福建省莆田市荔城区擢英中学2019-2020学年九年级(上)期中数学试卷

合集下载

福建省泉州一中、莆田哲理中学2019-2020学年九年级(上)期中数学试卷(含解析)

福建省泉州一中、莆田哲理中学2019-2020学年九年级(上)期中数学试卷(含解析)

2019-2020学年九年级(上)期中数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列事件中,是必然事件的是()A.购买一张彩票,中奖B.射击运动员射击一次,命中靶心C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是180°2.反比例函数y=﹣,下列说法不正确的是()A.图象经过点(1,﹣3)B.图象位于第二、四象限C.图象关于直线y=x对称D.y随x的增大而增大3.对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人4.如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子()A.逐渐变短B.先变短后变长C.先变长后变短D.逐渐变长5.如图,▱ABCD中,E为AD的中点.已知△DEF的面积为S,则△DCF的面积为()A.S B.2S C.3S D.4S6.如图,网格中的两个三角形是位似图形,它们的位似中心是()A.点A B.点B C.点C D.点D7.抛物线C1:y=x2+1与抛物线C2关于x轴对称,则抛物线C2的解析式为()A.y=﹣x2B.y=﹣x2+1 C.y=x2﹣1 D.y=﹣x2﹣1 8.对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值,”甲的结果是c=1,乙的结果是c=3或4,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确9.验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据如下表,根据表中数据,可得y关于x的函数表达式为()A.y=B.y=C.y=D.y=10.已知点A(﹣1,m),B(1,m),C(2,m﹣n)(n>0)在同一个函数的图象上,这个函数可能是()A.y=x B.y=﹣C.y=x2D.y=﹣x2二、填空题:本题共6小题,每小题4分,共24分.11.cos30°=.12.二次函数y=x2﹣3的对称轴是.13.从甲、乙、丙三名同学中随机抽取环保志愿者,抽取两名,甲在其中的概率.14.如图,在正六边形ABCDEF的上方作正方形AFGH,联结GC,那么∠GCD的正切值为.15.如图,在△ABC中,AB:AC=7:3,∠BAC的平分线交BC于点E,过点B作AE的垂线段,垂足为D,则AE:ED=.16.已知如图,直线y=x分别与双曲线y=(m>0,x>0)、双曲线y=(n>0,x >0)交于点A,点B,且=,将直线y=x向左平移6个单位长度后,与双曲线y=交于点C,若S△ABC=4,则mn的值为.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.解方程x(x﹣2)﹣1=2x.18.如图,在△ABC中,AB=AC,∠BAC=108°,点D、E分别在边BC、边AB上,且∠ADE=36°.求证:△ADC∽△DEB.19.如图所示,已知:在△ABC中,∠A=60°,∠B=45°,AB=8.求:△ABC的面积.(结果可保留根号)20.求证:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.解答要求如下:(1)对于图中△ABC,用尺规作出一条中位线DE;(不必写作法,但应保留作图痕迹)(2)根据(1)中作出的中位线,写出已知,求证和证明过程.21.已知抛物线y=x2﹣mx+2m﹣1必过定点H.(1)写出H的坐标.(2)若抛物线经过点A(0,3),求证:该抛物线恒在直线y=﹣2x﹣1上方.22.市面上贩售的防晒产品标有防晒指数SPF,而其对抗紫外线的防护率算法为:防护率=×100%,其中SPF≥1.请回答下列问题:(1)厂商宣称开发出防护率90%的产品,请问该产品的SPF应标示为多少?(2)某防晒产品文宣内容如图所示.请根据SPF与防护率的转换公式,判断此文宣内容是否合理,并详细解释或完整写出你的理由.23.有一块形状如图的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B=90°,∠C=135°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.24.如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=°;(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC 是“准互余三角形”,求对角线AC的长.25.若抛物线与x轴的两个交点及其顶点构成等边三角形,则称该抛物线为“等边抛物线”(1)若对任意m,n,点M(m,n)和点N(﹣m+4,n)恒在“等边抛物线”C1:y=ax2+bx 上,求抛物线C1的解析式;(2)若抛物线C2:y=ax2+bx+c为“等边抛物线“,求b2﹣4ac的值;(3)对于“等边抛物线“C3:y=x2+bx+c,当1<x<m时,总存在实数b,使二次函数C3的图象在一次函数y=x图象的下方,求m的最大值.参考答案与试题解析一.选择题(共10小题)1.下列事件中,是必然事件的是()A.购买一张彩票,中奖B.射击运动员射击一次,命中靶心C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是180°【分析】先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.【解答】解:A.购买一张彩票中奖,属于随机事件,不合题意;B.射击运动员射击一次,命中靶心,属于随机事件,不合题意;C.经过有交通信号灯的路口,遇到红灯,属于随机事件,不合题意;D.任意画一个三角形,其内角和是180°,属于必然事件,符合题意;故选:D.2.反比例函数y=﹣,下列说法不正确的是()A.图象经过点(1,﹣3)B.图象位于第二、四象限C.图象关于直线y=x对称D.y随x的增大而增大【分析】通过反比例图象上的点的坐标特征,可对A选项做出判断;通过反比例函数图象和性质、增减性、对称性可对其它选项做出判断,得出答案.【解答】解:由点(1,﹣3)的坐标满足反比例函数y=﹣,故A是正确的;由k=﹣3<0,双曲线位于二、四象限,故B也是正确的;由反比例函数图象的对称性,可知反比例函数y=﹣的图象关于y=x对称是正确的,故C也是正确的,由反比例函数的性质,k<0,在每个象限内,y随x的增大而增大,不在同一象限,不具有此性质,故D是不正确的,故选:D.3.对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人【分析】扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.【解答】解:调查总人数:40÷20%=200(人),选择黄鱼的人数:200×40%=80(人),故选:D.4.如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子()A.逐渐变短B.先变短后变长C.先变长后变短D.逐渐变长【分析】小亮由A处径直路灯下,他得影子由长变短,再从路灯下到B处,他的影子则由短变长.【解答】解:晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子先变短,再变长.故选:B.5.如图,▱ABCD中,E为AD的中点.已知△DEF的面积为S,则△DCF的面积为()A.S B.2S C.3S D.4S【分析】根据平行四边形的性质,可证△EDF∽△CBF,继而证得相似之比为EF:CF=ED:BC=1:2,所以当△DEF的面积为S时,则△DCF的面积为2S.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴△EDF∽△CBF,∴ED:CB=EF:CF,∵E为AD的中点,∴ED=AD=BC,∴EF:CF=1:2,从图中可以看出△EDF与△DCF共一顶点D,所以高相等,∴面积之比为:EF:CF=1:2,∴当△DEF的面积为S时,则△DCF的面积为2S.故选:B.6.如图,网格中的两个三角形是位似图形,它们的位似中心是()A.点A B.点B C.点C D.点D【分析】画出三组对应点的直线,它们的交点即为位似中心.【解答】解:如图,网格中的两个三角形是位似图形,它们的位似中心是点D.故选:D.7.抛物线C1:y=x2+1与抛物线C2关于x轴对称,则抛物线C2的解析式为()A.y=﹣x2B.y=﹣x2+1 C.y=x2﹣1 D.y=﹣x2﹣1【分析】画出图形后可根据开口方向决定二次项系数的符号,开口度是二次项系数的绝对值;与y轴的交点为抛物线的常数项进行解答.【解答】解:关于x轴对称的两个函数解析式的开口方向改变,开口度不变,二次项的系数互为相反数;对与y轴的交点互为相反数,那么常数项互为相反数,故选D.8.对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值,”甲的结果是c=1,乙的结果是c=3或4,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确【分析】分两种情况进行讨论,①当抛物线与直线相切,△=0求得c=1,②当抛物线与直线不相切,但在0≤x≤3上只有一个交点时,找到两个临界值点,可得c=3,4,5,故c=3,4,5【解答】解:∵抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点∴①如图1,抛物线与直线相切,联立解析式得x2﹣2x+2﹣c=0△=(﹣2)2﹣4(2﹣c)=0解得:c=1,当c=1时,相切时只有一个交点,和题目相符所以不用舍去;②如图2,抛物线与直线不相切,但在0≤x≤3上只有一个交点此时两个临界值分别为(0,2)和(3,5)在抛物线上∴c的最小值=2,但取不到,c的最大值=5,能取到∴2<c≤5又∵c为整数∴c=3,4,5综上,c=1,3,4,5,所以甲乙合在一起也不正确,故选:D.9.验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据如下表,根据表中数据,可得y关于x的函数表达式为()A.y=B.y=C.y=D.y=【分析】直接利用已知数据可得xy=100,进而得出答案.【解答】解:由表格中数据可得:xy=100,故y关于x的函数表达式为:y=.故选:A.10.已知点A(﹣1,m),B(1,m),C(2,m﹣n)(n>0)在同一个函数的图象上,这个函数可能是()A.y=x B.y=﹣C.y=x2D.y=﹣x2【分析】由点A(﹣1,m),B(1,m)的坐标特点,可知函数图象关于y轴对称,于是排除选项A、B;再根据B(1,m),C(2,m﹣n)的特点和二次函数的性质,可知抛物线的开口向下,即a<0,故D选项正确.【解答】解:∵A(﹣1,m),B(1,m),∴点A与点B关于y轴对称;由于y=x,y=的图象关于原点对称,因此选项A、B错误;∵n>0,∴m﹣n<m;由B(1,m),C(2,m﹣n)可知,在对称轴的右侧,y随x的增大而减小,对于二次函数只有a<0时,在对称轴的右侧,y随x的增大而减小,∴D选项正确故选:D.二.填空题(共6小题)11.cos30°=.【分析】根据特殊角的三角函数值即可求解.【解答】解:cos30°=.故答案为:.12.二次函数y=x2﹣3的对称轴是y轴.【分析】二次函数对称轴x=﹣,将表达式中的相关量直接代入即可求解.【解答】解:由对称轴x=﹣知:二次函数y=x2﹣3的对称轴是y轴;故答案为:y轴.13.从甲、乙、丙三名同学中随机抽取环保志愿者,抽取两名,甲在其中的概率.【分析】利用列举法可得抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,然后利用概率公式求解即可求得答案.【解答】解:∵抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,∴抽取2名,甲在其中的概率为;故答案为:.14.如图,在正六边形ABCDEF的上方作正方形AFGH,联结GC,那么∠GCD的正切值为.【分析】设正多边形的边长为a,求出GD长,根据正切值算出GD与CD的比.【解答】解:连接FD,设正多边形的边长为a,∵在△FED中,EF=ED=a,∠FED=120°,∴FD=a.∴DG=DF+FG=(+1)a.在Rt△GCD中,tan∠GCD==.故答案为.15.如图,在△ABC中,AB:AC=7:3,∠BAC的平分线交BC于点E,过点B作AE的垂线段,垂足为D,则AE:ED=3:2 .【分析】根据题意作出合适的辅助线,然后利用相似三角形的判定和性质可以求得AE:ED的比值.【解答】解:作CF⊥AD于点F,如右图所示,则∠AFC=∠ADB,∵AD平分∠BAC,∴∠BAD=∠CAF,∴△ABD∽△ACF,∴=,∵AB:AC=7:3,BD:CF=7:3,∴AD:AF=7:3,∵∠CFE=∠BDE=90°,∠CEF=∠BED,∴△CEF∽△BED,∴,∵CF:BD=3:7,∴,∵,,AF+FE+DE=AD,解得,,故答案为:3:2.16.已知如图,直线y=x分别与双曲线y=(m>0,x>0)、双曲线y=(n>0,x >0)交于点A,点B,且=,将直线y=x向左平移6个单位长度后,与双曲线y=交于点C,若S△ABC=4,则mn的值为100 .【分析】先求出直线y=x向左平移6个单位长度后的解析式为y=x+4,那么直线y =x+4交y轴于E(0,4),作EF⊥OB于F.根据互相垂直的两直线斜率之积为﹣1得出直线EF的解析式为y=﹣x+4,再求出F(,),EF==,根据S△ABC=4,求出AB=,那么OA=AB=,进而求出A、B两点坐标,求出m、n即可解决问题.【解答】解:直线y=x向左平移6个单位长度后的解析式为y=(x+6),即y=x+4,∴直线y=x+4交y轴于E(0,4),作EF⊥OB于F.可得直线EF的解析式为y=﹣x+4,由,解得,即F(,).∴EF==,∵S△ABC=4,∴•AB•EF=4,∴AB=,∵=,∴OA=AB=,∴A(3,2),B(5,),∴m=6,n=,∴mn=100.故答案为100.三.解答题(共9小题)17.解方程x(x﹣2)﹣1=2x.【分析】直接利用一元二次方程的解法得出答案.【解答】解:x(x﹣2)﹣1=2xx2﹣4x﹣1=0,(x﹣2)2=5则x﹣2=±,解得:x1=2+,x2=2﹣.18.如图,在△ABC中,AB=AC,∠BAC=108°,点D、E分别在边BC、边AB上,且∠ADE =36°.求证:△ADC∽△DEB.【分析】根据题意求出∠B=∠C,∠BED=∠ADC,进而利用相似三角形的判定证明即可.【解答】证明:∵在△ABC中,AB=AC,∠BAC=108°,∴∠B=∠C=36°,又∵∠ADE=36°,∴∠DEB+∠BDE=180°﹣∠B=144°,∠BDE+∠ADC=180°﹣∠ADE=144°,∴∠DEB=∠ADC,在△ADC和△DEB中,∠ADC=∠DEB,∠C=∠B,∴△ADC∽△DEB19.如图所示,已知:在△ABC中,∠A=60°,∠B=45°,AB=8.求:△ABC的面积.(结果可保留根号)【分析】过C作CD⊥AB于D,利用直角三角形的性质求得CD的长.已知AB的长,根据三角形的面积公式即可求得其面积.【解答】解:过C作CD⊥AB于D,在Rt△ADC中,∵∠CDA=90°,∴=cot∠DAC=cot60°=,即AD=CD×.在Rt△BDC中,∵∠B=45°,∴∠BCD=45°,∴CD=BD.∵AB=DB+DA=CD+CD×=8,∴CD=12﹣4.∴S△ABC=AB×CD=×8×(12﹣4)=48﹣16.答:△ABC的面积为48﹣16.20.求证:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.解答要求如下:(1)对于图中△ABC,用尺规作出一条中位线DE;(不必写作法,但应保留作图痕迹)(2)根据(1)中作出的中位线,写出已知,求证和证明过程.【分析】(1)分别作AB、AC的中垂线,交AB、AC于点D、E,连接DE.线段DE即为所求.(2)利用相似三角形的性质即可证明.【解答】解:(1)分别作AB、AC的中垂线,交AB、AC于点D、E,连接DE.线段DE即为所求.(2)已知△ABC中,D、E分别是AB、AC的中点,求证:DE BC证明:∵D、E分别是AB、AC的中点,∴==,又∠A=∠A,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,∴==,∴DE=BC.21.已知抛物线y=x2﹣mx+2m﹣1必过定点H.(1)写出H的坐标.(2)若抛物线经过点A(0,3),求证:该抛物线恒在直线y=﹣2x﹣1上方.【分析】(1)把解析式y=x2﹣mx+2m﹣1整理成y=(x﹣2)(x+2﹣m)+3,即可求得H 的坐标;(2)把(0,3)代入y=x2﹣mx+2m﹣1求得m=2,设y1=x2﹣4x+3,y2=﹣2x+1,计算y1﹣y2>0即可证明结论成立.【解答】解:(1)∵y=x2﹣mx+2m﹣1=x2﹣4﹣m(x﹣2)+3=(x+2)(x﹣2)﹣m(x﹣2)+3=(x﹣2)(x+2﹣m)+3,∴抛物线y=x2﹣mx+2m﹣1必过定点(2,3),故H的坐标为(2,3);(2)证明:∵抛物线经过点A(0,3),∴2m﹣1=3,解得m=2,∴抛物线y=x2﹣2x+3,设y1=x2﹣2x+3,y2=﹣2x﹣1,则y1﹣y2=(x2﹣2x+3)﹣(﹣2x﹣1)=x2+4>0,∴y1>y2,∴该抛物线恒在直线y=﹣2x﹣1上方.22.市面上贩售的防晒产品标有防晒指数SPF,而其对抗紫外线的防护率算法为:防护率=×100%,其中SPF≥1.请回答下列问题:(1)厂商宣称开发出防护率90%的产品,请问该产品的SPF应标示为多少?(2)某防晒产品文宣内容如图所示.请根据SPF与防护率的转换公式,判断此文宣内容是否合理,并详细解释或完整写出你的理由.【分析】(1)根据公式列出方程进行计算便可;(2)根据公式计算两个的防护率,再比较可知结果.【解答】解:(1)根据题意得,,解得,SPF=10,答:该产品的SPF应标示为10;(2)文宣内容不合理.理由如下:当SPF=25时,其防护率为:;当SPF=50时,其防护率为:;98%﹣96%=2%,∴第二代防晒乳液比第一代防晒乳液的防护率提高了2%,不是提高了一倍.∴文宣内容不合理.23.有一块形状如图的五边形余料ABCDE,AB=AE=6,BC=5,∠A=∠B=90°,∠C=135°,∠E>90°,要在这块余料中截取一块矩形材料,其中一条边在AE上,并使所截矩形材料的面积尽可能大.(1)若所截矩形材料的一条边是BC或AE,求矩形材料的面积.(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.【分析】(1)①若所截矩形材料的一条边是BC,过点C作CF⊥AE于F,得出S1=AB•BC =6×5=30;②若所截矩形材料的一条边是AE,过点E作EF∥AB交CD于F,FG⊥AB于G,过点C作CH⊥FG于H,则四边形AEFG为矩形,四边形BCHG为矩形,证出△CHF为等腰三角形,得出AE=FG=6,HG=BC=5,BG=CH=FH,求出BG=CH=FH=FG﹣HG=1,AG=AB﹣BG =5,得出S2=AE•AG=6×5=30;(2)在CD上取点F,过点F作FM⊥AB于M,FN⊥AE于N,过点C作CG⊥FM于G,则四边形ANFM为矩形,四边形BCGM为矩形,证出△CGF为等腰三角形,得出MG=BC=5,BM =CG,FG=CG,设AM=x,则BM=6﹣x,FM=GM+FG=GM+CG=BC+BM=11﹣x,得出S=AM×FM=x(11﹣x)=﹣x2+11x,由二次函数的性质即可得出结果.【解答】解:(1)①若所截矩形材料的一条边是BC,如图1所示:过点C作CF⊥AE于F,S1=AB•BC=6×5=30;②若所截矩形材料的一条边是AE,如图2所示:过点E作EF∥AB交CD于F,FG⊥AB于G,过点C作CH⊥FG于H,则四边形AEFG为矩形,四边形BCHG为矩形,∵∠C=135°,∴∠FCH=45°,∴△CHF为等腰直角三角形,∴AE=FG=6,HG=BC=5,BG=CH=FH,∴BG=CH=FH=FG﹣HG=6﹣5=1,∴AG=AB﹣BG=6﹣1=5,∴S2=AE•AG=6×5=30;(2)能;理由如下:在CD上取点F,过点F作FM⊥AB于M,FN⊥AE于N,过点C作CG⊥FM于G,则四边形ANFM为矩形,四边形BCGM为矩形,∵∠C=135°,∴∠FCG=45°,∴△CGF为等腰直角三角形,∴MG=BC=5,BM=CG,FG=CG,设AM=x,则BM=6﹣x,∴FM=GM+FG=GM+CG=BC+BM=11﹣x,∴S=AM×FM=x(11﹣x)=﹣x2+11x=﹣(x﹣5.5)2+30.25,∴当x=5.5时,即:AM=5.5时,FM=11﹣5.5=5.5,S的最大值为30.25.24.如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=15 °;(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC 是“准互余三角形”,求对角线AC的长.【分析】(1)根据“准互余三角形”的定义构建方程即可解决问题;(2)只要证明△CAE∽△CBA,可得CA2=CE•CB,由此即可解决问题;(3)如图②中,将△BCD沿BC翻折得到△BCF.只要证明△FCB∽△FAC,可得CF2=FB•FA,设FB=x,则有:x(x+7)=122,推出x=9或﹣16(舍弃),再利用勾股定理求出AC即可;【解答】解:(1)∵△ABC是“准互余三角形”,∠C>90°,∠A=60°,∴2∠B+∠A=90°,解得,∠B=15°,故答案为:15°;(2)如图①中,在Rt△ABC中,∵∠B+∠BAC=90°,∠BAC=2∠BAD,∴∠B+2∠BAD=90°,∴△ABD是“准互余三角形”,∵△ABE也是“准互余三角形”,∴只有2∠B+∠BAE=90°,∵∠B+∠BAE+∠EAC=90°,∴∠CAE=∠B,∵∠C=∠C=90°,∴△CAE∽△CBA,可得CA2=CE•CB,∴CE=,∴BE=5﹣=.(3)如图②中,将△BCD沿BC翻折得到△BCF.∴CF=CD=12,∠BCF=∠BCD,∠CBF=∠CBD,∵∠ABD=2∠BCD,∠BCD+∠CBD=90°,∴∠ABD+∠DBC+∠CBF=180°,∴A、B、F共线,∴∠FAC+∠ACF=90°∴2∠ACB+∠CAB≠90°,∴只有2∠BAC+∠ACB=90°,∴∠FCB=∠FAC,∵∠F=∠F,∴△FCB∽△FAC,∴CF2=FB•FA,设FB=x,则有:x(x+7)=122,∴x=9或﹣16(舍弃),∴AF=7+9=16,在Rt△ACF中,AC===20.25.若抛物线与x轴的两个交点及其顶点构成等边三角形,则称该抛物线为“等边抛物线”(1)若对任意m,n,点M(m,n)和点N(﹣m+4,n)恒在“等边抛物线”C1:y=ax2+bx上,求抛物线C1的解析式;(2)若抛物线C2:y=ax2+bx+c为“等边抛物线“,求b2﹣4ac的值;(3)对于“等边抛物线“C3:y=x2+bx+c,当1<x<m时,总存在实数b,使二次函数C3的图象在一次函数y=x图象的下方,求m的最大值.【分析】(1)先由点H与点N关于对称轴对称知对称轴为x=2,依据x=﹣=2知b =﹣4a,从而得y=ax2﹣4ax,再分a>0,a<0两种情况,依据等边三角形性质得出顶点坐标,代入计算可得;(2)设等边抛物线与x轴的两个交点分别为A(x1,0),B(x2,0),知AB=|x1﹣x2|=|﹣|=||,结合顶点坐标(﹣,)知=,据此求解可得;(3)由(2)中b2﹣4ac=12知c=,结合等边抛物线过(1,1)求得b=﹣6或b=2,依据对称轴位置得b=﹣6,联立求得x=1或x=6,从而得出答案.【解答】解:(1)由题意得,点H和点N关于对称轴对称,∴对称轴x==2,又∵x=﹣=2,∴b=﹣4a,∴y=ax2﹣4ax,①当a>0时,顶点坐标为(2,﹣2),代入y=ax2﹣4ax,得:﹣2=4a﹣8a,解得:a=,∴y=x2﹣2x;②当a<0时,顶点坐标为(2,2),代入y=ax2﹣4ax,得:2=4a﹣8a,解得:a=﹣,∴y=﹣x2+2x;综上,y=x2﹣2x或y=﹣x2+2x;(2)设等边抛物线与x轴的两个交点分别为A(x1,0),B(x2,0),令y=ax2+bx+c=0,∴x=,∴AB=|x1﹣x2|=|﹣|=||=||,又∵抛物线的顶点坐标为(﹣,),∴=,∵b2﹣4ac≠0,∴||=,∴b2﹣4ac=12;(3)由(2)得b2﹣4ac=12,∴c=,∴C3:y=x2+bx+,由题意知该等边抛物线过(1,1),∴1+b+=1,解得b=﹣6或b=2,又对称轴x=﹣=﹣>1,∴b<﹣2,∴b=﹣6,∴y=x2﹣6x+6,联立,解得x=1或x=6,∴m的最大值为6.。

2019-2020年九年级上学期期中考试数学试题(word版,有答案)

2019-2020年九年级上学期期中考试数学试题(word版,有答案)

一、选择题 (每题3分,共24分.)1.下列二次根式中,最简二次根式是A .B .C .D .2.用配方法解方程时,原方程应变形为 A . B . C . D .3.小伟5次引体向上的成绩为:16、18、20、18、18(单位:个),对此成绩描述错误的是A .平均数为18B .众数为18C .方差为0D .极差为44.化简的结果是A .B .C .D .5.如图,在□ABCD 中,AC 与BD 相交于点O ,点E 是边BC 的中点,AB =4,则OE 的长是A . 2B .C .1D .7.若非零实数a 、b 、c 满足9a -3b +c =0,则关于x 的一元二次方程一定有一个根为A .3B .-3C .0D .无法确定8.如图,点C 在线段AB 上从点A 向点B 运动(不与点A 、B 重合),△ACD 和△BCE 是在AB 同侧的两个等边三角形,DM 、EN 分别是△ACD 和△BCE 的高,连接DE ,得到的四边形DMNE 的面积A .逐渐增大B .逐渐减小C .始终不变D .先增大后变小二、填空题(每小题3分,共30分.)第8题图OB C D .第6题图.9.二次根式中x 的取值范围是 ▲ . 10.一元二次方程的两个根是 ▲ .11.在二次根式、、、中,与是同类二次根式的是 ▲ .17.如图,AB 、CD 是⊙O 的两条弦,若∠AOB +∠C =180°,∠COD =∠A ,则∠AOB = ▲ °. 18.如图,在矩形ABCD 中,点E 是边CD 的中点,将△ADE 沿AE折叠后得到△AFE ,且点F 在矩形ABCD 内部.将AF 延长交边BC 于点G .若,则 ▲ .三、解答题(本大题共10题,共96分.解答应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)计算:(1) (2)21)(11)++20.(本题满分8分)解一元二次方程: (1) (用配方法) (2)第16题图第17题图第18题图21.(本题满分8分)某学习小组5名同学参加初中毕业生实验操作考试(满分100分)的平均成绩是80分.其中三名男生的方差为150(分2),两名女生的成绩分别为85分,75分.(1)三名男生实验操作成绩的平均数是;(2)求该学习小组5位同学实验操作成绩的标准差.22.(本题满分8分)如图,在Rt△ABC中,∠ABC=90°,将Rt△ABC沿直线AB翻折得到△ABF,将Rt△ABC绕点C顺时针方向旋转60°得到△DEC,若点E恰好落在斜边AC上,连接AD.(1)四边形AFCD的形状是;(2)连接BE并延长交AD于G,连接CG,判断四边形ABCG的形状,并说明理由.23.(本题满分10分)“邮驿”旅行社的一则广告如下:我社组团去花果山旅游,收费标准为:如果人数不超过30人,人均旅游费用为300元,如果人数超过30人,那么每增加1人,人均旅游费用降低10元,但人均旅游费用不得低于200元.实验学校组织部分学生随该旅行社组团到花果山旅游,共花费8000元,问实验学校共安排了多少名学生参加这次旅游?24.(本题满分10分)某同学作业本上做了这么一道题:“当a=■时,试求的值”,其中■是被墨水弄污的,该同学所求得的答案为,请你判断该同学答案是否正确,说明理由.25.(本题满分10分)已知关于x的一元二次方程.(1)求证:这个一元二次方程一定有两个实数根;(2)设这个一元二次方程的两根为a、b,且2、a、b分别是一个直角三角形的三边长,求m的值.26.(本题满分10分)图1图227.(本题满分12分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B、C 重合).以AD为边做正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时.求证CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF、BC、CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为,对角线AE,DF相交于点O,连接OC.求OC的长度.图1 图2 图328.(本题满分12分)xx 学年度第一学期期中考试九年级数学参考答案一、选择题二、填空题9. ≥1; 10. ,; 11. ; 12. (-3,0); 13. ≤3;14. 4或-2; 15. 3或-2; 16. 2 ; 17. 108; 18. 1.5 . 三、解答题(本大共10题,共96分)19.解:(1)原式= ………………………………………………………3分= ………………………………………………………4分(2)原式=21)1)+ …………………………………………7分= …………………………………………………8分 = ………………………………………………………8分20.解:(1)(说明:必须是用配方解,其它解法得1分) …………………4分(2), ………………………………………………………8分21.解:(1)80 …………………………………… ……2分(2)不妨设三名男生的成绩为,则222231231()()()1503S x x x x x x ⎡⎤=-+--=⎣⎦ 222123()()()450x x x x x x -+--= ………………………………4分()22222251231()()()(8580)(7580)3145025251005S x x x x x x ⎡⎤=-+--+-+-⎣⎦=++= ……………7分∴ ……………………………………………8分22. 解:(1)菱形 ……………………………………………………………2分(2)四边形ABCG 为矩形 …………………………………………………………3分 理由如下:由旋转的性质可知:AC =AF , ∠ACB =∠DCE =600∴是等边三角形, 于 ∴∵∴EAG ECB AGE EBC ==∠∠,∠∠ ∴ ∴∴四边形是平行四边形,而∴四边形是矩形. ………………………………………………………8分23.解:设共安排x 人参加,∵30×300=9000<8000 ∴x >30,根据题意得: ……………1分x [300-10(x -30)]=8000 ……………5分整理得:x 2-110x +2800=0解得: x 1=40,x 2=70 (7)分∵300-10(x -30)≥200 ∴x ≤ 40 ∴x =40. …………9分答:实验学校共安排了40名学生参加这次旅游. ……………10分当a <1时,原式=a -a +1=1 (5)分∵该同学所求得的答案为 ∴a ≥1,∴2a -1= ∴ a = 这与a ≥1矛盾 (9)分∴该同学的答案是不正确的. ……………10分 25.解:(1)∵2224(3)1269b ac m m m m -=-+=++ …………………1分……………3分又 ∴ ∴原方程有两个实数根 ……………………4分(2)原方程可变为,则方程的两根为……………5分∴直角三角形三边为2, 3,-m ∴ m <0 ……………6分① 若-m 为直角三角形的斜边时,则:∴ ……………………8分②若3为直角三角形的斜边时,则:∴ ……………………10分26. 解:(1)①∠CPD 的度数不变; …………………1分 ∵AB 是⊙O 的直径,AC =AB ∴AC=AO=CO∴∠A =60°, 即CPD =60° ……………………………3分②略; (5)分(2)∵∠ACB =90° AC =AB ∴∠ABC =30°∴∠PCD =∠ABC =30° ∵CP ⊥AB ,AB 是⊙O 的直径 ∴ ∴∠ACP =∠ABC =30°∴∠BCD =∠AC ﹣∠ACP ﹣∠PCD =90°﹣30°﹣30°=30°. ………10分27. 证明:(1)∵∠BAC =90° ∠ABC =45° ∴∠ACB =∠ABC =45° ∴AB =AC∵四边形ADEF 是正方形 ∴AD =AF ∠DAF =90°∵∠BAD =90°-∠DAC ∠CAF =90°-∠DAC ∴∠BAD =∠CAF ∵在△BAD 和△CAF 中:AB =AC ∠BAD =∠CAF AD =AF ∴△BAD ≌△CAF ( ∴BD =CF∵BD +CD =BC ∴CF +CD =BC ; ……………………4分(2)CF-CD=BC;…………………6分(3)①CD-CF=BC;…………………8分②∵∠BAC=90°∠ABC=45°∴∠ACB=∠ABC=45°∴AB=AC∵四边形ADEF是正方形∴AD=AF∠DAF=90°∵∠BAD=90°-∠BAF∠CAF=90°-∠BAF∴∠BAD=∠CAF∵在△BAD和△CAF中:AB=AC ∠BAD=∠CAF AD=AF∴△BAD≌△CAF∴∠ACF=∠ABD∵∠ABC=45°∴∠ABD=135°∴∠ACF=∠ABD=135°∴∠FCD=90°∴△FCD是直角三角形.∵正方形ADEF的边长为,且对角线AE、DF相交于点O∴DF=AD=4,O为DF中点∴OC=DF=2.…………………12分28.解:(1)是,理由如下:∵邻边长分别为2和3的平行四边形经过两次操作,所剩四边形是边长为1的菱形∴邻边长分别为2和3的平行四边形是2阶准菱形;…………………3分(2)①如图所示,a=4 或a=2.5 或a=或a=;…………7分②10阶菱形;…………………………………………8分∵a=6b+r,b=5r∴a=6×5r+r=31r;如图所示:故□ABCD是10阶准菱形.……………12分。

2020-2021莆田擢英中学初三数学上期中试题含答案

2020-2021莆田擢英中学初三数学上期中试题含答案

2020-2021莆田擢英中学初三数学上期中试题含答案一、选择题1.若关于x 的一元二次方程4x 2-4x+c=0有两个相等实数根,则c 的值是( ) A .-1B .1C .-4D .42.如图,已知⊙O 的半径为5,锐角△ABC 内接于⊙O ,BD ⊥AC 于点D ,AB=8,则tan ∠CBD 的值等于( )A .43B .45C .35D .343.二次函数y =ax 2+bx+c (a≠0)的图象如图所示,那么下列说法正确的是( )A .a >0,b >0,c >0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c >0 4.已知抛物线y=x 2-2mx-4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( ) A .(1,-5) B .(3,-13) C .(2,-8) D .(4,-20) 5.已知实数x 满足(x 2﹣2x +1)2+2(x 2﹣2x +1)﹣3=0,那么x 2﹣2x +1的值为( ) A .﹣1或3 B .﹣3或1C .3D .1 6.抛物线y =2(x -3)2+4的顶点坐标是( )A .(3,4)B .(-3,4)C .(3,-4)D .(2,4)7.解一元二次方程 x 2﹣8x ﹣5=0,用配方法可变形为( ) A .(x +4)2=11B .(x ﹣4)2=11C .(x +4)2=21D .(x ﹣4)2=218.在一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机地从袋子中摸出4个球,下列事件是必然事件的是( ). A .摸出的4个球中至少有一个球是白球 B .摸出的4个球中至少有一个球是黑球 C .摸出的4个球中至少有两个球是黑球D .摸出的4个球中至少有两个球是白球9.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有 A .4个B .3个C .2个D .1个10.长方形的周长为24cm ,其中一边长为()x cm ,面积为2ycm 则长方形中y 与x 的关系式为( ) A .2yx B .2(12)y x =- C .(12)y x x =- D .2(12)y x =- 11.四边形ABCD 的对角线互相平分,要使它变为矩形,需要添加的条件是( ) A .AB=CDB .AB=BCC .AC ⊥BDD .AC=BD12.如图,在⊙O 中,AB 是⊙O 的直径,AB =10,AC CD DB ==,点E 是点D 关于AB 的对称点,M 是AB 上的一动点,下列结论:①∠BOE =60°;②∠CED =12∠DOB ;③DM ⊥CE ;④CM +DM 的最小值是10,上述结论中正确的个数是( )A .1B .2C .3D .4二、填空题13.如图,△ABC 内接于⊙O ,∠ACB =90°,∠ACB 的角平分线交⊙O 于D .若AC =6,BD =52,则BC 的长为_____.14.新园小区计划在一块长为20米,宽12米的矩形场地上修建三条互相垂直的长方形甬路(一条橫向、两条纵向,且横向、纵向的宽度比为3:2),其余部分种花草.若要使种花草的面积达到144米2.则横向的甬路宽为_____米.15.如图,量角器的0度刻度线为AB ,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C ,直尺另一边交量角器于点A ,D ,量得10AD cm =,点D 在量角器上的读数为60,则该直尺的宽度为____________cm .16.将一元二次方程x 2﹣6x +5=0化成(x ﹣a )2=b 的形式,则ab =__.17.如图,四边形ABCD 是O 内接四边形,若3080BAC CBD ∠︒∠︒=,=,则BCD∠的度数为______.18.女生小琳所在班级共有40名学生,其中女生占60%.现学校组织部分女生去市三女中参观,需要从小琳所在班级的女生当中随机抽取一名女生参加,那么小琳被抽到的概率是 .19.如图,是一个长为30m ,宽为20m 的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m 2,那么小道进出口的宽度应为 米.20.如图,在扇形AOB 中,∠AOB=90°,点C 为OA 的中点,CE ⊥OA 交AB 于点E ,以点O 为圆心,OC 的长为半径作CD 交OB 于点D ,若OA=2,则阴影部分的面积为 .三、解答题21.某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定为每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?22.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小李做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,如表是实验中的一组统计数据:摸球的次数n10020030050080010003000摸到白球的次数m631241783024815991803摸到白球的频率mn0.630.620.5930.6040.6010.5990.601()1请估计:当实验次数为10000次时,摸到白球的频率将会接近________;(精确到0.1)()2假如你摸一次,你摸到白球的概率P(摸到白球)=________;()3如何通过增加或减少这个不透明盒子内球的具体数量,使得在这个盒子里每次摸到白球的概率为0.5?23.三辆汽车经过某收费站下高速时,在2个收费通道A,B中,可随机选择其中的一个通过.(1)三辆汽车经过此收费站时,都选择A通道通过的概率是;(2)求三辆汽车经过此收费站时,至少有两辆汽车选择B通道通过的概率.24.如图,在中,,是的外接圆,点P在直径BD的延长线上,且.求证:PA是的切线;若,求图中阴影部分的面积结果保留和根号25.社区利用一块矩形空地建了一个小型的惠民停车场,其布局如图所示.已知停车场的长为52米,宽为28米,阴影部分设计为停车位,要铺花砖,其余部分是等宽的通道.已知铺花砖的面积为640平方米.(1)求通道的宽是多少米?(2)该停车场共有车位64个,据调查分析,当每个车位的月租金为200元时,可全部租出;当每个车位的月租金每上涨10元,就会少租出1个车位.当每个车位的月租金上涨多少元时,停车场的月租金收入为14400元?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据一元二次方程根的判别式可得:当△=0时,方程有两个相等的实数根;当△>0时,方程有两个不相等的实数根;当△<0时,方程没有实数根. 【详解】解:根据题意可得: △=2(4) -4×4c=0,解得:c=1 故选:B . 【点睛】本题考查一元二次方程根的判别式.2.D解析:D 【解析】过B 作⊙O 的直径BM ,连接AM , 则有:∠MAB=∠CDB=90°,∠M=∠C , ∴∠MBA=∠CBD , 过O 作OE ⊥AB 于E ,Rt △OEB 中,BE=12AB=4,OB=5, 由勾股定理,得:OE=3,∴tan ∠MBA=OE BE =34, 因此tan ∠CBD=tan ∠MBA=34,故选D .3.B解析:B【解析】 【分析】利用抛物线开口方向确定a 的符号,利用对称轴方程可确定b 的符号,利用抛物线与y 轴的交点位置可确定c 的符号. 【详解】∵抛物线开口向下, ∴a <0,∵抛物线的对称轴在y 轴的右侧,∴x =﹣2ba>0, ∴b >0,∵抛物线与y 轴的交点在x 轴上方, ∴c >0, 故选:B . 【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.4.C解析:C 【解析】 【分析】 【详解】解:22224=()4y x mx x m m =-----,∴点M (m ,﹣m 2﹣4),∴点M′(﹣m ,m 2+4),∴m 2+2m 2﹣4=m 2+4.解得m=±2.∵m >0,∴m=2,∴M (2,﹣8). 故选C . 【点睛】本题考查二次函数的性质.5.D解析:D 【解析】 【分析】设x 2﹣2x +1=a ,则(x 2﹣2x +1)2+2(x 2﹣2x +1)﹣3=0化为a 2+2a ﹣3=0,求出方程的解,再判断即可. 【详解】解:设x 2﹣2x +1=a ,∵(x 2﹣2x +1)2+2(x 2﹣2x +1)﹣3=0, ∴a 2+2a ﹣3=0, 解得:a =﹣3或1,当a =﹣3时,x 2﹣2x +1=﹣3, 即(x ﹣1)2=﹣3,此方程无实数解; 当a =1时,x 2﹣2x +1=1,此时方程有解, 故选:D . 【点睛】此题考查换元法解一元二次方程,借助另外设未知数的方法解一元二次方程使理解更容易,计算更简单.6.A解析:A 【解析】根据2()y a x h k =-+ 的顶点坐标为(,)h k ,易得抛物线y=2(x ﹣3)2+4顶点坐标是(3,4).故选A.7.D解析:D 【解析】 【分析】移项后两边配上一次项系数一半的平方即可得. 【详解】 解:∵x 2-8x=5,∴x 2-8x+16=5+16,即(x-4)2=21, 故选D . 【点睛】本题考查的知识点是解一元二次方程的能力,解题关键是熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法.8.B解析:B 【解析】 【分析】必然事件就是一定发生的事件,依据定义即可作出判断. 【详解】解:A 、是随机事件,故A 选项错误; B 、是必然事件,故B 选项正确; C 、是随机事件,故C 选项错误; D 、是随机事件,故D 选项错误.【点睛】本题考查随机事件.9.B解析:B 【解析】分析:根据圆中的有关概念、定理进行分析判断.解答:解:①经过圆心的弦是直径,即直径是弦,弦不一定是直径,故正确; ②当三点共线的时候,不能作圆,故错误;③三角形的外心是三角形三边的垂直平分线的交点,所以三角形的外心到三角形各顶点的距离都相等,故正确;④在同圆或等圆中,能够互相重合的弧是等弧,所以半径相等的两个半圆是等弧,故正确. 故选B .10.C解析:C 【解析】 【分析】根据周长关系求出另一边的长,再用面积公式即可表示y 与x 的函数. 【详解】∵长方形的周长为24cm ,其中一边长为()x cm , ∴另一边为12-x ,故面积2ycm 则长方形中y 与x 的关系式为(12)y x x =-故选C 【点睛】此题主要考查函数的表示,解题的关键是熟知长方形的周长与面积公式.11.D解析:D 【解析】 【分析】四边形ABCD 的对角线互相平分,则说明四边形是平行四边形,由矩形的判定定理知,只需添加条件是对角线相等. 【详解】 添加AC=BD ,∵四边形ABCD 的对角线互相平分, ∴四边形ABCD 是平行四边形,∵AC=BD ,根据矩形判定定理对角线相等的平行四边形是矩形, ∴四边形ABCD 是矩形,【点睛】考查了矩形的判定,关键是掌握矩形的判定方法:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.12.C解析:C【解析】【分析】【详解】解:∵弧AC=弧CD=弧DB,∴∠DOB=∠COD=∠BOE=60°,故①正确;∵AB为直径,且点E是点D关于AB的对称点∴∠E=∠ODE,AB⊥DE∴∠CED =30°=12∠DOB,故②正确;∵M和A重合时,∠MDE=60°,∴∠MDE+∠E=90°∴DM⊥CE故③不正确;根据轴对称的性质,可知D与E对称,连接CE,根据两点之间线段最短,可知这时的CM+DM最短,∵∠DOB=∠COD=∠BOE=60°∴CE为直径,即CE=10,故④正确.故选C.【点睛】本题考查了圆周角定理,圆中的有关计算问题和图形的轴对称的应用,关键是熟练地运用定理进行推理和计算,题型较好,综合性比较强,但难度不大.二、填空题13.8【解析】【分析】连接AD根据CD是∠ACB的平分线可知∠ACD=∠BCD=45°故可得出AD=BD再由AB是⊙O的直径可知△ABD是等腰直角三角形利用勾股定理求出AB的长在Rt△ABC中利用勾股定解析:8【解析】【分析】连接AD,根据CD是∠ACB的平分线可知∠ACD=∠BCD=45°,故可得出AD=BD,再由AB是⊙O的直径可知△ABD是等腰直角三角形,利用勾股定理求出AB的长,在Rt△ABC中,利用勾股定理可得出BC的长.【详解】连接AD,∵∠ACB=90°,∴AB是⊙O的直径.∵∠ACB的角平分线交⊙O于D,∴∠ACD=∠BCD=45°,∴AD=BD=52.∵AB是⊙O的直径,∴△ABD是等腰直角三角形,∴AB=22+=10.AD BD∵AC=6,∴BC=2222-=-=8.AB AC106故答案为:8.【点睛】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.14.3【解析】【分析】设横向的甬路宽为3x米则纵向的甬路宽为2x米由剩余部分的面积为144米2即可得出关于x的一元二次方程解之取其较小值即可得出结论【详解】设横向的甬路宽为3x米则纵向的甬路宽为2x米根解析:3【解析】【分析】设横向的甬路宽为3x米,则纵向的甬路宽为2x米,由剩余部分的面积为144米2,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】设横向的甬路宽为3x米,则纵向的甬路宽为2x米,根据题意得:(20﹣2×2x)(12﹣3x)=144整理得:x2﹣9x+8=0,解得:x1=1,x2=8.∵当x=8时,12﹣3x=﹣12,∴x=8不合题意,舍去,∴x=1,∴3x=3.故答案为3.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.15.【解析】【分析】连接OCODOC 与AD 交于点E 根据圆周角定理有根据垂径定理有:解直角即可【详解】连接OCODOC 与AD 交于点E 直尺的宽度:故答案为【点睛】考查垂径定理熟记垂径定理是解题的关键 解析:533【解析】【分析】连接OC ,OD ,OC 与AD 交于点E ,根据圆周角定理有130,2BAD BOD ∠=∠=︒根据垂径定理有:15,2AE AD == 解直角OAE △即可. 【详解】连接OC ,OD ,OC 与AD 交于点E ,130,2BAD BOD ∠=∠=︒ 10 3.cos303AE OA ==︒ 5tan 303,3OE AE =⋅︒= 直尺的宽度:105533 3.333CE OC OE =-== 533【点睛】 考查垂径定理,熟记垂径定理是解题的关键.16.12【解析】x2−6x+5=0x2−6x=−5x2−6x+9=−5+9(x−3)2=4所以a=3b=4ab=12故答案为:12解析:12【解析】x 2−6x+5=0,x 2−6x=−5,x 2−6x+9=−5+9,(x−3)2=4,所以a=3,b=4,ab=12,故答案为:12.17.70°【解析】【分析】先根据圆周角定理求出的度数再由圆内接四边形的性质即可得出结论【详解】∵四边形ABCD是内接四边形故答案为:70°【点睛】本题考查的是圆内接四边形的性质熟知圆内接四边形的对角互补解析:70°【解析】【分析】先根据圆周角定理求出BAD∠的度数,再由圆内接四边形的性质即可得出结论.【详解】80CBD∠︒=,80CAD CBD∴∠∠︒==..30BAC∠︒=3080110BAD∴∠︒+︒︒==.∵四边形ABCD是O内接四边形,180********BCD BAD∴∠︒∠︒︒︒=﹣=﹣=.故答案为:70°.【点睛】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.18.;【解析】【分析】先求出小琳所在班级的女生人数再根据概率公式计算可得【详解】∵小琳所在班级的女生共有40×60=24人∴从小琳所在班级的女生当中随机抽取一名女生参加小琳被抽到的概率是故答案为解析:1 24;【解析】【分析】先求出小琳所在班级的女生人数,再根据概率公式计算可得.【详解】∵小琳所在班级的女生共有40×60%=24人,∴从小琳所在班级的女生当中随机抽取一名女生参加,小琳被抽到的概率是1 24.故答案为1 24.19.【解析】试题分析:设小道进出口的宽度为x米依题意得(30-2x)(20-x)=532整理得x2-35x+34=0解得x1=1x2=34∵34>30(不合题意舍去)∴x=1答:小道进出口的宽度应为1米解析:【解析】试题分析:设小道进出口的宽度为x米,依题意得(30-2x)(20-x)=532,整理,得x2-35x+34=0.解得,x1=1,x2=34.∵34>30(不合题意,舍去),∴x=1.答:小道进出口的宽度应为1米.考点:一元二次方程的应用.20.【解析】试题解析:连接OEAE∵点C为OA的中点∴∠CEO=30°∠EOC=60°∴△AEO为等边三角形∴S扇形AOE=∴S阴影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)===解析:3212π+.【解析】试题解析:连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE=26022 3603ππ⨯=,∴S阴影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)=229029012113 36036032πππ⨯⨯---⨯()=323 43ππ-+=3 122π+三、解答题21.(1)月销售量450千克,月利润6750元;(2)销售单价应定为80元/千克【解析】【分析】(1)销售单价每涨价1元,月销售量就减少10千克.那么涨价5元,月销售量就减少50千克.根据月销售利润=每件利润×数量,即可求解;(2)等量关系为:销售利润=每件利润×数量,设单价应定为x元,根据这个等量关系列出方程,解方程即可.【详解】(1)月销售量为:500﹣5×10=450(千克),月利润为:(55﹣40)×450=6750(元).(2)设单价应定为x元,得:(x﹣40)[500﹣10(x﹣50)]=8000,解得:x1=60,x2=80.当x=60时,月销售成本为16000元,不合题意舍去.∴x=80.答:销售单价应定为80元/千克.【点睛】本题主要考查一元二次方程的实际应用,找出等量关系,列出方程,是解题的关键.22.(1)0.6;(2)0.6;(3)见解析.【解析】【分析】(1)计算出其平均值即可;(2)概率接近于(1)得到的频率;(3)首先确定40个球的颜色,然后使得黑球和白球的数量相等即可确定答案.【详解】()1∵摸到白球的频率为()0.650.620.5930.6040.6010.5990.60170.6++++++÷≈,∴当实验次数为10000次时,摸到白球的频率将会接近0.6.()2∵摸到白球的频率为0.6,∴假如你摸一次,你摸到白球的概率P(白球)0.6=.()3先得到盒子内白球数24,黑球数16;增加8个黑球(或减少8个白球等).【点睛】本题考查了用频率估计概率的知识,解题的关键是能够了解大量重复试验中,事件发生的频率约等于概率.23.(1)18;(2)12【解析】【分析】(1)用树状图分3次实验列举出所有情况,再看3辆车都选择A通道通过的情况数占总情况数的多少即可;(2)由(1)可知所有可能的结果数目,再看至少有两辆汽车选择B通道通过的情况数占总情况数的多少即可.【详解】解:(1)画树状图得:共8种情况,甲、乙、丙三辆车都选择A通道通过的情况数有1种,所以都选择A通道通过的概率为18,故答案为:18;(2)∵共有8种等可能的情况,其中至少有两辆汽车选择B通道通过的有4种情况,∴至少有两辆汽车选择B通道通过的概率为41 82 .【点睛】考查了概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的关键.24.(1)证明见解析(2)【解析】【分析】(1)如图,连接OA;证明∠OAP=90°,即可解决问题.(2)如图,作辅助线;求出OM=1,OA=2;求出△AOB、扇形AOB的面积,即可解决问题.【详解】如图,连接OA;,;而,;而,;,,是的切线.如图,过点O作,则,,, ,; ,, 图中阴影部分的面积. 【点睛】本题考查了切线的判定与扇形面积的计算,解题的关键是熟练的掌握切线的判定与扇形面积公式.25.(1)6;(2)40或400【解析】【分析】(1)设通道的宽x 米,由图中所示可得通道面积为2×28x+2(52-2x)x ,根据铺花砖的面积+通道面积=总面积列方程即可得答案;(2)设每个车位的月租金上涨a 元,则少租出10a 个车位,根据月租金收入为14400元列方程求出a 值即可.【详解】(1)设通道的宽x 米,根据题意得:2×28x+2(52-2x)x+640=52×28, 整理得:x 2-40x+204=0,解得:x 1=6,x 2=34(不符合题意,舍去).答:通道的宽是6米.(2)设每个车位的月租金上涨a 元,则少租出10a 个车位, 根据题意得:(200+a)(64-10a )=14400, 整理得:a 2-440a+16000=0,解得:a 1=40,a 2=400. 答:每个车位的月租金上涨40元或400元时,停车场的月租金收入为14400元.【点睛】本题考查一元二次方程的实际应用,读懂题意,找出题中的等量关系列出方程是解题关键.。

2019-2020学年九年级数学上学期期中原创卷A卷(福建)(全解全析)

2019-2020学年九年级数学上学期期中原创卷A卷(福建)(全解全析)

12 31. 【答案】D2019-2020 学年上学期期中原创卷A 卷九年级数学·全解全析【解析】A 、 == 2 ,被开方数里含有能开得尽方的因数 4,故 A 选项错误;B = a ,被开方数里含有能开得尽方的因式 a 2,故 B 选项错误;C ==2 ,被开方数里含有分母,故 C 选项错误; 2D 符合最简二次根式的条件,故 D 选项正确,故选 D .2. 【答案】A【解析】∵x 2+4x +1=0,∴x 2+4x =−1,∴x 2+4x +4=−1+4,∴(x +2)2=3.故选 A . 3.【答案】C 【解析】如图所示,∵ ∠C = 90︒ , cos B = 3 =BC,∴设 BC = 3x ,则 AB = 5x ,故 AC = 4x ,则tan A =BC = 3.故选 C .5 ABAC 44.【答案】C【解析】∵ ∆=12-4×1×(-3)=13>0,∴方程 x 2+x -3=0 有两个不相等的实数根.故选 C . 5.【答案】C【解析】∵∠ACB =90°,∠A =30°,∴∠B =60°,又 CD 是高,∴∠BCD =30°,∴BC =2BD =4 cm ,∵∠A =30°,∴AB =2BC =8 cm ,故选 C .6. 【答案】A【解析】∵直线 AB ∥CD ∥EF ,AC =4,CE =6,BD =3,∴AC = BD ,即 4=3 ,解得 DF =4.5.故选 A .CE DF 6DFb3 2 7. 【答案】B【解析】∵△A 1OB 1 与△A 2OB 2 的周长之比为 1∶2,∴△A 1OB 1 与△A 2OB 2 的位似之比为 1∶2, 而点 A 1 的坐标为(–1,2),∴点 A 2 的坐标为(2,–4).故选 B .8. 【答案】B【解析】A 、从装有 10 个黑球的不透明袋子中摸出一个球,恰好是红球是不可能事件;B 、抛掷一枚普通正方体骰子所得的点数小于 7 是必然事件;C 、抛掷一枚普通硬币,正面朝上是随机事件;D 、从一副没有大小王的扑克牌中抽出一张牌,恰好是方块是随机事件,故选 B .9. 【答案】B12 6 【解析】由题可知:发言人是家长的概率==50 2510. 【答案】D,故选 B .【解析】∵△ABC ∽△ADE ,∴ ∠ADO = ∠OBE ,∵ ∠AOD = ∠BOE ,∴△AOD ∽△EOB , ∴OD = OA ,∴ OD = OB,∵ ∠BOD = ∠AOE ,∴△BOD ∽△EOA ,故②正确, OB OE OA OE∵△AOD ∽△EOB , △BOD ∽△EOA ,∴∠ADO = ∠EBO , ∠AEO = ∠DBO , ∵ ∠ADO + ∠AEO = 90︒,∴ ∠DBE = ∠DBO + ∠EBO = 90︒,∵ DF = EF ,∴ FD = FB = FE , ∴ ∠FDB = ∠FBD ,∴ ∠FDB + ∠FBE = ∠FBD + ∠FBE = 90︒ ,故③正确;在Rt △ABC 中,∵ AB = 4 , AC = 3 ,∴ BC= 5,∵△ABC ∽△ADE , ∴DE = BC = 5 ,∵ BF = 1 DE ,∴ 2BF = 5 ,∴ BF = 5AE ,故④正确; AE AC 3 2 AE 3 6∵ ∠ADO = ∠OBE ,∴ ∠ADO ≠ ∠OBF ,∴无法判断△AOD ∽△FOB ,故①错误.故选 D . 11.【答案】x 1=0,x 2=3【解析】x 2-3x =0,x (x -3)=0,∴x 1=0,x 2=3.故答案为:x 1=0,x 2=3.12. 【答案】4【解析】不透明的布袋中的小球除颜色不同外,其余均相同,共有 10 个小球,设白色小球 x 个, x根据概率公式知:P (白色小球)=1013. 【答案】4=0.4,解得:x =4.故答案为:4.【解析】根据题意得: 4 ÷ 2 ×2=4 .故答案为:4 .26 23 33 1 1 1 1 5 14. 【答案】2【解析】在 Rt △ABC 中,∵∠ACB =90°,点 Q 是 AB 的中点,∴CQ = 1AB ,2∵点 E ,F 分别是边 AC 、BC 的中点,∴EF = 1AB ,∴CQ =EF , 25 又 EF +CQ =5,∴EF = 215. 【答案】405 .故答案为: .2【解析】∵AB ⊥BC ,CD ⊥BC ,∴△BAE ∽△CDE ,∴ AB = BE , CD CE∵BE =20 m ,CE =10 m ,CD =20 m ,∴AB = 20,解得:AB =40,故答案为:40. 20 1016. 【答案】15mAB AB 【解析】在 Rt △ACB 中,∠ACB =60°,∵tan ∠ACB =,即 tan60°== ,∴BC =3 AB ,BCBC3在 Rt △ABD 中,∠ADB =30°,∵tan ∠ADB =AB,即 tan30°=AB=3 ,∴BD = 3AB ,BDBD3∵CD =30,∴ 3AB –3 AB =30,AB =15 3,故答案为:15 m .17.【解析】(1)原式= 1⨯ 4 - 2 + 9 - 3 =6.(4 分)2(2)原式= 2 - 4 + 4 - 3 = 6 - 7 2 .(8 分)18.【解析】(1)∵一元二次方程 x 2 + 3x + k - 3 = 0 有两个实数根, ∴ ∆= 32 - 4⨯1⨯ (k - 3) ≥ 0 ,(2 分) 解得: k ≤ 21.4∴当 k ≤21 时,关于 x 的一元二次方程 x 2 + 3x + k - 3 = 0 有两个实数根.(4 分)4(2)∵ x 1 是关于 x 的一元二次方程 x 2 + 3x + k - 3 = 0 的根,∴ x 2 + 3x + k - 3 = 0 ,即 x 2 = -3x - k + 3 ,∵x 2 + 2x + x + k = 3 ,∴ -3x - k + 3 + 2x + x + k = 3 ,(6 分) 112112∴ x 1 = x 2 ,3 2 25 5755∴∆= 32 - 4⨯1⨯ (k - 3) = 0 ,解得:k =21.(8 分)4AD19.【解析】在Rt△ADC 中,tan C=DC设AD=k,CD=2k,AC1= ,2= k.(2 分)∵AC=3 ,∴k=3,(4 分)解得:k=3,∴AD=3,CD=6.在Rt△ABD 中,BD= ,(6 分)∴△ABC 的周长=AB+AC+BD+CD=4+3 ++6=10+3 +.(8 分)20.【解析】∵OA=2,AD=9,∴OD=9-2=7,∵△AOB∽△DOC,OA OB∴=OD OCAB= ,(3 分)CD∵OA=2,OB=5,DC=12,2 5 AB∴= = ,7 OC 1235解得OC=224,AB=7,(6 分)∵△AOB∽△DOC,∴∠D=∠A=58°.(8 分)21.【解析】(1)设第一季度平均每月的增长率为x,根据题意得:500(1+x)2=720,(2 分)解得:x1=0.2=20%,x2=-2.2(舍去).答:第一季度平均每月的增长率为20%.(4 分)(2)720×(1+20%)2=1036.8.(6 分)∵1036.8>1000,∴该厂今年5 月份总产量能突破1000 t.(8 分)22.【解析】(1)1.(4 分)255773 3 (2)用表格列出所有可能的结果:(8 分)由表格可知,共有 12 种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有 2 种可能. 21∴P (两次都摸到红球)= 12 = 6.(10 分)23. 【解析】(1)如图,连接 BF ,过 D 作 DM ⊥BF ,过 E 作 EN ⊥BF 于 N ,则 MN =DE =25 cm ,EN =DM ,∵DE ∥BF ,∴∠F =∠ODE =60°,∠B =∠OED =50°,∵DF =40 cm ,∴EN =DM =20 cm ,MF =20 cm ,(3 分)∴BN =EN=20 3≈29.08 cm ,tan 50︒1.19∴BF =BN +MN +MF =74.08 cm ,故两支架着地点 B ,F 之间的距离为 74.08 cm .(6 分)(2)在 Rt △ADE 中,AD =DE ·tan50°=29.75 cm ,∴AM =29.75+20 ≈64.35 cm ,故椅子的高度是 64.35 cm .(10 分)24. 【解析】(1)所有可能出现的结果如图:(6 分)(2)从上面的表格(或树状图)可以看出,所有可能出现的结果共有 12 种,且每种结果出现的可能性相同,其中积是奇数的结果有 4 种,即 5、7、15、21,积是偶数的结果有 8 种,即 4、6、8、10、12、14、12、18,(8 分) 4 1∴甲、乙两人获胜的概率分别为:P (甲获胜)== 12 38 2 ,P (乙获胜)== 12 3.(12 分)25. 【解析】(1)如图,过点 E 作 EQ ⊥AB 交AB 的延长线于点 Q .由旋转得 PD =PE ,∠DPE =90°.∵在正方形 ABCD 中,∠A =∠ABC =90°,AD =AB ,∴∠EQP =∠A =90°.∵∠2+∠3=90°,∠3+∠4=90°,∴∠2=∠4.∴△PAD ≌△EQP .(3 分)∴EQ =AP ,AD =AB =PQ .∴AP =EQ =BQ .∴∠5=45°.∴∠PBE =180°–∠5=135°.(7 分) (2)∵△PFD ∽△BFP ,∴PD = PF. BP BF∵∠A =∠PBC ,∠2=∠4,∴△APD ∽△BFP .(11 分)∴AP = PD . 即 FP = PD .BF FP BF AP ∴ PD = PD.∴ AP = BP . BP AP ∴AP = 1.(14 分) AB 2。

2019-2020学年九年级数学上学期期中原创卷A卷(福建)(参考答案)

2019-2020学年九年级数学上学期期中原创卷A卷(福建)(参考答案)

3557551 1 1 12019-2020 学年上学期期中原创卷A 卷九年级数学·参考答案11.x1=0,x2=3 12.4 13.414.15.40 16.15 m217.【解析】(1)原式=1⨯ 4 - 2 + 9 - 3 =6.(4 分)2(2)原式=2 - 4+ 4 - 3 = 6 - 7 2 .(8 分)18.【解析】(1)∵一元二次方程x2 + 3x +k - 3 = 0 有两个实数根,∴ ∆= 32 - 4⨯1⨯ (k - 3) ≥ 0 ,(2 分)解得:k ≤21.4∴当k ≤21时,关于x 的一元二次方程x2 + 3x +k - 3 = 0 有两个实数根.(4 分)4(2)∵ x1 是关于x 的一元二次方程x2 + 3x +k - 3 = 0 的根,∴x2 + 3x+k - 3 = 0 ,即x2 =-3x-k + 3 ,∵x2 + 2x +x +k = 3 ,∴-3x -k + 3 + 2x +x+k = 3 ,(6 分)1 12 1 1 2∴ x1 =x2 ,∴∆= 32 - 4⨯1⨯ (k - 3) = 0 ,解得:k =21.(8 分)4AD19.【解析】在Rt△ADC 中,tan C=DC设AD=k,CD=2k,AC1= ,2= k.(2 分)∵AC=3 ,∴k=3,(4 分)解得:k=3,∴AD=3,CD=6.在Rt△ABD 中,BD= ,(6 分)∴△ABC 的周长=AB+AC+BD+CD=4+3 ++6=10+3 +.(8 分)22 2557720.【解析】∵OA=2,AD=9,∴OD=9-2=7,∵△AOB∽△DOC,OA OB ∴= OD OCAB= ,(3 分)CD∵OA=2,OB=5,DC=12,2 5 AB∴= = ,7 OC 1235解得OC=224,AB=7,(6 分)∵△AOB∽△DOC,∴∠D=∠A=58°.(8 分)21.【解析】(1)设第一季度平均每月的增长率为x,根据题意得:500(1+x)2=720,(2 分)解得:x1=0.2=20%,x2=-2.2(舍去).答:第一季度平均每月的增长率为20%.(4 分)(2)720×(1+20%)2=1036.8.(6 分)∵1036.8>1000,∴该厂今年5 月份总产量能突破1000 t.(8 分)22.【解析】(1)1.(4 分)2(2)用表格列出所有可能的结果:(8 分)由表格可知,共有12 种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2 种可能.3 32 1∴P(两次都摸到红球)=12 =6.(10 分)23.【解析】(1)如图,连接BF,过D 作DM⊥BF,过E 作EN⊥BF 于N,则MN=DE=25 cm,EN=DM,∵DE∥BF,∴∠F=∠ODE=60°,∠B=∠OED=50°,∵DF=40 cm,∴EN=DM=20 cm,MF=20 cm,(3 分)∴BN=EN=20 3≈29.08 cm,tan 50︒ 1.19∴BF=BN+MN+MF=74.08 cm,故两支架着地点B,F 之间的距离为74.08 cm.(6 分)(2)在Rt△ADE 中,AD=DE·tan50°=29.75 cm,∴AM=29.75+20 ≈64.35 cm,故椅子的高度是64.35 cm.(10 分)24.【解析】(1)所有可能出现的结果如图:(6 分)(2)从上面的表格(或树状图)可以看出,所有可能出现的结果共有12 种,且每种结果出现的可能性相同,其中积是奇数的结果有4 种,即5、7、15、21,积是偶数的结果有8 种,即4、6、8、10、12、14、12、18,(8 分)4 1∴甲、乙两人获胜的概率分别为:P (甲获胜)== 12 38 2 ,P (乙获胜)== 12 3.(12 分)25. 【解析】(1)如图,过点 E 作 EQ ⊥AB 交 AB 的延长线于点 Q .由旋转得 PD =PE ,∠DPE =90°.∵在正方形 ABCD 中,∠A =∠ABC =90°,AD =AB ,∴∠EQP =∠A =90°.∵∠2+∠3=90°,∠3+∠4=90°,∴∠2=∠4.∴△PAD ≌△EQP .(3 分)∴EQ =AP ,AD =AB =PQ .∴AP =EQ =BQ .∴∠5=45°.∴∠PBE =180°–∠5=135°.(7 分) (2)∵△PFD ∽△BFP ,∴PD = PF. BP BF∵∠A =∠PBC ,∠2=∠4,∴△APD ∽△BFP .(11 分)∴AP = PD . 即 FP = PD .BF FP BF AP ∴ PD = PD.∴ AP = BP . BP AP ∴AP = 1.(14 分) AB2。

福建省莆田人教版届九年级上期中数学试卷含答案解析

福建省莆田人教版届九年级上期中数学试卷含答案解析

九年级(上)期中数学试卷一、选择题(每小题4分,共40分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C.D.2.下列方程中一定是关于x的一元二次方程是()A.x2﹣3x+1=0 B.=0 C.ax2+bx+c=0 D.x+3=43.方程x2﹣5x=0的根是()A.x1=0,x2=5 B.x1=0,x2=﹣5 C.x=0 D.x=54.为执行“两免一补”政策,某地区投入教育经费2500万元,预计投入3600万元.设这两年投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.2500x2=3600 B.2500(1+x)2=3600C.2500(1+x%)2=3600 D.2500(1+x)+2500(1+x)2=36005.如图,∠A是⊙O的圆周角,∠A=40°,则∠BOC的度数为()A.50°B.80°C.90°D.120°6.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是()A.4 B.5 C.6 D.87.对于抛物线y=﹣(x﹣5)2+3,下列说法正确的是()A.开口向下,顶点坐标(5,3)B.开口向上,顶点坐标(5,3)C.开口向下,顶点坐标(﹣5,3) D.开口向上,顶点坐标(﹣5,3)8.已知⊙O的半径为4cm,如果圆心O到直线l的距离为5cm,那么直线l与⊙O的位置关系()A.相交B.相离C.相切D.不确定9.一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象可能是()A.B.C.D.10.如图,如果从半径为9cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为()A.6cm B.cm C.8cm D.cm二、填空题(每小题4分,共24分)11.一元二次方程(1+3x)(x﹣3)=2x2+1化为一般形式为.12.点A(2,3)与点B关于原点对称,则B点的坐标.13.抛物线y=x2﹣2x+3的顶点坐标是.14.如果一个扇形的圆心角为120°,半径为2,那么该扇形的弧长为.15.一个半径为2cm的圆内接正六边形的面积等于.16.如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置.设BC=2,AC=2,则顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是.三、解答题17.解方程:(1)x2﹣2x﹣8=0(2)x2+2x﹣99=0(配方法)18.如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:△ABC关于原点中心对称的△A1B1C1.(2)△A1B1C1中各个顶点的坐标.19.已知二次函数的顶点坐标为(1,4),且其图象经过点(﹣2,﹣5),求此二次函数的解析式.20.已知关于﹣1=0有两个相等的实数根,求m的值及方程的根.21.如图,AB,BC,CD分别与⊙O相切于E,F,G,且AB∥CD,BO=6cm,CO=8cm.求BC的长.22.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D.求证:BC是⊙O切线.23.为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?24.如图,矩形OABC在平面直角坐标系xOy中,点A在x轴的正半轴上,点C 在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D.(1)求抛物线的解析式;(2)求点D的坐标;(3)若点M在抛物线上,点N在,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.-福建省莆田XX中学九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,不是中心对称图形.故错误;D、是轴对称图形,是中心对称图形.故正确.故选:D.2.下列方程中一定是关于x的一元二次方程是()A.x2﹣3x+1=0 B.=0 C.ax2+bx+c=0 D.x+3=4【考点】一元二次方程的定义.【分析】根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证.【解答】解:A、2﹣3x+1=0是一元二次方程,故A正确;B、是分式方程,故B错误;C、a=时是一元一次方程,故C错误;D、是一元一次方程,故D错误;故选:A.3.方程x2﹣5x=0的根是()A.x1=0,x2=5 B.x1=0,x2=﹣5 C.x=0 D.x=5【考点】解一元二次方程-因式分解法.【分析】观察发现此题用因式分解法比较简单,在提取x后,左边将变成两个式子相乘为0的情况,让每个式子分别为0,即可求出x.【解答】解:因式分解得:x(x﹣5)=0,x=0或x﹣5=0,解得:x=0或x=5.故选A.4.为执行“两免一补”政策,某地区投入教育经费2500万元,预计投入3600万元.设这两年投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.2500x2=3600 B.2500(1+x)2=3600C.2500(1+x%)2=3600 D.2500(1+x)+2500(1+x)2=3600【考点】由实际问题抽象出一元二次方程.【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设这两年投入教育经费的年平均增长百分率为x,然后用x表示的投入,再根据“投入3600万元”可得出方程.【解答】解:依题意得的投入为2500(1+x)2,∴2500(1+x)2=3600.故选:B.5.如图,∠A是⊙O的圆周角,∠A=40°,则∠BOC的度数为()A.50°B.80°C.90°D.120°【考点】圆周角定理.【分析】由∠A是⊙O的圆周角,∠A=40°,根据圆周角定理,即可求得∠BOC【解答】解:∵∠A是⊙O的圆周角,∠A=40°,∴∠BOC=2∠A=80°.故选B.6.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是()A.4 B.5 C.6 D.8【考点】垂径定理;勾股定理.【分析】根据垂径定理求出BC,根据勾股定理求出OC即可.【解答】解:∵OC⊥AB,OC过圆心O点,∴BC=AC=AB=×16=8,在Rt△OCB中,由勾股定理得:OC===6,故选C.7.对于抛物线y=﹣(x﹣5)2+3,下列说法正确的是()A.开口向下,顶点坐标(5,3)B.开口向上,顶点坐标(5,3)C.开口向下,顶点坐标(﹣5,3) D.开口向上,顶点坐标(﹣5,3)【考点】二次函数的性质.【分析】二次函数的一般形式中的顶点式是:y=a(x﹣h)2+k(a≠0,且a,h,k是常数),它的对称轴是x=h,顶点坐标是(h,k).抛物线的开口方向有a的符号确定,当a>0时开口向上,当a<0时开口向下.【解答】解:∵抛物线y=﹣(x﹣5)2+3,∴a<0,∴开口向下,∴顶点坐标(5,3).8.已知⊙O的半径为4cm,如果圆心O到直线l的距离为5cm,那么直线l与⊙O的位置关系()A.相交B.相离C.相切D.不确定【考点】直线与圆的位置关系.【分析】由题意得出d>r,根据直线和圆的位置关系的判定方法判断即可.【解答】解:∴⊙O的半径为4cm,如果圆心O到直线l的距离为5cm,∴4<5,即d>r,∴直线l与⊙O的位置关系是相离.故选B9.一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】先由一次函数y=ax+b图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致.【解答】解:A、由抛物线可知,a<0,x=﹣<0,得b>0,由直线可知,a >0,b>0,故本选项错误;B、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;C、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;D、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a>0,b>0,故本选项错误.故选:B.10.如图,如果从半径为9cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为()A.6cm B.cm C.8cm D.cm【考点】弧长的计算;勾股定理.【分析】因为圆锥的高,底面半径,母线构成直角三角形,则留下的扇形的弧长==12π,所以圆锥的底面半径r==6cm,所以圆锥的高===3cm.【解答】解:∵从半径为9cm的圆形纸片剪去圆周的一个扇形,∴剩下的扇形的角度=360°×=240°,∴留下的扇形的弧长==12π,∴圆锥的底面半径r==6cm,∴圆锥的高===3cm.故选B.二、填空题(每小题4分,共24分)11.一元二次方程(1+3x)(x﹣3)=2x2+1化为一般形式为x2﹣8x﹣4=0.【考点】一元二次方程的一般形式.【分析】把方程展开,移项、合并同类项后再根据一元二次方程的一般形式进行排列各项即可.【解答】解:(1+3x)(x﹣3)=2x2+1,可化为:x﹣3+3x2﹣9x=2x2+1,化为一元二次方程的一般形式为x2﹣8x﹣4=0.12.点A(2,3)与点B关于原点对称,则B点的坐标(﹣2,﹣3).【考点】关于原点对称的点的坐标.【分析】直接利用关于原点对称点的性质进而得出答案.【解答】解:点A(2,3)与点B关于原点对称,则B点的坐标:(﹣2,﹣3).故答案为:(﹣2,﹣3).13.抛物线y=x2﹣2x+3的顶点坐标是(1,2).【考点】二次函数的性质.【分析】已知抛物线的解析式是一般式,用配方法转化为顶点式,根据顶点式的坐标特点,直接写出顶点坐标.【解答】解:∵y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2,∴抛物线y=x2﹣2x+3的顶点坐标是(1,2).故答案为:(1,2).14.如果一个扇形的圆心角为120°,半径为2,那么该扇形的弧长为.【考点】弧长的计算.【分析】根据弧长公式可得.【解答】解:根据题意,扇形的弧长为=,故答案为:.15.一个半径为2cm的圆内接正六边形的面积等于6cm2.【考点】正多边形和圆.【分析】设O是正六边形的中心,AB是正六边形的一边,OC是边心距,则△OAB是正三角形,△OAB的面积的六倍就是正六边形的面积.【解答】解:如图所示:设O是正六边形的中心,AB是正六边形的一边,OC是边心距,∠AOB=60°,OA=OB=2cm,则△OAB是正三角形,∴AB=OA=2cm,OC=OA•sin∠A=2×=(cm),=AB•OC=×2×=(cm2),∴S△OAB∴正六边形的面积=6×=6(cm2).故答案为:6cm2.16.如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置.设BC=2,AC=2,则顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是π+2.【考点】旋转的性质;扇形面积的计算.【分析】在△ABC中,BC=2,AC=2,根据勾股定理得到AB的长为4.求出∠CAB、∠CBA,顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是两个扇形的面积+△A′BC″的面积.根据扇形的面积公式可以进行计算.【解答】解:∵在Rt△ACB中,BC=2,AC=2,∴由勾股定理得:AB=4,∴AB=2BC,∴∠CAB=30°,∠CBA=60°,∴∠ABA′=120°,∠A″C″A′=90°,S=++×2×2=π+2,故答案为:π+2.三、解答题17.解方程:(1)x2﹣2x﹣8=0(2)x2+2x﹣99=0(配方法)【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【分析】(1)因式分解法求解可得;(2)配方法求解可得.【解答】解:(1)∵(x+2)(x﹣4)=0,∴x+2=0或x﹣4=0,解得:x=﹣2或x=4;(2)x2+2x=99,x2+2x+1=99+1,即(x+1)2=100,∴x+1=10或x+1=﹣10,解得:x=9或x=﹣11.18.如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:△ABC关于原点中心对称的△A1B1C1.(2)△A1B1C1中各个顶点的坐标.【考点】作图-旋转变换.【分析】(1)根据关于原点对称的点的坐标特征写出A1、B1、C1点的坐标,然后描点即可;(2)由(1)可得)△A1B1C1中各个顶点的坐标.【解答】解:(1)如图,(2)A1(1,﹣3),B1(6,﹣1),C1(3,﹣1).19.已知二次函数的顶点坐标为(1,4),且其图象经过点(﹣2,﹣5),求此二次函数的解析式.【考点】待定系数法求二次函数解析式.【分析】已知二次函数的顶点坐标为(1,4),设抛物线的顶点式为y=a(x﹣1)2+4(a≠0),将点(﹣2,﹣5)代入求a即可.【解答】解:设此二次函数的解析式为y=a(x﹣1)2+4(a≠0).∵其图象经过点(﹣2,﹣5),∴a(﹣2﹣1)2+4=﹣5,∴a=﹣1,∴y=﹣(x﹣1)2+4=﹣x2+2的值及方程的根.【考点】根的判别式.【分析】首先根据原方程根的情况,利用根的判别式求出m的值,即可确定原一元二次方程,进而可求出方程的根.【解答】解:由题意可知△=0,即(﹣4)2﹣4(m﹣1)=0,解得m=5.当m=5时,原方程化为x2﹣4x+4=0.解得x1=x2=2.所以原方程的根为x1=x2=2.21.如图,AB,BC,CD分别与⊙O相切于E,F,G,且AB∥CD,BO=6cm,CO=8cm.求BC的长.【考点】切割线定理.【分析】根据切线长定理和平行线的性质定理得到△BOC是直角三角形.再根据勾股定理求出BC的长.【解答】解:∵AB,BC,CD分别与⊙O相切于E,F,G;∴∠CBO=∠ABC,∠BCO=∠DCB,∵AB∥CD,∴∠ABC+∠DCB=180°,∴∠CBO+∠BCO=∠ABC+∠DCB=(∠ABC+∠DCB)=90°.∴cm.22.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D.求证:BC是⊙O切线.【考点】切线的判定.【分析】如图,连接OD.欲证BC是⊙O切线,只需证明OD⊥BC即可.【解答】证明:如图,连接OD.设AB与⊙O交于点E.∵AD是∠BAC的平分线,∴∠BAC=2∠BAD,又∵∠EOD=2∠EAD,∴∠EOD=∠BAC,∴OD∥AC.∵∠ACB=90°,∴∠BDO=90°,即OD⊥BC,又∵OD是⊙O的半径,∴BC是⊙O切线.23.为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?【考点】二次函数的应用.【分析】(1)根据销售额=销售量×销售单价,列出函数关系式;(2)用配方法将(1)的函数关系式变形,利用二次函数的性质求最大值;(3)把y=150代入(2)的函数关系式中,解一元二次方程求x,根据x的取值范围求x的值.【解答】解:(1)由题意得出:w=(x﹣20)∙y=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600,故w与x的函数关系式为:w=﹣2x2+120x﹣1600;(2)w=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,∵﹣2<0,∴当x=30时,w有最大值.w最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.(3)当w=150时,可得方程﹣2(x﹣30)2+200=150.解得x1=25,x2=35.∵35>28,∴x2=35不符合题意,应舍去.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.24.如图,矩形OABC在平面直角坐标系xOy中,点A在x轴的正半轴上,点C 在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O,A两点,直线AC交抛物线于点D.(1)求抛物线的解析式;(2)求点D的坐标;(3)若点M在抛物线上,点N在,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)由OA的长度确定出A的坐标,再利用对称性得到顶点坐标,设出抛物线的顶点形式y=a(x﹣2)2+3,将A的坐标代入求出a的值,即可确定出抛物线解析式;(2)设直线AC解析式为y=kx+b,将A与C坐标代入求出k与b的值,确定出直线AC解析式,与抛物线解析式联立即可求出D的坐标;(3)存在,分两种情况考虑:如图所示,当四边形ADMN为平行四边形时,DM ∥AN,DM=AN,由对称性得到M(3,),即DM=2,故AN=2,根据OA+AN求出ON的长,即可确定出N的坐标;当四边形ADM′N′为平行四边形,可得三角形ADQ全等于三角形N′M′P,M′P=DQ=,N′P=AQ=3,将y=﹣代入得:﹣=﹣x2+3x,求出x的值,确定出OP的长,由OP+PN′求出ON′的长即可确定出N′坐标.【解答】解:(1)设抛物线顶点为E,根据题意OA=4,OC=3,得:E(2,3),设抛物线解析式为y=a(x﹣2)2+3,将A(4,0)坐标代入得:0=4a+3,即a=﹣,则抛物线解析式为y=﹣(x﹣2)2+3=﹣x2+3x;(2)设直线AC解析式为y=kx+b(k≠0),将A(4,0)与C(0,3)代入得:,解得:,故直线AC解析式为y=﹣x+3,与抛物线解析式联立得:,解得:或,则点D坐标为(1,);(3)存在,分两种情况考虑:①当点M在x轴上方时,如答图1所示:四边形ADMN为平行四边形,DM∥AN,DM=AN,由对称性得到M(3,),即DM=2,故AN=2,∴N1(2,0),N2(6,0);②当点M在x轴下方时,如答图2所示:过点D作DQ⊥作MP⊥P,∴MP=DQ=,NP=AQ=3,将y M=﹣代入抛物线解析式得:﹣=﹣x2+3=2﹣或x M=2+,∴x N=x M﹣3=﹣﹣1或﹣1,∴N3(﹣﹣1,0),N4(﹣1,0).综上所述,满足条件的点N有四个:N1(2,0),N2(6,0),N3(﹣﹣1,0),N4(﹣1,0).1月19日。

福建省莆田市九年级上学期期中数学试卷

福建省莆田市九年级上学期期中数学试卷

福建省莆田市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)已知x=1是方程的一个根,则方程的另一个根是()A . 1B . 2C . -1D . -22. (2分)(2017·平谷模拟) 下列图形中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .3. (2分) (2017九下·佛冈期中) 用配方法解方程时,原方程应变形为()A .B .C .D .4. (2分)在一幅长60cm,宽40cm的矩形风景画的四周镶一条宽度相等的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是2816cm2 ,设金色纸边的宽为xcm,那么x满足的方程是A . (60+x)(40+2x)=2816B . (60+x)(40+x)=2816C . (60+2x)(40+x)=2816D . (60+2x)(40+2x)=28165. (2分) (2016九上·岳池期中) 某钢铁厂去年1月份某种钢的产量为5000吨,3月份上升到7200吨,设平均每月的增长率为x,根据题意,得()A . 5000(1+x2)=7200B . 5000(1+x)+5000(1+x)2=7200C . 5000(1+x)2=7200D . 5000+5000(1+x)+5000(1+x)2=72006. (2分)抛物线的一部分如图所示,该抛物线在轴右侧部分与轴交点的坐标是()A . (, 0)B . (1,0)C . (2,0)D . (3,0)7. (2分)把抛物线的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为,则().A . 12B . 9C .D . 108. (2分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A . c>-1B . b>0C . 2a+b≠0D . 9a+c>3b9. (2分) (2016九上·萧山期中) 如图,小姚身高 m在某次投篮中,球的运动路线是抛物线的一部分,若命中篮圈中心,则他与篮底的距离是()A . 3.5mB . 4mC . 4.5mD . 4.6m10. (2分)(2018·庐阳模拟) 在同一平面坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A .B .C .D .二、填空题 (共6题;共6分)11. (1分)(2017·五华模拟) 若关于x的一元二次方程x2+3x﹣k=0有两个相等的实数根,则k的值是________.12. (1分)若点(a,1)与(﹣2,b)关于原点对称,则ab= ________.13. (1分)(2017·埇桥模拟) 如图所示的是二次函数y=ax2+bx+c的图象,有下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0或x≤﹣2.其中正确结论的序号是________.(把所有正确结论的序号都填在横线上)14. (1分)(2017·吉林) 如图,在矩形ABCD中,AB=5,AD=3.矩形ABCD绕着点A逆时针旋转一定角度得到矩形AB'C'D'.若点B的对应点B'落在边CD上,则B'C的长为________.15. (1分)有一个人患流感,经过两轮传染后共有y人患了流感,每轮传染中,平均一个人传染了x人,则y与x之间的函数关系式为________ .16. (1分)已知经过原点的抛物线y=﹣2x2+4x与x轴的另一个交点为A,现将抛物线向右平移m(m>0)个单位长度,所得抛物线与x轴交于C,D,与原抛物线交于点P,设△PCD的面积为S,则用m表示S=________.三、解方程 (共8题;共85分)17. (10分) (2016九上·自贡期中) 解方程:(1) x2+3x﹣2=0(2)(x+8)(x+1)=﹣12.18. (15分)(2012·大连) 如图,△ABC中,∠C=90°,AC=8cm,BC=6cm,点P、Q同时从点C出发,以1cm/s 的速度分别沿CA、CB匀速运动.当点Q到达点B时,点P、Q同时停止运动.过点P作AC的垂线l交AB于点R,连接PQ、RQ,并作△PQR关于直线l对称的图形,得到△PQ′R.设点Q的运动时间为t(s),△PQ′R与△PAR重叠部分的面积为S(cm2).(1)t为何值时,点Q′恰好落在AB上?(2)求S与t的函数关系式,并写出t的取值范围;(3)S能否为 cm2?若能,求出此时的t值;若不能,说明理由.19. (5分)(2017·菏泽) 列方程解应用题:某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个,已知每个玩具的固定成本为360元,问这种玩具的销售单价为多少元时,厂家每天可获利润20000元?20. (10分)已知抛物线y=x2﹣4x+3(1)直接写出它的开口方向、对称轴、顶点坐标(2)当y<0时,直接写出x的取值范围.21. (5分)(2017·安徽模拟) 如图,已知△ABC的顶点A,B,C的坐标分别是A(﹣1,﹣1),B(﹣4,﹣3),C(﹣4,﹣1).①作出△ABC关于原点O中心对称的图形;②将△ABC绕原点O按顺时针方向旋转90°后得到△A1B1C1 ,画出△A1B1C1 ,并写出点A1的坐标.22. (15分) (2018九上·皇姑期末) 如图,在平面直角坐标系中,点在反比例函数的图象上,,轴于点C.(1)求反比例函数的表达式;(2)求的面积;(3)若将绕点B按逆时针方向旋转得到点O、A的对应点分别为、,点是否在反比例函数的图象上?若在请直接写出该点坐标,若不在请说明理由.23. (15分) (2016九上·永泰期中) 某宾馆有50个房间供游客居住,当每个房间每天的定价为180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.(1)若每个房间定价增加40元,则这个宾馆这一天的利润为多少元?(2)若宾馆某一天获利10640元,则房价定为多少元?(3)房价定为多少时,宾馆的利润最大?24. (10分) (2019九上·洮北月考) 将两块大小相同的含30°角的直角三角板( =30°)按图1的方式放置,固定三角板A´B´C然后将三角板ABC绕直角顶点C顺时针方向旋转(旋转角小于90°)至图2所示的位置,AB与A´C交于点E,AC与A´B´交于点F,AB与A´B´交于点O.(1)求证:;(2)当旋转角等于30°时,AB与A´B´垂直吗?请说明理由。

2019-2020学年九年级数学上学期期中原创卷B卷(福建)(全解全析)

2019-2020学年九年级数学上学期期中原创卷B卷(福建)(全解全析)

82 12 36 23 12 2019-2020 学年上学期期中原创卷B 卷九年级数学·全解全析1. 【答案】C【解析】 tan30︒ =3.故选 C .32. 【答案】A【解析】A . =2,与 是同类二次根式,B . 5 ,与 5不是同类二次根式,C . =2 ,与不是同类二次根式,D= 6 ,与3不是同类二次根式,故选 A .3. 【答案】A【解析】∵一元二次方程 x 2 - x - 6 = 0 的两根为 x 1 ,x 2 ,∴ x 1 + x 2 = 1,故选 A .4. 【答案】A【解析】A= 3 ;B . 2 = 1 ,正确; 3C . == ,正确;D . - = -2,正确,故选 A .5. 【答案】D【解析】∵x (x +1)=0,∴x =0 或 x +1=0,∴x 1=0,x 2=–1.故选 D . 6.【答案】D【解析】∵袋中有红球 4 个,取到白球的可能性较大,∴袋中的白球数量大于红球数量,即袋中白球的个数可能是 5 个或 5 个以上.故选 D .7. 【答案】B【解析】∵S △ADO =1AO ⋅ h 1 ,设△ADO ,△DOC 底边上的高为h ,∴ 2 = AO = 1 , S △DOC 3 1 CO ⋅ h 2CO 3 2 2 2 2 3∵AD∥BC,∴△AOD∽△COB,∴ AD=AO=1,故选B.8.【答案】BBC CO 31【解析】因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是,2故选B.9.【答案】B【解析】如图,作PC⊥AB,垂足为C,根据题意,得∠PAC=45°,∴AC=PC,即30+BC=PC.BC 30又∵∠BPC=30°,∴BP=2BC,PC= =tan 30︒ BC,∴30+BC=BC,即BC==15(3 -1+1),∴BP=2BC=30(+1)=30+30.故选B.10.【答案】D1【解析】∵D 是BC 中点,N 是AC 中点,∴DN 是△ABC 的中位线,∴DN∥AB,且DN=2AB.1∵三角形ABE 是等腰直角三角形,EM 平分∠AEB 交AB 于点M,∴M 是AB 的中点,∴EM=2 1AB,又∵DN=2AB,∴EM=DN,∴结论①正确;1 1 1∵DN∥AB,∴△CDN∽ABC,∵DN=2如图1,连接MD、FN,AB,∴S△CDN=4S△ABC,∴S△CDN=3S 四边形ABDN,∴结论②正确;1∵D 是BC 中点,M 是AB 中点,∴DM 是△ABC 的中位线,∴DM∥AC,且DM=2AC.333 331 ∵三角形 ACF 是等腰直角三角形,N 是 AC 的中点,∴FN = 21AC , 又∵DM = 2AC ,∴DM =FN ,∵DM ∥AC ,DN ∥AB ,∴四边形 AMDN 是平行四边形,∴∠AMD =∠AND , 又∵∠EMA =∠FNA =90°,∴∠EMD =∠DNF ,在△EMD 和△DNF 中,EM =DN ,∠EMD =∠DNF ,MD =NF ,∴△EMD ≌△DNF ,∴DE =DF ,∴结论③正确;如图 2,连接 MD ,EF ,NF ,∵三角形 ABE 是等腰直角三角形,EM 平分∠AEB ,∴M 是 AB 的中点,EM ⊥AB ,∴EM =MA ,∠EMA =90°,∠AEM =∠EAM =45°,∴EM =sin45°=2 ,EA21∵D 是 BC 中点,M 是 AB 中点,∴DM 是△ABC 的中位线,∴DM ∥AC ,且 DM = 21AC .∵三角形 ACF 是等腰直角三角形,N 是 AC 的中点,∴FN = 2又∵DM = 1AC ,∴DM =FN =2 FA ,AC ,∠FNA =90°,∠FAN =∠AFN =45°,22∵∠EMD =∠EMA +∠AMD =90°+∠AMD ,∠EAF =360°−∠EAM −∠FAN −∠BAC =360°−45°−45°−(180°−∠AMD )=90°+∠AMD ,∴∠EMD =∠EAF ,在△EMD 和△∠EAF 中, EM = DM =2 ,∠EMD =∠EAF ,EA FA2∴△EMD ∽△∠EAF ,∴∠MED =∠AEF ,∵∠MED +∠AED =45°,∴∠AED +∠AEF =45°,即∠DEF =45°,又∵DE =DF ,∴∠DFE =45°,∴∠EDF =180°−45°−45°=90°,∴DE ⊥DF ,∴结论④正确.∴正确的结论有 4 个:①②③④.故选 D . 11.【答案】x ≥45 2 2 3 3 2 【解析】由题意得,x −4≥0,解得 x ≥4,故答案为:x ≥4.12.【答案】(-3,-1)【解析】点 A (−3,1)关于 x 轴对称的点的坐标为(−3,−1).故答案为:(−3,−1).13. 【答案】–1【解析】把 x =2 代入方程 x 2+ax –2=0 得:4+2a –2=0,解得:a =–1,故答案为:–1.14. 【答案】55【解析】∵AB 所在的直角三角形的两边分别为:2,4,∴AB= 2 .∴sin ∠ABC = = 5 .故答案为: 5.2 55 515.【答案】( 2 , 2 )【解析】∵正方形 OABC 与正方形 ODEF 是位似图形,O 为位似中心,相似比为1∶ 2 ,∴ OA ∶OD = 1∶ 2 .∵点 A 的坐标为(0,1),即 OA =1,∴ OD = .∵四边形 ODEF 是正方形,∴ DE = OD = .∴点 E 的坐标为( 2 ,2) .故答案为:( 2 , 2) .16. 【答案】141【解析】∵AB =AC ,AD 平分∠BAC ,BC =8,∴AD ⊥BC ,CD =BD = 21BC =4,∵点 E 为 AC 的中点,∴DE =CE = 2AC =5,∴△CDE 的周长=CD +DE +CE =4+5+5=14.故答案为:14.17.【解析】(1)原式= 4 - 3 +33= + 3 3=4 3 .(4 分)3(2)原式= 5 - 2 + 3 - 2 3 +1= 7 - 2 .(8 分)3 33 18.【解析】(1)由题意,得∆= (2k +1)2 - 4(k 2 -1) = 4k + 5 > 0 .解得 k > - 5.(4 分)4(2)∵k 为负整数, ∴ k = -1.(6 分 ) 则方程为 x 2 - x = 0 .解得 x 1 = 0 , x 2 = 1.(8 分)19. 【解析】∵EF ∥CD ,AF AE ∴=FD EC=2,(2 分)又 DF =2,∴AF =4.∴AD =AF +FD =6.(4 分)∵DE ∥BC ,∴AD AE =BD CE=2,(6 分)又 AD =6,∴BD =3.(8 分)20. 【解析】如图,作 BN ⊥CD 于 N ,BM ⊥AC 于 M .在 Rt △BDN 中,BD =30,BN ∶ND =1∶ ,∴BN =15,DN =15 ,(2 分)∵∠C =∠CMB =∠CNB =90°,∴四边形 CMBN 是矩形,∴CM =BM =15,BM =CN = 60 -15 = 45 ,(4 分)AM在 Rt △ABM 中,tan ∠ABM =BM = 4, 3∴AM = 60 ,(6 分)∴AC =AM +CM =15 + 60 (米).(8 分)3 3 3 3 3 321.【解析】(1)如图所示,△A'B'C' 为所求画的三角形.(2)A'(0,4),B'(-2,0),C'(4,-2).(8分)22.【解析】(1)在Rt△ABD 中,AD=24 m,∠B=31°,(4 分)∴tan31°=AD,即BD=BD240.6=40 m,(2 分)在Rt△ACD 中,AD=24 m,∠ACD=50°,AD∴tan50°= ,CD即CD=241.2=20 m,(4 分)∴BC=BD-CD=40-20=20 m,则B,C 的距离为20 m.(6 分)(2)根据题意得:20÷2=10 m/s<15 m/s,则此轿车没有超速.(10 分)23.【解析】(1)设经过x 秒以后△PBQ 面积为6 cm2,1则×(5-x)×2x=6,(2 分)2整理得:x2-5x+6=0,解得:x=2 或x=3.答:2 或 3 秒后△PBQ 的面积等于6 cm2.(5 分)(2)设经过x 秒以后△PBQ 面积为8 cm2,1则×(5-x)×2x=8,(7 分)2整理得:x2-5x+8=0,∆=25-32=-7<0,所以,此方程无解,故△PQB 的面积不能等于8 cm2.(10 分)= 24. 【解析】(1)画树状图得:(2 分)一共有 16 种等可能结果,其中和为偶数的有 6 种,和为奇数的有 10 种,6 3所以小丽获胜的概率为= ,(4 分) 16 8哥哥获胜的概率为 10 5.(6 分)16 83 5 (2)由(1)列表的结果可知:小莉获胜的概率为 8所以游戏不公平,对哥哥有利.(9 分),哥哥获胜的概率为 ,8游戏规则改为:若和为偶数则小莉得 5 分,若和为奇数则哥哥得 3 分,则游戏是公平的.(12 分)25. 【解析】(1)由折叠的性质可知,∠APO =∠B =90°,∴∠APD +∠CPO =90°,又∠APD +∠DAP =90°,(2 分)∴∠DAP =∠CPO ,又∠D =∠C =90°,∴△OCP ∽△PDA .(4 分)(2)∵△OCP ∽△PDA ,面积比为 1∶4, ∴CP = 1, ∴CP =4,(6 分) AD 2设 AB =x ,则 AP =x ,PD =x –4,由勾股定理得,AD 2+PD 2=AP 2,即 82+(x –4)2=x 2, 解得,x =10,即 AB =10.(8 分) (3)PB =2EF .(10 分)如图,作 MH ∥AB 交 PB 于 H ,∴∠PHM=∠PBA,∵AP=AB,∴∠APB=∠PBA,∴∠APB=∠PHM,∴MP=MH,(12 分)又BN=PM,∴MH=BN,又∵MH∥AB,∴BF=FH,∵MP=MH,ME⊥BP,∴PE=EH,∴PB=2EF.(14 分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年九年级(上)期中数学试卷
一.选择题(共10小题)
1.下列四张扑克牌图案,属于中心对称图形的是()
A.B.C.D.
2.下列方程中,是一元二次方程的是()
A.x2+2xy=1 B.x2+x+1 C.x2=4 D.ax2+bx+c=0 3.下列抛物线的顶点坐标为(0,1)的是()
A.y=x2+1 B.y=x2﹣1 C.y=(x+1)2D.y=(x﹣1)2 4.已知正六边形的边长为2,则它的内切圆的半径为()
A.1 B.C.2 D.2
5.如图,Rt△ABC中,∠BAC=90°,AD⊥BC于点D,若AB=4,AC=3,则BD为()
A.1.8 B.3.2 C.2.4 D.5
6.关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()
A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5
7.如图,将△ABC绕点C顺时针方向旋转40°,得△A′B′C,若AC⊥A′B′,则∠A等于()
A.50°B.60°C.70°D.80°
8.如图,AB,BC是⊙O的两条弦,AO⊥BC,垂足为D,若⊙O的半径为5,BC=8,则AB 的长为()
A.8 B.10 C.D.
9.已知二次函数y=2(x﹣1)2+k的图象上有三点A(﹣,y1),B(2,y2),C(0,y3).则y1,y2,y3的大小关系为()
A.y1>y2=y3B.y2>y3>y1C.y3>y1>y2D.y1<y2<y3 10.如图,四边形ABCD为正方形,AB=1,把△ABC绕点A逆时针旋转60°得到△AEF,连接DF,则DF的长为()
A.B.C.D.
二.填空题(共6小题)
11.已知圆锥的底面直径为6cm,母线长为4cm,那么圆锥的侧面积为.
12.请写出一个以1、2为根的一元二次方程.
13.△ABC三个顶点的坐标分别是A(3,4),B(1,1),C(4,1),将△ABC以点O为位似中心,位似比为缩小后,点A对应点A′的坐标是.
14.如图,PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D.若PA=10,则△PCD的周长=.
15.如图,AB为半圆的直径,且AB=4,半圆绕点B顺时针旋转36°,点A旋转到A'的位置,则图中阴影部分的面积为(结果保留π).
16.如图,△ABC∽△ADE,∠BAC=∠DAE=90°,AB=8,AC=6,F是DE的中点,若点E 是直线BC上的动点,连接BF,则BF的最小值是.
三.解答题(共9小题)
17.解方程:x2﹣4x﹣3=0.
18.如图,AB是⊙O的直径,∠ACD=25°,求∠BAD的度数.
19.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).将△ABC绕坐标原点O逆时针旋转90°
(1)画出图形,直接写出点A的对应点的坐标;
(2)求旋转过程中动点A所经过的路径长?
20.已知抛物线的解析式为y=x2﹣(2m﹣1)x+m2﹣m
(1)求证:此抛物线与x轴必有两个不同的交点;
(2)若此抛物线与直线y=x+3m﹣4的一个交点在y轴上,求m的值.
21.如图,在▱ABCD中,点E是BC中点,AE交BD于点F,若S△BEF=4cm2,求S△ABD.
22.已知某商品的进价为每件40元,售价是每件50元,每星期可卖出210件.市场调查反映:如果调整价格,每涨价1元,每星期要少卖出10件.
(1)要想获得2340元的利润,该商品应定价为多少元?
(2)该商品应定价为多少元时(要求定价为整数),商场能获得的最大利润是多少?23.如图,Rt△ABC中,∠B=90°,O是AB上的一点,以O为圆心,OB为半径的圆与AB 交于点E,交AC于点D,其中DE∥OC.
(1)求证:AC为⊙O的切线;
(2)若AD=,且AB、AE的长是关于x的方程x2﹣4x+k=0的两个实数根,求⊙O的半径、CD的长.
24.在矩形ABCD中,AB=4,AD=6,M是AD边的中点,P是AB边上的一个动点(不与A、B重合),PM的延长线交射线CD于Q点,MN⊥PQ交射线BC于N点.
(1)若点N在BC边上时,如图1.
①求证:PN=QN;
②请问是否为定值?若是定值,求出该定值;若不是,请举反例说明;
(2)当△PBN与△NCQ的面积相等时,求AP的值.
25.已知二次函数y=x2+bx+c(b,c为常数).
(Ⅰ)当b=2,c=﹣3时,求二次函数的最小值;
(Ⅱ)当c=5时,若在函数值y=1的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;
(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y 的最小值为21,求此时二次函数的解析式.。

相关文档
最新文档