数据结构实验报告-魔方阵

合集下载

数据结构迷宫实验报告

数据结构迷宫实验报告

一、实验目的1. 了解回溯法在求解迷宫问题中的应用。

2. 进一步掌握栈、队列等数据结构在解决实际问题中的应用。

3. 提高编程能力,锻炼逻辑思维能力。

二、实验环境1. 操作系统:Windows 102. 编程语言:C++3. 开发环境:Visual Studio 2019三、实验内容1. 迷宫问题概述迷宫问题是指寻找从迷宫入口到出口的路径,且路径上不能有障碍物。

迷宫问题在计算机科学中具有广泛的应用,如路径规划、图论等。

2. 迷宫表示方法迷宫可以用二维数组表示,其中0表示通路,1表示障碍。

例如,以下迷宫可以用以下二维数组表示:```0 1 0 0 10 1 0 1 00 0 0 0 01 1 1 1 00 0 0 0 0```3. 回溯法求解迷宫问题回溯法是一种在解决问题过程中,通过递归尝试所有可能的路径,直到找到一条正确的路径或确定没有正确路径为止的方法。

4. 实验步骤(1)定义迷宫:创建一个二维数组表示迷宫,初始化为通路(0)和障碍(1)。

(2)初始化栈:创建一个栈,用于存储当前路径。

(3)从入口开始,按照上、下、左、右的顺序探索迷宫,每次探索前,将当前位置压入栈中。

(4)判断当前位置是否为出口,如果是,则输出路径并结束程序;如果不是,继续探索。

(5)如果当前位置为障碍或已访问过,则回溯到上一个位置,继续探索其他路径。

(6)重复步骤(3)至(5),直到找到一条从入口到出口的路径或确定没有正确路径为止。

5. 实验结果通过实验,成功实现了使用回溯法求解迷宫问题,并输出了一条从入口到出口的路径。

四、实验分析1. 时间复杂度分析在迷宫中,每个位置最多被访问一次,因此,时间复杂度为O(mn),其中m和n分别为迷宫的长和宽。

2. 空间复杂度分析实验中使用了栈来存储路径,栈的最大深度为迷宫的宽度,因此,空间复杂度为O(n)。

五、实验总结通过本次实验,我对回溯法在求解迷宫问题中的应用有了更深入的了解,同时也提高了编程能力和逻辑思维能力。

数据结构课程设计之迷宫实验报告

数据结构课程设计之迷宫实验报告

详细设计《数据结构项目设计》项目设计文档项目名称:迷宫求解班级:网络工程3101学号:37姓名:胡维国指导教师:张群哲完成时间:2011年6月项目文档一、项目目标:可以输入一个任意大小的迷宫数据,用非递归的方法求出一条走出迷宫的路径,并将路径输出。

二、项目进度表:三、源程序、可执行程序见附件(XXXX project目录)系统中使用的自定义类型和函数。

迷宫建立功能模块设计此模块主要由函数initmaze(int maze[M][N]) 来实现,此功能用于用户自己建立迷宫,也可使用预先保存好的迷宫,迷宫是通过矩阵形式表现的,用1和0分别表示墙和通路并用二维数组存储,从而将实际问题转化成数学模型,方便程序的设计,以实现其自能化。

int i,j;int m,n; //*迷宫行,列*//char c;printf("请输入行数: m=");scanf("%d",&m);printf("请输入列数: n=");scanf("%d",&n);printf("\n输入0或1(0为通路,1为墙):\n");for(i=1;i<=m;i++){for(j=1;j<=n;j++){scanf("%d",&maze[i][j]);}}printf("你的矩阵:\n");for(i=0;i<=m+1;i++) //加一圈墙{maze[i][0]=1;maze[i][n+1]=1;}for(j=0;j<=n+1;j++){maze[0][j]=1;maze[m+1][j]=1;}for(i=0;i<=m+1;i++) //*输出迷宫*//for(j=0;j<=n+1;j++)printf("%d ",maze[i][j]);printf("\n");}printf("是否保存你的迷宫(Y/N):");cin>>c;if((c == 'Y')||(c == 'y'))File_Save(maze,m+2,n+2);else if((c == 'N')||(c == 'n'))printf("你的迷宫保存失败!\n");具体的程序实现可参见附录。

数据结构-迷宫实验报告

数据结构-迷宫实验报告

数据结构-迷宫实验报告数据结构-迷宫实验报告1.引言1.1 背景迷宫是一个有趣又具有挑战性的问题,它可以用于测试和评估不同的搜索算法和数据结构。

在这个实验报告中,我们将使用不同的数据结构和算法来解决迷宫问题。

1.2 目的本实验的目的是比较使用不同数据结构和算法解决迷宫问题的效率和性能。

我们将尝试使用栈、队列和递归等方法进行迷宫的搜索。

2.方法2.1 实验设计我们将在一个给定的迷宫中使用不同的搜索算法,包括深度优先搜索、广度优先搜索和递归搜索,来找到从迷宫的入口到出口的路径。

我们还将使用栈和队列数据结构来实现这些搜索算法。

2.2 实验步骤1) 定义迷宫的结构,并初始化迷宫的入口和出口。

2) 使用深度优先搜索算法找到迷宫中的路径。

3) 使用广度优先搜索算法找到迷宫中的路径。

4) 使用递归算法找到迷宫中的路径。

5) 比较不同算法的性能和效率。

6) 记录实验结果并进行分析。

3.结果与分析3.1 实验结果在我们的实验中,我们使用了一个10x10的迷宫进行测试。

我们比较了深度优先搜索、广度优先搜索和递归算法的性能。

深度优先搜索算法找到的最短路径长度为14步,搜索时间为0.15秒。

广度优先搜索算法找到的最短路径长度为14步,搜索时间为0.18秒。

递归算法找到的最短路径长度为14步,搜索时间为0.12秒。

3.2 分析与讨论通过比较不同算法的性能指标,我们发现在这个迷宫问题上,深度优先搜索、广度优先搜索和递归算法的性能非常接近。

它们在找到最短路径的长度和搜索时间上都没有明显差异。

4.结论与建议根据本次实验的结果,我们可以得出以下结论:●深度优先搜索、广度优先搜索和递归算法都可以成功解决迷宫问题。

●在这个具体的迷宫问题上,这些算法的性能差异不大。

在进一步研究和实验中,我们建议考虑更复杂的迷宫结构和更多的搜索算法,以探索它们在不同情况下的性能差异。

附件:1) 迷宫结构示意图2) 算法实现代码法律名词及注释:1) 深度优先搜索(DFS):一种用于图遍历的搜索算法,它尽可能深地搜索图的分支,直到找到目标节点或无法继续搜索。

武汉纺织大学数据结构实验报告1

武汉纺织大学数据结构实验报告1

武汉纺织大学《数据结构》实验报告班级:信管专业班姓名:序号:实验时间:年月日指导教师:实验一:线性结构的基本操作一、实验目的:1、熟悉Java 上机环境,掌握Java语言编程方法,熟练运用Java语言实现数据结构设计和算法设计。

2、掌握线性表的顺序存储结构和链式存储结构的定义与基本操作,并能用Java 语言实现线性表基本功能。

3、掌握栈、队列的存储结构与基本操作,并能利用该结构编写算法解决实际问题。

4、掌握数组的存储结构与基本操作,并能利用该结构编写算法解决实际问题。

二、实验内容:1、编写一个Java语言程序,利用线性表实现约瑟夫环问题,参考书本程序示例【例2.1】,完善该程序并运行。

实验步骤:①、在Java编辑环境中新建程序,根据【例2.1】输入完整程序内容,并保存和编译;②、运行程序,输入约瑟夫环长度number、起始位置start、计数值distance;③、依次输入约瑟夫环中number个数据元素;④、输出约瑟夫环执行过程。

2、编写一个程序,利用栈解决递归问题,实现n阶Hanoi塔问题。

实验步骤:①、在Java编辑环境中新建程序,输入n阶Hanoi塔程序内容,并保存和编译;②、运行程序,输入盘子数目n。

③、输出n阶Hanoi塔问题解决过程。

参考程序如下:import java.util.Scanner;public class MethodOfHanoi{public static void main(String[] args){System.out.println(“请输入盘子数目:”);Scanner scan=new Scanner(System.in); //输入盘子数目int number=scan.nextInt();hanoi(number,‘A’,‘B’,‘C’); //调用hanoi方法}public static void hanoi(int num, char a,char b,char c){if (num==1) //只有一个盘子,直接移动{move(a,c);}else{hanoi(num-1,a,c,b); //递归调用move(a,c);hanoi(num-1,b,a,c); //递归调用}} public static void move(char a,char c) //移动过程方法{System.out.println("从 "+a+" 移到 "+c);}}3、编写一个程序,利用Java语言建立一个空队列,如果输入奇数,则奇数入队列;如果输入偶数,则队列中的第一个元素出队列;如果输入0,则退出程序。

数据结构课程设计之奇数魔方阵

数据结构课程设计之奇数魔方阵

长沙理工大学《数据结构》课程设计报告田晓辉学院计算机与通信工程专业计算机科学与技术班级计08-01 学号************学生姓名田晓辉指导教师陈倩诒课程成绩完成日期2010年7月10日课程设计成绩评定学院计算机与通信工程专业计算机科学与技术班级计08-01学号200850080110 学生姓名田晓辉指导教师陈倩诒完成日期2010年7月10日指导教师对学生在课程设计中的评价指导教师对课程设计的评定意见课程设计任务书计算机与通信工程学院计算机科学技术专业用C语言解决魔方阵的问题学生姓名:田晓辉指导老师:陈倩诒摘要本课程设计主要解决设计一个n×n的矩阵中填入1到n2的数字(n为奇数),使得每一行、每一列、每条对角线的累加和都相等的问题。

在课程设计中,系统开发平台为Windows 7,程序设计语言采用Visual C++6.0,程序运行平台为Windows 98/2000/XP/7。

在程序设计中,采用了C 语言结构化程序设计思想和过程设计方法,以功能函数为基本结构,对问题中的要求做出了准确的实现。

程序通过调试运行,初步实现了设计目标。

关键词程序设计;C++6.0;结构化;过程设计;功能函数目录1.引言 (1)1.1课程设计目的 (1)1.2课程设计内容 (1)2.设计思路与方案 (2)3.详细实现 (3)3.1数据结构与数据存储表示 (3)3.2功能函数 (3)3.3函数逻辑功能调用图 (5)3.4本程序执行流程图 (6)4.运行环境与结果 (7)4.1程序运行环境 (7)4.2程序运行结果 (7)5.结束语 (9)参考文献 (10)附录源程序代码 (11)1 引言本课程设计主要解决设计一个n×n的方阵中填入1到n2(n为奇数)的数字,使得每一行、每一列、每条对角线上各个数字累加的和都相等的问题。

1.1 课程设计目的通过这次课程设计进一步了解了二维数组的使用方法和一些基本的设计思路。

数据结构实验报告-魔方阵

数据结构实验报告-魔方阵

数据结构与程序设计实验实验报告
哈尔滨工程大学
实验报告三
c. 如果按上述方法找到的位置已填入数据,则在同一列下一行填入下一个数字。

(3). 以3×3魔方阵为例,说明其填数过程,如下图所示。

三阶魔方阵的生成过程
由三阶魔方阵的生成过程可知,某一位置(x,y)的左上角的位置是(x-1,y-1),如果x-1≥0,不用调整,否则将其调整为x-1+m;同理,如果y-1≥0,不用调整,否则将其调整为y-1+m。

所以,位置(x,y)的左上角的位置可以用求模的方法获得,即:
x=(x-1+m)%m
y=(y-1+m)%m
如果所求的位置已经有数据了,将该数据填入同一列下一行的位置。

这里需要注意的是。

此时的x和y已经变成之前的上一行上一列了,如果想变回之前位置的下一行同一列,x需要跨越两行,y需要跨越一列,即:
x=(x+2)%m
printf("%d\t",a[i][j]);
printf("\n");
}
四、界面设计
程序需要获取魔方阵的阶数(包括错误判断),输出结果,均在执行过程中给出提示。

五、运行测试与分析
1. 获取阶数并给出错误提示
2. 获取正确阶数,并输出结果
六、实验收获与思考
本次实验采用的数据结构为二维数组,在使用过程中巩固了学习的知识,在用C语言实现魔方阵算法时对C语言的使用更加熟悉。

七、附录(原程序)。

数据结构之迷宫实训报告

数据结构之迷宫实训报告

一、实训背景与目的随着计算机技术的不断发展,数据结构作为计算机科学的基础课程,对于培养学生的逻辑思维能力和解决问题的能力具有重要意义。

迷宫问题作为数据结构中的一个经典问题,不仅能够帮助学生深入理解栈和队列等数据结构,还能锻炼学生算法设计和编程能力。

本次实训旨在通过解决迷宫问题,使学生更好地掌握数据结构的相关知识,并提高实际问题的解决能力。

二、迷宫问题的描述迷宫问题可以描述为:给定一个由二维数组表示的迷宫,其中0表示通路,1表示墙壁。

迷宫的入口位于左上角(0,0),出口位于右下角(m-1,n-1)。

要求设计一个程序,找到一条从入口到出口的路径,如果不存在路径,则输出“无路可通”。

三、解决方案为了解决迷宫问题,我们采用了以下方案:1. 数据结构选择:选择栈作为主要的数据结构,用于存储路径上的节点,以便在回溯过程中找到正确的路径。

2. 算法设计:- 初始化栈,将入口节点压入栈中。

- 循环判断栈是否为空:- 如果栈为空,则表示没有找到路径,输出“无路可通”。

- 如果栈不为空,则从栈中弹出一个节点,判断其是否为出口节点:- 如果是出口节点,则输出路径并结束程序。

- 如果不是出口节点,则按照东南西北的顺序遍历其相邻的四个节点:- 如果相邻节点是通路且未被访问过,则将其压入栈中,并标记为已访问。

- 重复步骤2,直到找到出口或栈为空。

3. 迷宫的表示:使用二维数组表示迷宫,其中0表示通路,1表示墙壁。

四、程序实现以下是用C语言实现的迷宫问题解决方案:```c#include <stdio.h>#include <stdlib.h>#define MAX_SIZE 100typedef struct {int x, y;} Point;typedef struct {Point data[MAX_SIZE];int top;} Stack;void initStack(Stack s) {s->top = -1;}int isEmpty(Stack s) {return s->top == -1;}void push(Stack s, Point e) {if (s->top == MAX_SIZE - 1) {return;}s->data[++s->top] = e;}Point pop(Stack s) {if (isEmpty(s)) {Point p = {-1, -1};return p;}return s->data[s->top--];}int isExit(Point p, int m, int n) {return p.x == m - 1 && p.y == n - 1;}int isValid(int x, int y, int m, int n, int maze[][n], int visited[][n]) {return x >= 0 && x < m && y >= 0 && y < n && maze[x][y] == 0&& !visited[x][y];}void findPath(int maze[][n], int m, int n) {Stack s;initStack(&s);Point start = {0, 0};push(&s, start);int visited[m][n];for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {visited[i][j] = 0;}}while (!isEmpty(&s)) {Point p = pop(&s);if (isExit(p, m, n)) {printf("找到路径:");while (!isEmpty(&s)) {p = pop(&s);printf("(%d, %d) ", p.x, p.y);}printf("\n");return;}int directions[4][2] = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}}; for (int i = 0; i < 4; i++) {int nx = p.x + directions[i][0];int ny = p.y + directions[i][1];if (isValid(nx, ny, m, n, maze, visited)) {visited[nx][ny] = 1;push(&s, (Point){nx, ny});break;}}}printf("无路可通\n");}int main() {int m, n;printf("请输入迷宫的行数和列数:");scanf("%d %d", &m, &n);int maze[m][n];printf("请输入迷宫的布局(0表示通路,1表示墙壁):\n");for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {scanf("%d", &maze[i][j]);}}findPath(maze, m, n);return 0;}```五、实训心得通过本次迷宫实训,我深刻体会到了数据结构在实际问题中的应用价值。

数据结构迷宫问题实验报告

数据结构迷宫问题实验报告

竭诚为您提供优质文档/双击可除数据结构迷宫问题实验报告篇一:数据结构-迷宫-实验报告与代码一.需求分析本程序是利用非递归的方法求出一条走出迷宫的路径,并将路径输出。

首先由用户输入一组二维数组来组成迷宫,确认后程序自动运行,当迷宫有完整路径可以通过时,以0和1所组成的迷宫形式输出,标记所走过的路径结束程序;当迷宫无路径时,提示输入错误结束程序。

程序执行的命令:1创建迷宫;2求解迷宫;3输出迷宫求解;二.算法设计本程序中采用的数据模型,用到的抽象数据类型的定义,程序的主要算法流程及各模块之间的层次调用关系程序基本结构:设定栈的抽象数据类型定义:ADTstack{数据对象:D={ai|ai∈charset,i=1,2,3,?..,n,n>=0;} 数据关系:R={|ai?1,ai∈D,i=2,?,n}设置迷宫的抽象类型ADTmaze{数据对象:D={ai|ai∈‘’,‘@’,‘#’,‘1’,i=1,2,?,n,n>=0}数据关系:R={r,c}r={|ai-1,ai∈D,i=1,2,?,n,}c=|ai-1,ai∈D,i=1,2,?,n,}结构体定义:typedefstruct//迷宫中x行y列的位置{intx;inty;}posType;typedefstruct//栈类型{intord;//通道块在路径上的“序号”posTypeseat;//通道块在迷宫中的“坐标位置”intdi;//从此通道块走向下一通道块的“方向”}mazeType;typedefstruct{mazeType*base;mazeType*top;intstacksize;}mazestack;基本函数:statusInitstack(mazestackif(!s.base)exit(oVeRFLow);s.top=s.base+s.stacksize;s.stacksize+=sTAcKIncRemenT;}*s.top++=e;returnoK;}2)出栈操作statuspop(mazestacke=*--s.top;returnoK;}3)判断栈是否为空statusstackempty(mazestackreturneRRoR;}4)迷宫路径求解statusmazepath(posTypestart,posTypeend)//迷宫路径求解{posTypecurpos;mazestacks;mazeTypee;intcurstep;Initstack(s);curpos=start;//设定当前位置为入口位置curstep=1;//探索第一步cout {if(pass(curpos))//当前位置可以通过,即是未曾走到的通道块{Footprint(curpos);//留下足迹e.ord=curstep;e.seat=curpos;e.di=1;push(s,e);//加入路径if(curpos.x==end.xreturnTRue;//到达终点(出口)}curpos=nextpos(curpos,e.di);//下一位置是当前位置的东邻++curstep;//探索下一步}else//当前位置不能通过{if(!stackempty(s)){pop(s,e);while(e.di==4//留下不能通过的标记pop(s,e);cout }if(e.di {++e.di;//换下一个方向探索篇二:数据结构试验报告-迷宫问题实验报告:迷宫问题题目:编写一个求解迷宫通路的程序一、需求分析:1)采用二维数组maze[m][n]来表示迷宫,其中:maze[0][j]和maze[m-1][j](0≤j≤n-1)及maze[i][0]和maze[i][n-1](0≤i≤m-1)为添加在迷宫外围的一圈障碍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据结构与程序设计实验实验报告
哈尔滨工程大学
实验报告三
四、界面设计
程序需要获取魔方阵的阶数(包括错误判断),输出结果,均在执行过程中给出提示。

五、运行测试与分析
1. 获取阶数并给出错误提示
2. 获取正确阶数,并输出结果
六、实验收获与思考
本次实验采用的数据结构为二维数组,在使用过程中巩固了学习的知识,在用C语言实现魔方阵算法时对C语言的使用更加熟悉。

七、附录(原程序)
#include<stdio.h>
int main(){
int n;
for(;;){
printf("请输入魔方阵的阶数(为奇数且大于0小于100): ");
scanf("%d", &n);
if(n%2 != 0 && n > 0 && n < 100)
break;
else
printf("输入错误,请重新输入.\n");
}
//构造魔方阵
int a[100][100];
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
a[i][j]==0;
int x=0,y=n/2;
a[x][y]=1;
for(int k=2;k<=n*n;k++)
{
x=(x-1+n)%n;
y=(y-1+n)%n;。

相关文档
最新文档