) 解答:(1)331328()327p C ==,22232128()33327p C =⋅=,222342114()()33227p C =⋅=(2)由题意可知X 的可能取值为:0, 1, 2, 3. 乙队得分X 的分布列为:乙队得分X 的数学期望:1644170123.27272799EX =⨯+⨯+⨯+⨯=18、(本小题满分12分)【解析】(Ⅰ) 在图1中,易得3,OC AC AD ===连结,OD OE,在OCD ∆中,由余弦定理可得OD由翻折不变性可知A D '=,所以222A O OD A D ''+=,所以A O OD '⊥,理可证A O OE '⊥, 又OD OE O = ,所以A O '⊥平面BCDE . (Ⅱ) 传统法:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ', 因为A O '⊥平面BCDE ,所以A H CD '⊥, 所以A HO '∠为二面角A CD B '--的平面角.3210X P2742742719结合图1可知,H 为AC 中点,故2OH =,从而A H '==所以cos 5OH A HO A H '∠==',所以二面角A CD B '--的平面角的余弦值为5.向量法:以O 点为原点,建立空间直角坐标系O xyz -如图所示, 则(A ',()0,3,0C -,()1,2,0D -所以(CA '= ,(1,DA '=-设(),,n x y z = 为平面A CD '的法向量,则 00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩,即3020y x y⎧+=⎪⎨-++=⎪⎩,解得y x z =-⎧⎪⎨=⎪⎩令1x =,得(1,n =-由(Ⅰ) 知,(OA '=为平面CDB 的一个法向量,所以cos ,n OA n OA n OA '⋅'===',即二面角A CD B '--的平面角的余弦19、(本小题满分12分)(1)解:由222(1)()0n n S n n S n n -+--+=,得2[()](1)0.n n S n n S -++=由于{a n }是正项数列,所以20,.n n S S n n >=+于是112,2a S n ==≥时,221(1)(1)2.n n n a S S n n n n n -=-=+----= 综上,数列{a n }的通项2.n a n = (2)证明:由于2,n a n =221(2)n nn b n a +=+, 则22221111[4(2)16(2)n n b n n n n +==-++.2222222221111111111[11632435(1)(1)(2)n T n n n n =-+-+-++-+--++ 2221111[1]162(1)(2)n n =+--++2115(1).16264<+=【解析】(Ⅰ) 依题意,设抛物线C 的方程为24x cy =,2=结合0c >, 解得1c =.所以抛物线C 的方程为24x y =. (Ⅱ) 抛物线C 的方程为24x y =,即214y x =,求导得12y x '= 设()11,A x y ,()22,B x y (其中221212,44x x y y ==), 则切线,PA PB 的斜率分别为112x ,212x ,所以切线PA 的方程为()1112x y y x x -=-,即211122x x y x y =-+,即11220x x y y --= 同理可得切线PB 的方程为22220x x y y --=因为切线,PA PB 均过点()00,P x y ,所以1001220x x y y --=,2002220x x y y --= 所以()()1122,,,x y x y 为方程00220x x y y --=的两组解. 所以直线AB 的方程为00220x x y y --=.(Ⅲ) 由抛物线定义可知11AF y =+,21BF y =+, 所以()()()121212111AF BF y y y y y y ⋅=++=+++联立方程0022204x x y y x y--=⎧⎨=⎩,消去x 整理得()22200020y y x y y +-+=由一元二次方程根与系数的关系可得212002y y x y +=-,2120y y y =所以()221212000121AF BF y y y y y x y ⋅=+++=+-+又点()00,P x y 在直线l 上,所以002x y =+,所以22220000001921225222y x y y y y ⎛⎫+-+=++=++ ⎪⎝⎭所以当012y =-时, AF BF ⋅取得最小值,且最小值为92.。

2015四川高考数学模拟试题(文科)

2015高考数学模拟试题(文科)考试时间:120分钟;满分:150分 注意事项:1.答题前填写好自己的、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题 共50分)一、选择题(共10小题,每题5分,满分50分,在给出的四个选项中,有且只有一个是符合题意的)1.已知集合2{|230}A x x x =--<,2{|log 2}B x x =<,则A B =( )A.(1,4)-B.(1,3)-C.(0,3)D.(0,4)2.已知复数z 满足:zi=2+i (i 是虚数单位),则z 的虚部为( ) A .2i B .﹣2iC .2 D .﹣23.某几何体的三视图如图所示,则该几何体的体积为( )A .283π-B .43πC .23πD .483π-4.如图所示,若输入的n 为10,那么输出的结果是( )A .45B .55C .90D .1105.变量x 、y 满足条件⎪⎩⎪⎨⎧->≤≤+-1101x y y x ,则22)2(y x +-的最小值为( )A .223 B .5C .29D .56.如图e 1,e 2为互相垂直的两个单位向量,则||+=a b ( )A.42B.210C.213D.215 7.函数ππ()2sin()cos()66f x x x =--图象的一条对称轴方程是( )A .π6x =B .π3x =C .5π12x =D .2π3x = 8.已知定义在R 上的函数对任意x 都满足,且当时,,则函数的零点个数为( )A.6B.5C.4D.39.已知抛物线C :x y 82=的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 得一个焦点,若4=,则=QF ( ) A. 3 B.27 C. 25D. 2 10.已知定义域为R 的奇函数()y f x =的导函数为()y f x '=,当0x ≠时,()()0f x f x x '+>,若()1111,22,ln ln 2222a f b f c f ⎛⎫⎛⎫⎛⎫==--= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,则,,a b c 的大小关系正确的是( )A.a b c <<B.b c a <<C.a c b <<D.c a b <<第II 卷(非选择题 满分100分)二、填空题(共5小题,每题5分,满分25分,请将答案填在答题卡中的横线上) 11.某高中共有1200人,其中高一、高二、高三年级的人数依次成等差数列.现用分层抽样的方法从中抽取48人,那么高二年级被抽取的人数为.12.已知等差数列}{n a 中,满足103S S =,且01>a ,n S 是其前n 项和,若n S 取得最大值,则n =.13.若直线220(,0)ax by a b +-=>始终平分圆224280x y x y +---=的周长,则14a b+的最小值为. 14.定义:如果函数)(x f y =在定义域给定区间],[b a 上存在0x )(0b x a <<,满足ab a f b f x f --=)()()(0,则称函数)(x f y =是],[b a 上的“平均值函数”,0x 是它的一个均值点,例如2x y =是]1,1[-上的平均值函数,0就是它的均值点.现有函数mx x x f +=3)(是]1,1[-上的平均值函数,则实数m 的取值围是.15.给定有限单调递增数列*{}(n x n N ∈,数列{}n x 至少有两项)且0(1)i i x x n ≠≤≤,定义集合*{(,)|1,,,}i j A x x i j n i j N =≤≤∈且.若对任意点1A ∈A ,存在点2A ∈A 使得12OA OA ⊥(O 为坐标原点),则称数列{}n x 具有性质P .(1)给出下列四个命题,其中正确的是.(填上所有正确命题的序号) ①数列{}:n x -2,2具有性质P ; ②数列{}n y :-2,-1,1,3具有性质P ;③若数列{}n x 具有性质P ,则{}n x 中一定存在两项,i j x x ,使得0i j x x +=; ④若数列{}n x 具有性质P ,121,0x x =->且1(3)n x n >≥,则21x =.(2)若数列{}n x 只有2014项且具有性质13,1,2P x x =-=,则{}n x 的所有项和2014S =. 三、解答题(共6小题,满分75分,解答应写出必要的答题过程和解题步骤) 16.(本小题满分12分)已知函数x x x x x f cos sin 32sin cos )(22+-=,x R ∈. (Ⅰ)求函数()f x 的单调递增区间;(Ⅱ)在ABC ∆中,角C B A ,,所对的边分别是c b a ,,,若1)(=A f ,3=a3=+c b ,试求ABC ∆的面积. 17.(本小题满分12分)某校团委会组织该校高中一年级某班以小组为单位利用周末时间进行了一次社会实践活动,且每个小组有5名同学,在实践活动结束后,学校团委会对该班的所有同学都进行了测评,该班的,A B 两个小组所有同学所得分数(百分制)的茎叶图如图所示,其中B 组一同学的分数已被污损,但知道B 组学生的平均分比A 组学生的平均分高1分.(Ⅰ)若在B 组学生中随机挑选1人,求其得分超过85分的概率;(Ⅱ)现从A 组这5名学生中随机抽取2名同学,设其分数分别为,m n ,求||8m n -≤的概率.18.(本小题满分12分)如图,直角梯形ABCD ,090=∠ADC ,CD AB //,221===AB CD AD ,点E 为AC 的中点,将ACD ∆沿AC 折起,使折起后的平面ACD 与平面ABC 垂直(如图).在下图所示的几何体ABC D -中:(Ⅰ)求证:⊥BC 平面ACD ;(Ⅱ)点F 在棱CD 上,且满足//AD 平面BEF ,求几何体BCE F -的体积. 19.(本小题满分12分)设数列{}n a 的前n 项和为n S ,11a =,且对任意正整数n ,点()1,n n a S +在直线220x y +-=上. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若2n n b na =,求数列{}n b 的前n 项和n T .20.(本小题满分13分)设函数f(x)=(x –1)2+alnx ,a ∈R .(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与直线x+2y –1=0垂直,求a 的值; (Ⅱ)求函数f(x)的单调区间;(Ⅲ)若函数f(x)有两个极值点x 1,x 2且x 1<x 2,求证:f(x 2)>41–21ln2.21.(本小题满分14分)设椭圆22221x y a b+=(a >b >0)的左右焦点分别为F 1、F 2,点D在椭圆上,DF 1⊥F 1F 2,12122F F DF =,△DF 1F 2的面积为22.(Ⅰ)求该椭圆的标准方程;(Ⅱ)若圆心在y 轴上的圆与椭圆在x 轴的上方有两个交点,且圆在这两个交点处的两条切线互相垂直并分别过不同的焦点,求出这个圆的方程.参考答案1.C.【解析解一元二次不等式2230x x--<,得13x-<<,∴(1,3)A=-,而(0,4)B=,∴(0,3)A B=.2【答案】D【解析】:由zi=2+i,得,∴z的虚部是﹣2,故选D.3.A【解析】由三视图知原几何体是棱长为2的正方体中挖掉一个圆锥,∴212222(1)2833V V Vππ=-=⨯⨯-⨯⨯⨯=-正方体圆锥.4.B5.D【解析】不等式组⎪⎩⎪⎨⎧->≤≤+-111xyyx在直角坐标系中所表示的平面区域如下图中的阴影部分所示,设(),P x y是该区域的任意一点,则22)2(yx+-的几何意义是点(),P x y与点()2,0M距离的平方,由图可知,当点的坐标为时,PM最小,所以2215PM≥+=,所以25PM≥即:22(2)5x y-+≥,故选D.6.B【解析】(2,3),(4,1),(6,2),364210a b a b a b=--=-∴+=--+=+=选B. 7.C【解析】由题可知,ππ()2sin()cos()66f x x x=--)32sin(π-=x,函数)32sin()(π-=xxf的对称轴为πππkx+=-232,解得2125ππkx+=,因此本题选C;8.D【解析】由题,f(x)=f(x+2),问题转化为函数f(x)与|lnx|交点问题,所以不难得到函数图像如图所示,在[-1,0)上(ln|x|)'(ln x)1=-<-,所以在该区间上两个函数相切于(-1,0),交点有一个,易知零点一共有3个,故选9.A【解析】如图所示,因为FQPF4=,故34PQPF=,过点Q作QM l⊥,垂足为M,则//QM x 轴,所以344MQ PQPF==,所以3MQ=,由抛物线定义知,3QF MQ==,xy–1–2–3–41234–1–2–3–41234O F10.C【解析】构造函数()()h x xf x=,∴()()()h x f x x f x''=+⋅,∵()y f x=是定义在实数集R上的奇函数,∴()h x是定义在实数集R上的偶函数,当x >0时,()()()0h x f x x f x ''=+⋅>,∴此时函数()h x 单调递增. ∵111()()222a f h ==,2(2)2(2)(2)b f f h =--==,111(ln )(ln )(ln )(ln 2)(ln 2)222c f h h h ===-=,又1ln 222<<,.a c b ∴<<.故选C .11.16【解析】设高一、高二、高三年级的人数分别为x d ,x ,x+d ,则3x=1200,即高二年级的人数为1200,所以高二年级被抽取的人数为120048163600⨯=;12.76或【解析】根据题意可知,456789100a a a a a a a ,即70a ,再由首项是大于零的,所以数列是递减的,n S 存在最大值,取最大值时n 的值为76或.13.9【解析】由题意可知,圆心()21,在直线220(,0)ax by a b +-=>上,所以1a b +=,又()1414455249b aa b a b a b a b⎛⎫+=++=++≥+ ⎪⎝⎭. 14.3(3,]4--【解析】根据平均值函数的定义,若函数mx x x f +=3)(是]1,1[-上的平均值函数,则关于x 的方程()()()31111f f x mx --+=--在区间()1,1-有解,即关于x 的方程310x mx m +--=在区间()1,1-有解;即关于x 的方程21m x x =---在区间()1,1-有解;因为函数()2213124g x x x x ⎛⎫=---=-+- ⎪⎝⎭在区间]1,1[-上当12x =-取得最大值34-,当1x =时取得最小值3-,所以函数()2213124g x x x x ⎛⎫=---=-+- ⎪⎝⎭在区间()1,1-上的值域为3(3,]4--,所以实数m 的取值围是3(3,]4-- 15.(1) ①③④;(2)20132-2【解析】(1).对于数列{}n x ,若1-2,2A (),则22,2A ();若1-2,2A -(),则22,2A -();均满足12OA OA ⊥,所以具有性质P,故①正确;对于数列{}n y ,当12,3A (-)时,若存在2A x y (,)满足12OA OA ⊥,即230x y -+=,数列{}n y }中不存在这样的数x ,y ,因此不具有性质P ,故②不正确;取1i i A x x (,),又数列{}n x 具有性质P ,所以存在点2i j A x x (,)使得12OA OA ⊥,即0i i i j x x x x +=,又0i x ≠ ,所以0i j x x +=,故③正确;数列{}n x 中一定存在两项i j x x ,使得0i j x x +=;又数列{x n }是单调递增数列且x 2>0,1(3)n x n >≥,所以21x =,故④正确;(2) 由(1)知,21x =.若数列{}n x 只有2014项且具有性质P ,可得4548x x ==,,猜想数列{}n x 从第二项起是公比为2的等比数列16.(Ⅰ))](6,3[Z k k k ∈+-ππππ(Ⅱ)23. 【解析】(Ⅰ)∵)62sin(22sin 32cos cos sin 32sin cos )(22π+=+=+-=x xx xx x x x f由226222πππππ+≤+≤-k x k 得:)(63Z k k x k ∈+≤≤-ππππ因此,()f x 的单调递增区间是)](6,3[Z k k k ∈+-ππππ 6分(Ⅱ)由1)62sin(2)(=+=πA A f 得:3π=A , 8分由余弦定理A bc c b a cos 2222-+=得:322=-+bc c b ① 由3=+c b 得:9222=++bc c b ② 10分 ②-①得:63=bc ,2=bc ∴2323221sin 21=⨯⨯==∆A bc S ABC . 12分 17.(Ⅰ)35;(Ⅱ)35【解析】Ⅰ)A 组学生的平均分为9488868077855++++=(分), ∴B 组学生平均分为86分,设被污损的分数为x ,由91938375865x ++++=,∴88x =,故B 组学生的分数分别为93,91,88,83,75,则在B 组学生随机选1人所得分超过85分的概率35P =. (Ⅱ)A 组学生的分数分别是94,88,86,80,77,在A 组学生中随机抽取2名同学,其分数组成的基本事件(,)m n 有(94,88),(94,86),(94,80),(94,77),(88,86),(88,80),(88,77),(86,80),(86,77),(80,77)共10个, 随机抽取2名同学的分数,m n 满足||8m n -≤的事件有(94,88),(94,86),(88,86),(88,80),(86,80),(80,77)共6个. 故学生得分,m n 满足||8m n -≤的概率63105P ==. 18.(1)证明见解析;(2)12. 【解析】(1)要证明直线⊥BC 平面ACD ,因为已知平面ACD 与平面ABC 垂直,因此我们只要证明BC AC ⊥,然后应用面面垂直的性质定理可得结论,而要证明BC AC ⊥,我们在ABC ∆中,由已知可得4,45AC AB CAB ==∠=︒,由余弦定理可得BC =BC AC ⊥;(2)由//AD 平面BEF ,根据线面平行的性质,可得//AD EF ,这样点F 为DC 的中点,由(1)可知111334F BCE B EFC EFC ACD V V S BC S BC --∆∆==⋅=⨯⋅.试题解析:(1)2222=+=CD AD AC 1分,045=∠=∠ACD BAC ,4=AB ,845cos 20222=⨯⨯-+=AB AC AB AC BC 3分(其他方法求值也参照给分)∵16222=+=BC AC AB ,∴090=∠ACB (BC AC ⊥) 4分 ∵平面⊥ACD 平面ABC ,平面 ACD 平面AC ABC =,∴⊥BC 平面ACD 6分(2)∵//AD 平面BEF ,⊂AD 平面ACD ,平面 ACD 平面EF BEF =, ∴EF AD // 8分∵点E 为AC 的中点,∴EF 为ACD ∆的中位线 9分 由(1)知,几何体BCE F -的体积BC S V V CEF CEF B BCE F ⨯⨯==∆--3111分 2141==∆∆ACD CEF S S 13分, 32222131=⨯⨯=-BCE F V 14分 19.(1){}n a 的通项公式为1)21(-=n n a ;(2)数列{}n b 的前n 项和为14943916-⨯+-=n n n T .【解析】(1)点) , (1n n S a +在直线022=-+y x 上∴0221=-++n n S a 1分当1>n 时,0221=-+-n n S a 2分 两式相减得:02211=-+--+n n n n S S a a 即0221=+-+n n n a a a∴n n a a 211=+3分又当1=n 时,022221212=-+=-+a a S a122121a a ==4分 ∴{}n a 是首项11=a ,公比21=q 的等比数列5分 ∴{}n a 的通项公式为1)21(-=n n a 6分(2)由(1)知,124-==n n n nna b 7分12244143421--+-++++=n n n nn T 8分2344143244--+-++++=n n n nn T 9分两式相减得:123441414153----++++=n n n n nT 11分11634334n n -+=-⨯13分 ∴数列{}n b 的前n 项和为14943916-⨯+-=n n n T 14分 20.(Ⅰ)函数f(x)的定义域为(0,+∞), 1分 222'()x x a f x x-+=, 2分∵曲线y=f (x)在点(1,f(1))处的切线与直线x+2y –1=0垂直,∴f ¢(1)=a=2. 4分(Ⅱ)由于222'()x x a f x x-+=,所以令g(x)=2x 2–2x+a ,则△=4–8a .①当△≤0,即a ≥21时,g(x)≥0,从而f ¢(x)≥0, 故函数f(x)在(0,+∞)上单调递增; 6分②当△>0,即a <21时,g(x)=0的两个根为x 1=2211a --,x 2=2211a -+>21,当1≥,即a ≤0时,x 1≤0,当0<a <21时,x 1>0. 故当a ≤0时,函数f(x)在(0,2211a --)单调递减,在(2211a -+,+∞)单调递增;当0<a <21时,函数f(x)在(0,2211a --),(2211a -+,+∞)单调递增,在(2211a --,2211a -+)单调递减. 9分 (Ⅲ)当函数(x)f 有两个极值点时,102a <<,01<<,故此时211(,1)22x =∈,且2(x )0g =,即222a 22x x =-+,所以2222222222()(1)ln (1)(22)ln ,f x x a x x x x x =-+=-+-+设22(x)(1)(22)ln ,h x x x x =-+-+其中1(,1),2x ∈则'(x)(42)ln ,h x x =-+由于1(,1),2x ∈时,'()0h x >,故()h x 在1(,1)2是增函数,故111()()ln 2.242h x h >=-所以211()ln 242f x >-. 21.(1)设F 1(-c, 0),F 2(c, 0),|DF 1|=2b a ,又121F F DF =122DF F S ∆=,∴2222ac b b c a⎧=⎪⎪⎨⎪=⎪⎩,∴b=1,∴椭圆方形为2212x y +=. (2)设圆心在y 轴上的圆与椭圆交于A(x 0, y 0),B(-x 0, y 0), F 1A ,F 2B 是圆C 的两条切线, F 1(-1, 0),F 2(1, 0),1F A =(x 0+1, y 0),2F B =(-x 0-1, y 0),12F A F B ⊥, ∴-(x 0+1)2+y 02=0 即y 02=(x 0+1)2………………① 而202x +y 02=1 ………………② 由①②得:∴x 0=43-,y 0=13,∴A(41,33-),B(41,33) 设圆心为C(0, m),则41,33AC m ⎛⎫=-⎪⎝⎭,111(,)33F A =-, 1AC F A ⊥,4150,933m m -+=∴=.∴圆心C(0,53),半径=,∴圆方程为x 2+(y -53)2=329.。

2015年四川省高考数学试卷(文科)附详细解析(1)

2015年四川省高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2015•四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()A.{x|﹣1<x<3}B.{x|﹣1<x<1}C.{x|1<x<2} D.{x|2<x<3}2.(5分)(2015•四川)设向量=(2,4)与向量=(x,6)共线,则实数x=()A.2B.3C.4D.63.(5分)(2015•四川)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法4.(5分)(2015•四川)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件5.(5分)(2015•四川)下列函数中,最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+)B.y=sin(2x+)C.y=sin2x+cos2x D.y=sinx+cosx6.(5分)(2015•四川)执行如图所示的程序框图,输出s的值为()A.﹣B.C.﹣D.7.(5分)(2015•四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=()A.B.2C.6D.48.(5分)(2015•四川)某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2。

718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是()A.16小时B.20小时C.24小时D.28小时9.(5分)(2015•四川)设实数x,y满足,则xy的最大值为()A.B.C.12 D.1610.(5分)(2015•四川)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r >0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是()A.(1,3)B.(1,4)C.(2,3) D.(2,4)二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2015•四川)设i是虚数单位,则复数i﹣=.12.(5分)(2015•四川)lg0.01+log216的值是.13.(5分)(2015•四川)已知sinα+2cosα=0,则2sinαcosα﹣cos2α的值是.14.(5分)(2015•四川)在三棱住ABC﹣A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M,N,P分别是AB,BC,B1C1的中点,则三棱锥P﹣AMN的体积是.15.(5分)(2015•四川)已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2,设m=,n=.现有如下命题:①对于任意不相等的实数x1、x2,都有m>0;②对于任意的a及任意不相等的实数x1、x2,都有n>0;③对于任意的a,存在不相等的实数x1、x2,使得m=n;④对于任意的a,存在不相等的实数x1、x2,使得m=﹣n.其中的真命题有(写出所有真命题的序号).三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2015•四川)设数列{a n}(n=1,2,3…)的前n项和S n,满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列的前n项和为T n,求T n.17.(12分)(2015•四川)一辆小客车上有5名座位,其座号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5.他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己1号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.(Ⅰ)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)乘客P1P2P3P4P5座位号 3 2 1 4 53 245 1(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P5坐到5号座位的概率.18.(12分)(2015•四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.(Ⅲ)证明:直线DF⊥平面BEG.19.(12分)(2015•四川)已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px ﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.20.(13分)(2015•四川)如图,椭圆E:=1(a>b>0)的离心率是,点P(0,1)在短轴CD上,且•=﹣1(Ⅰ)求椭圆E的方程;(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在常数λ,使得•+λ•为定值?若存在,求λ的值;若不存在,请说明理由.21.(14分)(2015•四川)已知函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.2015年四川省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2015•四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=() A.{x|﹣1<x<3} B.{x|﹣1<x<1} C.{x|1<x<2} D.{x|2<x<3}考点:并集及其运算.专题:集合.分析:直接利用并集求解法则求解即可.解答:解:集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B={x|﹣1<x<3}.故选:A.点评:本题考查并集的求法,基本知识的考查.2.(5分)(2015•四川)设向量=(2,4)与向量=(x,6)共线,则实数x=()A.2B.3C.4D.6考点: 平面向量共线(平行)的坐标表示.专题: 平面向量及应用.分析:利用向量共线的充要条件得到坐标的关系求出x.解答:解;因为向量=(2,4)与向量=(x,6)共线,所以4x=2×6,解得x=3;故选:B.点评:本题考查了向量共线的坐标关系;如果两个向量向量=(x,y)与向量=(m,n)共线,那么xn=yn.3.(5分)(2015•四川)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法考点:收集数据的方法.专题:应用题;概率与统计.分析:若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.解答:解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,这种方式具有代表性,比较合理.故选:C.点评:本小题考查抽样方法,主要考查抽样方法,属基本题.4.(5分)(2015•四川)设a,b为正实数,则“a>b>1"是“log2a>log2b>0”的() A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件考点:充要条件.专题:简易逻辑.分析:先求出log2a>log2b>0的充要条件,再和a>b>1比较,从而求出答案.解答:解:若log2a>log2b>0,则a>b>1,故“a>b>1”是“log2a>log2b>0”的充要条件,故选:A.点评:本题考察了充分必要条件,考察对数函数的性质,是一道基础题.5.(5分)(2015•四川)下列函数中,最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+)B.y=sin(2x+)C.y=sin2x+cos2x D.y=sinx+cosx考点: 两角和与差的正弦函数;三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:求出函数的周期,函数的奇偶性,判断求解即可.解答:解:y=cos(2x+)=﹣sin2x,是奇函数,函数的周期为:π,满足题意,所以A正确y=sin(2x+)=cos2x,函数是偶函数,周期为:π,不满足题意,所以B不正确;y=sin2x+cos2x=sin(2x+),函数是非奇非偶函数,周期为π,所以C不正确;y=sinx+cosx=sin(x+),函数是非奇非偶函数,周期为2π,所以D不正确;故选:A.点评:本题考查两角和与差的三角函数,函数的奇偶性以及红丝带周期的求法,考查计算能力.6.(5分)(2015•四川)执行如图所示的程序框图,输出s的值为()A.﹣B.C.﹣D.考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的k的值,当k=5时满足条件k>4,计算并输出S的值为.解答:解:模拟执行程序框图,可得k=1k=2不满足条件k>4,k=3不满足条件k>4,k=4不满足条件k>4,k=5满足条件k>4,S=sin=,输出S的值为.故选:D.点评:本题主要考查了循环结构的程序框图,属于基础题.7.(5分)(2015•四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=()A.B.2C.6D.4考点:双曲线的简单性质.专题: 圆锥曲线的定义、性质与方程.分析:求出双曲线的渐近线方程,求出AB的方程,得到AB坐标,即可求解|AB|.解答:解:双曲线x2﹣=1的右焦点(2,0),渐近线方程为y=,过双曲线x2﹣=1的右焦点且与x轴垂直的直线,x=2,可得y A=2,y B=﹣2,∴|AB|=4.故选:D.点评:本题考查双曲线的简单性质的应用,考查基本知识的应用.8.(5分)(2015•四川)某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是()A.16小时B.20小时C.24小时D.28小时考点:指数函数的实际应用.专题:函数的性质及应用.分析:由已知中保鲜时间与储藏温度是一种指数型关系,由已知构造方程组求出e k,e b的值,运用指数幂的运算性质求解e33k+b即可.解答:解:y=e kx+b(e=2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档