中考试题分类分式与分式方程
中考数学模拟题《分式与分式方程》专项测试卷(附答案)

中考数学模拟题《分式与分式方程》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________一 单选题1.(2023·湖南·统考中考真题)将关于x 的分式方程3121x x =-去分母可得( ) A .332x x -=B .312x x -=C .31x x -=D .33x x -=2.(2023·湖南郴州·统考中考真题)小王从A 地开车去B 地 两地相距240km .原计划平均速度为x km/h 实际平均速度提高了50% 结果提前1小时到达.由此可建立方程为( ) A .24024010.5x x-= B .24024011.5x x-= C .24024011.5x x-= D . 1.5240x x +=3.(2023·黑龙江绥化·统考中考真题)某运输公司 运送一批货物 甲车每天运送货物总量的14.在甲车运送1天货物后 公司增派乙车运送货物 两车又共同运送货物12天 运完全部货物.求乙车单独运送这批货物需多少天?设乙车单独运送这批货物需x 天 由题意列方程 正确的是( )A .11142x += B .11111424x ⎛⎫++= ⎪⎝⎭C .1111142x ⎛⎫++= ⎪⎝⎭D .11111442x⎛⎫++= ⎪⎝⎭4.(2023·广东深圳·统考中考真题)某运输公司运输一批货物 已知大货车比小货车每辆多运输5吨货物 且大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同 设有大货车每辆运输x 吨,则所列方程正确的是( ) A .75505x x=- B .75505x x =- C .75505x x=+ D .75505x x =+ 5.(2023·云南·统考中考真题)阅读 正如一束阳光.孩子们无论在哪儿 都可以感受到阳光的照耀 都可以通过阅读触及更广阔的世界.某区教育体育局向全区中小学生推出“童心读书会”的分享活动.甲 乙两同学分别从距离活动地点800米和400米的两地同时出发 参加分享活动.甲同学的速度是乙同学的速度的1.2倍 乙同学比甲同学提前4分钟到达活动地点.若设乙同学的速度是x 米/分,则下列方程正确的是( ) A .1.24800400x x-= B .1.24800400x x-= C .40080041.2x x-= D .80040041.2x x-= 6.(2023·甘肃武威·统考中考真题)方程211x x =+的解为( ) A .2x =- B .2x =C .4x =-D .4x =7.(2023·上海·统考中考真题)在分式方程2221521x x x x -+=-中 设221x y x -= 可得到关于y 的整式方程为( )A .2550y y ++=B .2550y y -+=C .2510y y ++=D .2510y y -+=8.(2023·天津·统考中考真题)计算21211x x ---的结果等于( ) A .1-B .1x -C .11x + D .211x - 9.(2023·湖北随州·统考中考真题)甲 乙两个工程队共同修一条道路 其中甲工程队需要修9千米 乙工程队需要修12千米.已知乙工程队每个月比甲工程队多修1千米 最终用的时间比甲工程队少半个月.若设甲工程队每个月修x 千米,则可列出方程为( ) A .912112x x -=+ B .129112x x -=+ C .912112x x -=+ D .129112x x -=+ 10.(2023·四川内江·统考中考真题)用计算机处理数据 为了防止数据输入出错 某研究室安排两名程序操作员各输入一遍 比较两人的输入是否一致 本次操作需输入2640个数据 已知甲的输入速度是乙的2倍 结果甲比乙少用2小时输完.这两名操作员每分钟各能输入多少个数据?设乙每分钟能输入x 个数据 根据题意得方程正确的是( ) A .2640264022x x=+ B .2640264022x x=- C .264026402602x x =+⨯ D .264026402602x x=-⨯ 11.(2023·湖北十堰·统考中考真题)为了落实“双减”政策 进一步丰富文体活动 学校准备购进一批篮球和足球 已知每个篮球的价格比每个足球的价格多20元 用1500元购进篮球的数量比用800元购进足球的数量多5个 如果设每个足球的价格为x 元 那么可列方程为( ) A .1500800520x x -=+ B .1500800520x x-=- C .8001500520x x -=+ D .8001500520x x -=- 12.(2023·湖南·统考中考真题)某校组织九年级学生赴韶山开展研学活动 已知学校离韶山50千米 师生乘大巴车前往 某老师因有事情 推迟了10分钟出发 自驾小车以大巴车速度的1.2倍前往 结果同时到达.设大巴车的平均速度为x 千米/时,则可列方程为( ) A .505011.26x x =+ B .505010 1.2x x+= C .5050101.2x x=+ D .501506 1.2x x+= 13.(2023·四川·统考中考真题)近年来 我市大力发展交通 建成多条快速通道 小张开车从家到单位有两条路线可选择 路线a 为全程10千米的普通道路 路线b 包含快速通道 全程7千米 走路线b 比路线a 平均速度提高40% 时间节省10分钟 求走路线a 和路线b 的平均速度分别是多少?设走路线a 的平均速度为x 千米/小时 依题意 可列方程为( )A .()10710140%60x x -=+B .()10710140%x x -=+ C .()71010140%60x x -=+D .()71010140%x x-=+ 14.(2023·广东·统考中考真题)计算32a a+的结果为( )A .1aB .26a C .5aD .6a15.(2023·辽宁大连·统考中考真题)将方程13311xx x+=--去分母 两边同乘()1x -后的式子为( ) A .()1331x x +=-B .()1313x x +-=-C .133x x -+=-D .()1313x x +-=16.(2023·湖南张家界·统考中考真题)《四元玉鉴》是一部成就辉煌的数学名著 是宋元数学集大成者 也是我国古代水平最高的一部数学著作.该著作记载了“买椽多少”问题:“六贯二百一十钱 倩人去买几株椽.每株脚钱三文足 无钱准与一株椽”.大意是:现请人代买一批椽 这批椽的总售价为6210文.如果每株椽的运费是3文 那么少拿一株椽后 剩下的椽的运费恰好等于一株椽的价钱 试问6210文能买多少株椽?设6210元购买椽的数量为x 株,则符合题意的方程是( ). A .621031x x =- B .()316210x -= C .()621031x x-=D .()6210311x x -=- 17.(2023·黑龙江·统考中考真题)已知关于x 的分式方程122m xx x+=--的解是非负数,则m 的取值范围是( ) A .2m ≤B .2m ≥C .2m ≤且2m ≠-D .2m <且2m ≠-18.(2023·河南·统考中考真题)化简11a a a-+的结果是( ) A .0B .1C .aD .2a -19.(2023·内蒙古赤峰·统考中考真题)化简422x x +-+的结果是( ) A .1 B .224x x -C .2x x +D .22x x +20.(2023·湖北武汉·统考中考真题)已知210x x --= 计算2221121-⎛⎫-÷ ⎪+++⎝⎭x x x x x x 的值是( ) A .1 B .1- C .2 D .2-21.(2023·山东聊城·统考中考真题)若关于x 的分式方程111x m x x+=--的解为非负数,则m 的取值范围是( )A .1m 且1m ≠-B .1m ≥-且1m ≠C .1m <且1m ≠-D .1m >-且1m ≠二 填空题22.(2023·浙江台州·统考中考真题)3月12日植树节期间 某校环保小卫士组织植树活动.第一组植树12棵 第二组比第一组多6人 植树36棵 结果两组平均每人植树的棵数相等,则第一组有________人. 23.(2023·浙江绍兴·统考中考真题)方程3911x x x =++的解是________. 24.(2023·上海·统考中考真题)化简:2211x x x---的结果为________. 25.(2023·湖南·统考中考真题)已知5x =,则代数式2324416x x ---的值为________. 26.(2023·江苏苏州·统考中考真题)分式方程123x x +=的解为x =________________. 27.(2023·湖南永州·统考中考真题)若关于x 的分式方程1144mx x-=--(m 为常数)有增根,则增根是_______. 28.(2023·黑龙江绥化·统考中考真题)化简:2222142442x x x x x x x x x+--⎛⎫-÷= ⎪--+-⎝⎭_______. 29.(2017·江西·南昌市育新学校校联考一模)分式方程2102x x -=-的解是_____. 30.(2023·内蒙古赤峰·统考中考真题)方程216124x x x ++=+-的解为___________.三 解答题31.(2023·湖北黄冈·统考中考真题)化简:21211x xx x +---.32.(2023·辽宁大连·统考中考真题)计算:21123926a a a a -⎛⎫+÷ ⎪+-+⎝⎭.33.(2023·广东深圳·统考中考真题)先化简 再求值:22111121x x x x -⎛⎫+÷ ⎪--+⎝⎭其中3x =.34.(2022·江苏南京·模拟预测)解方程:2533322x x x x --=---.35.(2023·四川眉山·统考中考真题)先化简:214111x x x -⎛⎫-÷⎪--⎝⎭再从2,1,1,2--选择中一个合适的数作为x 的值代入求值.36.(2023·内蒙古通辽·统考中考真题)以下是某同学化简分式22a b ab b a a a ⎛⎫--÷- ⎪⎝⎭的部分运算过程: 解:原式22a b a b ab b a a a a---=÷-+…………第一步 212a b a b a a a a ab b --=⋅-⋅-…………第二步 222a b a ba ab b --==-…………第三步 ……(1)上面的运算过程中第___________步开始出现了错误 (2)请你写出完整的解答过程.37.(2023·湖南怀化·统考中考真题)先化简234111a a a -⎛⎫+÷⎪--⎝⎭ 再从1- 0 1 2中选择一个适当的数作为a 的值代入求值.38.(2023·甘肃武威·统考中考真题)化简:22222244a b a b a b a b a b a ab b+---÷+--+.39.(2023·山东烟台·统考中考真题)先化简 再求值:2695222a a a a a -+⎛⎫÷++ ⎪--⎝⎭ 其中a 是使不等式112a -≤成立的正整数.40.(2023·江苏苏州·统考中考真题)先化简 再求值:221422211a a a a a a --⋅---+- 其中12a =.41.(2023·湖南永州·统考中考真题)先化简 再求值:211121x x x x ⎛⎫-÷ ⎪+++⎝⎭其中2x =.42.(2023·湖北随州·统考中考真题)先化简 再求值:24242x x ÷-- 其中1x =.43.(2023·湖南·统考中考真题)先化简 再求值:211114x x x +⎛⎫+⋅ ⎪+-⎝⎭其中3x =.44.(2023·山西·统考中考真题)解方程:131122x x +=--.45.(2023·湖北宜昌·统考中考真题)先化简 再求值:222442342a a a a a a-+-÷+-+ 其中33=a .46.(2023·湖南郴州·统考中考真题)先化简 再求值:22311213x x x x x x x+-⋅+-++ 其中13x =47.(2023·广西·统考中考真题)解分式方程:211x x=-.48.(2023·四川·统考中考真题)先化简 再求值:222222322x y x x y y x x y xy ⎛⎫++÷ ⎪---⎝⎭ 其中31x = 3y =49.(2023·山东·统考中考真题)先化简 再求值:223x x xx y x y x y ⎛⎫+÷ ⎪-+-⎝⎭ 其中x y 满足230x y +-=.50.(2023·广东·统考中考真题)某学校开展了社会实践活动 活动地点距离学校12km 甲 乙两同学骑自行车同时从学校出发 甲的速度是乙的1.2倍 结果甲比乙早到10min 求乙同学骑自行车的速度.51.(2023·湖南张家界·统考中考真题)先化简22341121x x x x x -⎛⎫--÷ ⎪+++⎝⎭ 然后从1- 1 2这三个数中选一个合适的数代入求值.52.(2023·四川遂宁·统考中考真题)先化简 再求值:2221111x x x x -+⎛⎫⋅+ ⎪-⎝⎭ 其中112x -⎛⎫= ⎪⎝⎭.53.(2023·江西·统考中考真题)化简21x x x -⎛⎫+⋅ ⎪.下面是甲 乙两同学的部分运算过程:解:原式()()()()()()21111111x x x x x x x x x x ⎡⎤-+-=+⋅⎢⎥+-+-⎣⎦ ……解:原式221111x x x x x x x x--=⋅+⋅+- ……(1)甲同学解法的依据是________ 乙同学解法的依据是________ (填序号) ①等式的基本性质 ①分式的基本性质 ①乘法分配律 ①乘法交换律. (2)请选择一种解法 写出完整的解答过程.54.(2023·湖南常德·统考中考真题)先化简 再求值:231242x x x x ++⎛⎫÷- ⎪-+⎝⎭其中5x =.55.(2023·山东枣庄·统考中考真题)先化简 再求值:222211a a a a a ⎛⎫-÷ ⎪--⎝⎭其中a 的值从不等式组15a -<<56.(2023·山东滨州·统考中考真题)先化简 再求值:22421244a a a a a a a a -+-⎛⎫÷- ⎪--+⎝⎭其中a 满足1216cos6004a a -⎛⎫-⋅+ ⎪⎭︒=⎝.57.(2023·湖南·统考中考真题)先化简 再求值:222119x x x x +⎛⎫+⋅⎪+-⎝⎭ 其中6x =.58.(2023·山东聊城·统考中考真题)先化简 再求值:222224422a a a a a a a a+⎛⎫+÷ ⎪-+--⎝⎭ 其中22a .59.(2023·湖北荆州·统考中考真题)先化简 再求值:222222x y x xy y x y x y x y x y ⎛⎫--+--÷ ⎪+-+⎝⎭其中112x -⎛⎫= ⎪⎝⎭ 0(2023)y =-.60.(2023·福建·统考中考真题)先化简 再求值:22111x x x x x +-⎛⎫-÷ ⎪-⎝⎭其中21x =.61.(2023·黑龙江·统考中考真题)先化简 再求值:2222111m m m m m -+⎛⎫-÷⎪+-⎝⎭其中tan601m =︒-.62.(2023·山东·统考中考真题)为加快公共领域充电基础设施建设 某停车场计划购买A B 两种型号的充电桩.已知A 型充电桩比B 型充电桩的单价少0.3万元 且用15万元购买A 型充电桩与用20万元购买B 型充电桩的数量相等.(1)A B 两种型号充电桩的单价各是多少?(2)该停车场计划共购买25个A B 型充电桩 购买总费用不超过26万元 且B 型充电桩的购买数量不少于A 型充电桩购买数量的12.问:共有哪几种购买方案?哪种方案所需购买总费用最少?参考答案一 单选题1.(2023·湖南·统考中考真题)将关于x 的分式方程3121x x =-去分母可得( ) A .332x x -= B .312x x -= C .31x x -= D .33x x -=【答案】A【分析】方程两边都乘以()21x x - 从而可得答案. 【详解】解:①3121x x =- 去分母得:()312x x -= 整理得:332x x -= 故选:A .【点睛】本题考查的是分式方程的解法 熟练的把分式方程化为整式方程是解本题的关键.2.(2023·湖南郴州·统考中考真题)小王从A 地开车去B 地 两地相距240km .原计划平均速度为x km/h 实际平均速度提高了50% 结果提前1小时到达.由此可建立方程为( ) A .24024010.5x x-= B .24024011.5x x-= C .24024011.5x x-= D . 1.5240x x +=【答案】B【分析】设原计划平均速度为x km/h 根据实际平均速度提高了50% 结果提前1小时到达 列出分式方程即可.【详解】解:设原计划平均速度为x km/h 由题意 得: ()2402401150%x x -=+ 即:24024011.5x x-= 故选:B.【点睛】本题考查根据实际问题列方程.找准等量关系 正确得列出方程 是解题的关键.3.(2023·黑龙江绥化·统考中考真题)某运输公司 运送一批货物 甲车每天运送货物总量的14.在甲车运送1天货物后 公司增派乙车运送货物 两车又共同运送货物12天 运完全部货物.求乙车单独运送这批货物需多少天?设乙车单独运送这批货物需x 天 由题意列方程 正确的是( )A .11142x += B .11111424x ⎛⎫++= ⎪⎝⎭C .1111142x ⎛⎫++= ⎪⎝⎭D .11111442x⎛⎫++= ⎪⎝⎭【答案】B【分析】设乙车单独运送这批货物需x 天 由题意列出分式方程即可求解. 【详解】解:设乙车单独运送这批货物需x 天 由题意列方程11111424x ⎛⎫++= ⎪⎝⎭ 故选:B .【点睛】本题考查了列分式方程 根据题意找到等量关系列出方程是解题的关键.4.(2023·广东深圳·统考中考真题)某运输公司运输一批货物 已知大货车比小货车每辆多运输5吨货物 且大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同 设有大货车每辆运输x 吨,则所列方程正确的是( ) A .75505x x=- B .75505x x =- C .75505x x=+ D .75505x x =+【答案】B【分析】根据“大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同”即可列出方程. 【详解】解:设有大货车每辆运输x 吨,则小货车每辆运输()5x -吨 则75505x x =-. 故选:B.【点睛】本题考查分式方程的应用 理解题意准确找到等量关系是解题的关键.5.(2023·云南·统考中考真题)阅读 正如一束阳光.孩子们无论在哪儿 都可以感受到阳光的照耀 都可以通过阅读触及更广阔的世界.某区教育体育局向全区中小学生推出“童心读书会”的分享活动.甲 乙两同学分别从距离活动地点800米和400米的两地同时出发 参加分享活动.甲同学的速度是乙同学的速度的1.2倍 乙同学比甲同学提前4分钟到达活动地点.若设乙同学的速度是x 米/分,则下列方程正确的是( ) A .1.24800400x x-= B .1.24800400x x-= C .40080041.2x x-= D .80040041.2x x-= 【答案】D【分析】设乙同学的速度是x 米/分 根据乙同学比甲同学提前4分钟到达活动地点 列出方程即可. 【详解】解①设乙同学的速度是x 米/分 可得: 80040041.2x x-= 故选: D .【点睛】本题考查分式方程的应用 分析题意 找到合适的等量关系是解决问题的关键. 6.(2023·甘肃武威·统考中考真题)方程211x x =+的解为( ) A .2x =- B .2x = C .4x =- D .4x =【答案】A【分析】把分式方程转化为整式方程求解 然后解出的解要进行检验 看是否为增根. 【详解】去分母得()21x x += 解方程得2x =-检验:2x =-是原方程的解 故选:A .【点睛】本题考查了解分式方程的一般步骤 解题关键是熟记解分式方程的基本思想是“转化思想” 即把分式方程转化为整式方程求解 注意分式方程需要验根.7.(2023·上海·统考中考真题)在分式方程2221521x x x x -+=-中 设221x y x -= 可得到关于y 的整式方程为( )A .2550y y ++=B .2550y y -+=C .2510y y ++=D .2510y y -+=【答案】D 【分析】设221x y x -=,则原方程可变形为15y y += 再化为整式方程即可得出答案. 【详解】解:设221x y x-=,则原方程可变形为15y y += 即2510y y -+= 故选:D.【点睛】本题考查了利用换元法解方程 正确变形是关键 注意最后要化为整式方程. 8.(2023·天津·统考中考真题)计算21211x x ---的结果等于( ) A .1- B .1x - C .11x + D .211x - 【答案】C【分析】根据异分母分式加减法法则进行计算即可. 【详解】解:()()()()21212111111x x x x x x x +-=----+-+ ()()1211x x x +-=-+ ()()111x x x -=-+11x =+ 故选:C .【点睛】本题考查了异分母分式加减法法则 解答关键是按照相关法则进行计算.9.(2023·湖北随州·统考中考真题)甲 乙两个工程队共同修一条道路 其中甲工程队需要修9千米 乙工程队需要修12千米.已知乙工程队每个月比甲工程队多修1千米 最终用的时间比甲工程队少半个月.若设甲工程队每个月修x 千米,则可列出方程为( ) A .912112x x -=+ B .129112x x -=+ C .912112x x -=+ D .129112x x -=+ 【答案】A【分析】设甲工程队每个月修x 千米,则乙工程队每个月修()1x +千米 根据“最终用的时间比甲工程队少半个月”列出分式方程即可.【详解】解:设甲工程队每个月修x 千米,则乙工程队每个月修()1x +千米 依题意得912112x x -=+ 故选:A .【点睛】此题主要考查了由实际问题抽象出分式方程 关键是分析题意 找准关键语句 列出相等关系. 10.(2023·四川内江·统考中考真题)用计算机处理数据 为了防止数据输入出错 某研究室安排两名程序操作员各输入一遍 比较两人的输入是否一致 本次操作需输入2640个数据 已知甲的输入速度是乙的2倍 结果甲比乙少用2小时输完.这两名操作员每分钟各能输入多少个数据?设乙每分钟能输入x 个数据 根据题意得方程正确的是( ) A .2640264022x x=+ B .2640264022x x=- C .264026402602x x =+⨯ D .264026402602x x=-⨯ 【答案】D【分析】设乙每分钟能输入x 个数据,则甲每分钟能输入2x 个数据 根据“甲比乙少用2小时输完”列出分式方程即可.【详解】解:设乙每分钟能输入x 个数据,则甲每分钟能输入2x 个数据 由题意得264026402602x x=-⨯ 故选:D .【点睛】本题考查了由实际问题抽象出分式方程 找准等量关系 正确列出分式方程是解题的关键. 11.(2023·湖北十堰·统考中考真题)为了落实“双减”政策 进一步丰富文体活动 学校准备购进一批篮球和足球 已知每个篮球的价格比每个足球的价格多20元 用1500元购进篮球的数量比用800元购进足球的数量多5个 如果设每个足球的价格为x 元 那么可列方程为( ) A .1500800520x x -=+ B .1500800520x x-=- C .8001500520x x -=+ D .8001500520x x -=- 【答案】A【分析】设每个足球的价格为x 元,则篮球的价格为()+20x 元 根据“用1500元购进篮球的数量比用800元购进足球的数量多5个”列方程即可.【详解】解:设每个足球的价格为x 元,则篮球的价格为()+20x 元 由题意可得:1500800520x x-=+故选:A .【点睛】本题考查分式方程的应用 正确理解题意是关键.12.(2023·湖南·统考中考真题)某校组织九年级学生赴韶山开展研学活动 已知学校离韶山50千米 师生乘大巴车前往 某老师因有事情 推迟了10分钟出发 自驾小车以大巴车速度的1.2倍前往 结果同时到达.设大巴车的平均速度为x 千米/时,则可列方程为( ) A .505011.26x x =+ B .505010 1.2x x+= C .5050101.2x x=+ D .501506 1.2x x+= 【答案】A【分析】设大巴车的平均速度为x 千米/时,则老师自驾小车的平均速度为1.2x 千米/时 根据时间的等量关系列出方程即可.【详解】解:设大巴车的平均速度为x 千米/时,则老师自驾小车的平均速度为1.2x 千米/时 根据题意列方程为:505011.26x x =+ 故答案为:A .【点睛】本题考查了分式方程的应用 找到等量关系是解题的关键.13.(2023·四川·统考中考真题)近年来 我市大力发展交通 建成多条快速通道 小张开车从家到单位有两条路线可选择 路线a 为全程10千米的普通道路 路线b 包含快速通道 全程7千米 走路线b 比路线a 平均速度提高40% 时间节省10分钟 求走路线a 和路线b 的平均速度分别是多少?设走路线a 的平均速度为x 千米/小时 依题意 可列方程为( ) A .()10710140%60x x -=+ B .()10710140%x x -=+ C .()71010140%60x x -=+D .()71010140%x x-=+ 【答案】A【分析】若设路线a 时的平均速度为x 千米/小时,则走路线b 时的平均速度为()140%x +千米/小时 根据路线b 的全程比路线a 少用10分钟可列出方程.【详解】解:由题意可得走路线b 时的平均速度为()140%x +千米/小时 ①()10710140%60x x -=+ 故选:A .【点睛】本题考查了由实际问题抽象出分式方程 找到关键描述语 找到合适的等量关系是解决问题的关键.14.(2023·广东·统考中考真题)计算32a a+的结果为( )A .1aB .26a C .5aD .6a【答案】C【分析】根据分式的加法运算可进行求解. 【详解】解:原式5a= 故选:C .【点睛】本题主要考查分式的运算 熟练掌握分式的运算是解题的关键. 15.(2023·辽宁大连·统考中考真题)将方程13311xx x+=--去分母 两边同乘()1x -后的式子为( ) A .()1331x x +=- B .()1313x x +-=- C .133x x -+=- D .()1313x x +-=【答案】B【分析】根据解分式方程的去分母的方法即可得. 【详解】解:13311xx x+=-- 两边同乘()1x -去分母 得()1313x x +-=- 故选:B .【点睛】本题考查了解分式方程 熟练掌握去分母的方法是解题关键.16.(2023·湖南张家界·统考中考真题)《四元玉鉴》是一部成就辉煌的数学名著 是宋元数学集大成者 也是我国古代水平最高的一部数学著作.该著作记载了“买椽多少”问题:“六贯二百一十钱 倩人去买几株椽.每株脚钱三文足 无钱准与一株椽”.大意是:现请人代买一批椽 这批椽的总售价为6210文.如果每株椽的运费是3文 那么少拿一株椽后 剩下的椽的运费恰好等于一株椽的价钱 试问6210文能买多少株椽?设6210元购买椽的数量为x 株,则符合题意的方程是( ). A .621031x x =- B .()316210x -= C .()621031x x-= D .()6210311x x -=- 【答案】C【分析】设6210元购买椽的数量为x 株 根据单价=总价÷数量 求出一株椽的价钱为6210x再根据少拿一株椽后剩下的椽的运费恰好等于一株椽的价钱 即可列出分式方程 得到答案.【详解】解:设6210元购买椽的数量为x 株,则一株椽的价钱为6210x由题意得:()621031x x-= 故选:C .【点睛】本题考查了从实际问题中抽象出分式方程 正确理解题意找出等量关系是解题关键. 17.(2023·黑龙江·统考中考真题)已知关于x 的分式方程122m xx x+=--的解是非负数,则m 的取值范围是( ) A .2m ≤ B .2m ≥ C .2m ≤且2m ≠- D .2m <且2m ≠-【答案】C【分析】解分式方程求出22mx -= 然后根据解是非负数以及解不是增根得出关于m 的不等式组 求解即可.【详解】解:分式方程去分母得:2m x x +-=- 解得:22mx -=①分式方程122m xx x+=--的解是非负数 ①202m-≥ 且222m x -=≠ ①2m ≤且2m ≠- 故选:C .【点睛】本题考查了解分式方程 解一元一次不等式组 正确得出关于m 的不等式组是解题的关键. 18.(2023·河南·统考中考真题)化简11a a a-+的结果是( ) A .0 B .1 C .a D .2a -【答案】B【分析】根据同母的分式加法法则进行计算即可. 【详解】解:11111a a aa a a a--++=== 故选:B .【点睛】本题考查同分母的分式加法 熟练掌握运算法则是解决问题的关键. 19.(2023·内蒙古赤峰·统考中考真题)化简422x x +-+的结果是( )A .1B .224x x -C .2x x +D .22x x +【答案】D【分析】根据分式的加减混合运算法则即可求出答案. 【详解】解:422x x +-+ ()()4222x x x ++-=+22x x =+. 故选:D.【点睛】本题考查了分式的化简 解题的关键在于熟练掌握分式加减混合运算法则.20.(2023·湖北武汉·统考中考真题)已知210x x --= 计算2221121-⎛⎫-÷ ⎪+++⎝⎭x x x x x x 的值是( ) A .1 B .1- C .2 D .2-【答案】A【分析】根据分式的加减运算以及乘除运算法则进行化简 然后把21x x =+代入原式即可求出答案.【详解】解:2221121-⎛⎫-÷⎪+++⎝⎭x x x x x x =()()()()2121111x x x x x x x x x ⎡⎤-+-÷⎢⎥+++⎢⎥⎣⎦ =()()()21111x x x x x x +-⋅+- =21x x + ①210x x --= ①21x x =+ ①原式=21x x +=1 故选:A.【点睛】本题考查分式的混合运算及求值.解题的关键是熟练运用分式的加减运算以及乘除运算法则. 21.(2023·山东聊城·统考中考真题)若关于x 的分式方程111x mx x+=--的解为非负数,则m 的取值范围是( )A .1m 且1m ≠-B .1m ≥-且1m ≠C .1m <且1m ≠-D .1m >-且1m ≠【答案】A【分析】把分式方程的解求出来 排除掉增根 根据方程的解是非负数列出不等式 最后求出m 的范围. 【详解】解:方程两边都乘以()1x - 得:1x x m +-=- 解得:12mx -=①10x -≠ 即:112m-≠ ①1m ≠-又①分式方程的解为非负数 ①102m-≥ ①1m①m 的取值范围是1m 且1m ≠- 故选:A .【点睛】本题考查了分式方程的解 根据条件列出不等式是解题的关键 分式方程一定要检验.二 填空题22.(2023·浙江台州·统考中考真题)3月12日植树节期间 某校环保小卫士组织植树活动.第一组植树12棵 第二组比第一组多6人 植树36棵 结果两组平均每人植树的棵数相等,则第一组有________人. 【答案】3【分析】审题确定等量关系:第一组平均每人植树棵数=第二组平均每人植树棵数 列方程求解 注意检验.【详解】设第一组有x 人,则第二组有(6)x +人 根据题意 得 12366xx去分母 得12(6)36x x解得 3x =经检验 3x =是原方程的根. 故答案为:3.【点睛】本题考查分式方程的应用 审题明确等量关系是解题的关键 注意分式方程的验根. 23.(2023·浙江绍兴·统考中考真题)方程3911x x x =++的解是________.【答案】3x =【分析】先去分母 左右两边同时乘以()1x + 再根据解一元一次方程的方法和步骤进行解答 最后进行检验即可.【详解】解:去分母 得:39x = 化系数为1 得:3x =. 检验:当3x =时 10x +≠ ①3x =是原分式方程的解. 故答案为:3x =.【点睛】本题主要考查了解分式方程 解题的关键是掌握解分式方程的方法和步骤 正确找出最简公分母 注意解分式方程要进行检验. 24.(2023·上海·统考中考真题)化简:2211xx x---的结果为________. 【答案】2【分析】根据同分母分式的减法计算法则解答即可. 【详解】解:2211x x x ---()2122211x x x x--===--故答案为:2.【点睛】本题考查了同分母分式减法计算 熟练掌握运算法则是解题关键. 25.(2023·湖南·统考中考真题)已知5x =,则代数式2324416x x ---的值为________. 【答案】13【分析】先通分 再根据同分母分式的减法运算法则计算 然后代入数值即可. 【详解】解:原式=()()()()()34244444x x x x x +--+-+()()31244x x x -=-+34x =+ 5x =333145493∴===++x 故答案为:13.【点睛】本题主要考查了分式通分计算的能力 解决本题的关键突破口是通分整理. 26.(2023·江苏苏州·统考中考真题)分式方程123x x +=的解为x =________________. 【答案】3-【分析】方程两边同时乘以3x 化为整式方程 解方程验根即可求解. 【详解】解:方程两边同时乘以3x ()312x x += 解得:3x =-经检验 3x =-是原方程的解 故答案为:3-.【点睛】本题考查了解分式方程 熟练掌握解分式方程的步骤是解题的关键. 27.(2023·湖南永州·统考中考真题)若关于x 的分式方程1144m x x-=--(m 为常数)有增根,则增根是_______. 【答案】4x =【分析】根据使分式的分母为零的未知数的值 是方程的增根 计算即可. 【详解】①关于x 的分式方程1144mx x-=--(m 为常数)有增根 ①40x -= 解得4x = 故答案为:4x =.【点睛】本题考查了分式方程的解法 增根的理解 熟练掌握分式方程的解法是解题的关键.28.(2023·黑龙江绥化·统考中考真题)化简:2222142442x x x x x x x x x +--⎛⎫-÷= ⎪--+-⎝⎭_______. 【答案】12x - 【分析】先根据分式的加减计算括号内的 同时将除法转化为乘法 再根据分式的性质化简即可求解. 【详解】解:2222142442x x x x x x x x x+--⎛⎫-÷ ⎪--+-⎝⎭ ()()()()()2221242x x x x x x x x x +----=⨯-- ()()2222442x x x x x x x x ---+=⨯-- 12x =-故答案为:12x -. 【点睛】本题考查了分式的混合运算 熟练掌握分式的运算法则是解题的关键.29.(2017·江西·南昌市育新学校校联考一模)分式方程2102x x -=-的解是_____. 【答案】4x =【分析】根据解分式方程的步骤计算即可. 【详解】去分母得:()220x x --= 解得:4x =经检验4x =是方程的解 故答案为:4x =.【点睛】本题考查解分式方程 正确计算是解题的关键 注意要检验. 30.(2023·内蒙古赤峰·统考中考真题)方程216124x x x ++=+-的解为___________. 【答案】4x =【分析】依据题意将分式方程化为整式方程 再按照因式分解即可求出x 的值. 【详解】解:216124x x x ++=+- 方程两边同时乘以()()22x x +-得 ()()2622x x x x -++=+- 2244x x ∴+=-2280x x ∴--=()()420x x ∴-+=4x ∴=或2x =-.经检验2x =-时 240x -= 故舍去. ∴原方程的解为:4x =.故答案为:4x =.【点睛】本题考查的是解分式方程 解题的关键在于注意分式方程必须检验根的情况.三 解答题31.(2023·湖北黄冈·统考中考真题)化简:21211x xx x +---.【答案】1x -【分析】先计算同分母分式的减法 再利用完全平方公式约分化简. 【详解】解:21211x xx x +--- 2211x x x -+=- ()211x x -=-1x =-【点睛】本题考查分式的约分化简 解题的关键是掌握分式的运算法则. 32.(2023·辽宁大连·统考中考真题)计算:21123926a a a a -⎛⎫+÷⎪+-+⎝⎭. 【答案】23a - 【分析】先计算括号内的加法 再计算除法即可. 【详解】解:21123926a a a a -⎛⎫+÷⎪+-+⎝⎭ ()()()()()312333323a a a a a a a ⎡⎤--=+÷⎢⎥+-+-+⎢⎥⎣⎦ ()()()223323a a a a a --=÷+-+()()()232332a a a a a +-=⋅+--23a =- 【点睛】此题考查了分式的混合运算 熟练掌握分式的运算法则和顺序是解题的关键.33.(2023·广东深圳·统考中考真题)先化简 再求值:22111121x x x x -⎛⎫+÷ ⎪--+⎝⎭ 其中3x =. 【答案】1xx + 34 【分析】先根据分式混合运算的法则把原式进行化简 再把x 的值代入进行计算即可.【详解】22111121x x x x -⎛⎫+÷ ⎪--+⎝⎭ ()()()21111x x x x x +-=÷-- 111x x x x -=⨯-+。
初三中考数学分式与分式方程

初三中考数学分式与分式⽅程中考数学试题分类解析汇编第7章分式与分式⽅程⼀、选择题1. (安徽,6,4分)化简x x x x -+-112的结果是() A.x +1 B. x -1 C.—x D. x 解析:本题是分式的加法运算,分式的加减,⾸先看分母是否相同,同分母的分式加减,分母不变,分⼦相加减,如果分母不同,先通分,后加减,本题分母互为相反数,可以化成同分母的分式加减.解答:解:x x x x x x x x x x x =--=--=---=1)1(11122 故选D .点评:分式的⼀些知识可以类⽐着分数的知识学习,分式的基本性质是关键,掌握了分式的基本性质,可以利⽤它进⾏通分、约分,在进⾏分式运算时根据法则,⼀定要将结果化成最简分式.2.(成都)分式⽅程3121x x =- 的解为() A .1x = B . 2x = C . 3x = D . 4x = 考点:解分式⽅程。
解答:解:3121x x =-,去分母得:3x ﹣3=2x ,移项得:3x ﹣2x=3,合并同类项得:x=3,检验:把x=3代⼊最简公分母2x (x ﹣1)=12≠0,故x=3是原⽅程的解,故原⽅程的解为:3x =,故选:C .3.(义乌市)下列计算错误的是()A .B .C .D .考点:分式的混合运算。
解答:解:A 、,故本选项错误;B 、,故本选项正确;C 、=﹣1,故本选项正确; D 、,故本选项正确.故选A .4.(?丽⽔)把分式⽅程转化为⼀元⼀次⽅程时,⽅程两边需同乘以( )A .xB .2xC .x +4D .x (x +4)考点:解分式⽅程。
分析:根据各分母寻找公分母x (x +4),⽅程两边乘最简公分母,可以把分式⽅程转化为整式⽅程.解答:解:由两个分母(x +4)和x 可得最简公分母为x (x +4),所以⽅程两边应同时乘以x (x +4).故选D .点评:本题考查解分式⽅程去分母的能⼒,确定最简公分母应根据所给分式的分母来决定.⼆、填空题1.(福州)计算:x -1x +1x=______________.考点:分式的加减法.专题:计算题.分析:直接根据同分母的分数相加减进⾏计算即可.解答:解:原式=x -1+1x=1.故答案为:1.点评:本题考查的是分式的加减法,同分母的分式相加减,分母不变,把分⼦相加减.2.(?连云港)今年6⽉1⽇起,国家实施了中央财政补贴条例⽀持⾼效节能电器的推⼴使⽤,某款定速空调在条例实施后,每购买⼀台,客户可获财政补贴200元,若同样⽤11万元所购买的此款空调数台,条例实施后⽐实施前多10%,则条例实施前此款空调的售价为 2200 元.考点:分式⽅程的应⽤。
中考数学专题复习4分式、分式方程及一元二次方程(解析版)

分式、分式方程及一元二次方程复习考点攻略考点01 一元一次方程相关概念1.等式的性质:(1)等式两边都加上(或减去)同一个数或同一个整式.所得的结果仍是等式. (2)等式两边都乘以(或除以)同一个不等于零的数.所得的结果仍是等式.2.一元一次方程:只含有一个未知数.并且未知数的次数为1.这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠. 【注意】x 前面的系数不为0.3.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 4. 一元一次方程的求解步骤:步骤 解释去分母 在方程两边都乘以各分母的最小公倍数 去括号 先去小括号.再去中括号.最后去大括号移项 把含有未知数的项都移到方程的一边.其他项都移到方程的另一边 合并同类项 把方程化成ax b =-的形式系数化成1在方程两边都除以未知数的系数a .得到方程的解为bx a=-【注意】解方程时移项容易忘记改变符号而出错.要注意解方程的依据是等式的性质.在等式两边同时加上或减去一个代数式时.等式仍然成立.这也是“移项”的依据.移项本质上就是在方程两边同时减去这一项.此时该项在方程一边是0.而另一边是它改变符号后的项.所以移项必须变号. 【例 1】若()2316m m x --=是一元一次方程,则m 等于( )A .1B .2C .1或2D .任何数【答案】B【解析】根据一元一次方程最高次为一次项.得│2m −3│=1.解得m =2或m =1. 根据一元一次方程一次项的系数不为0,得m −1≠0,解得m ≠1.所以m =2. 故选B.【例 2】关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程.则其解为_____.【答案】2x =或2x =-或x =-3.【解析】解:关于x 的方程21120m mx m x +﹣(﹣)﹣=如果是一元一次方程.211m ∴﹣=.即1m =或0m =.方程为20x ﹣=或20x --=.解得:2x =或2x =-.当2m -1=0.即m =12时.方程为112022x --=解得:x =-3. 故答案为x =2或x =-2或x =-3. 【例 3】解方程:221123x x x ---=- 【答案】27x =【解析】解: 221123x x x ---=-()()6326221x x x --=-- 636642x x x -+=-+ 634662x x x -+=-+ 72x = 27x =考点02 二元一次方程组相关概念1.二元一次方程:含有2个未知数.并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组:由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量.其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法:(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来.并代入另一个方程中.消去一个未知数.化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数.化二元一次方程组为一元一次方程.5. 列方程(组)解应用题的一般步骤:(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称)6. 一元一次方程(组)的应用:(1)销售打折问题:利润=售价-成本价;利润率=利润成本×100%;售价=标价×折扣;销售额=售价×数量.(2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.(3)工程问题:工作量=工作效率×工作时间. (4)行程问题:路程=速度×时间.(5)相遇问题:全路程=甲走的路程+乙走的路程.(6)追及问题一(同地不同时出发):前者走的路程=追者走的路程.(7)追及问题二(同时不同地出发):前者走的路程+两地间距离=追者走的路程. (8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度. (9)飞机航行问题:顺风速度=静风速度+风速度;逆风速度=静风速度-风速度. 【例 4】已知-2x m -1y 3与12x n y m +n 是同类项.那么(n -m )2 012=______【答案】1【解析】由于-2x m -1y 3与12x n y m +n 是同类项.所以有由m -1=n .得-1=n -m .所以(n -m )2 012=(-1)2 012=1.【例5】如图X2-1-1.直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).(1)求b 的值.(2)不解关于x .y 的方程组请你直接写出它的解.(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.【答案】(1)2.(2)⎩⎪⎨⎪⎧x =1,y =2.(3)见解析【解析】解:(1)当x =1时.y =1+1=2.∴b =2.(2)⎩⎪⎨⎪⎧x =1,y =2. (3)∵直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).∴当x =1时.y =m+n =b =2.∴ 当x =1时.y =n +m =2.∴直线l 3:y =nx +m 也经过点P .【例6】家电下乡是我国应对当前国际金融危机.惠农强农.带动工业生产.促进消费.拉动内需的一项重要举措。
中考数学真题专项汇编解析—分式与分式方程

中考数学真题专项汇编解析—分式与分式方程一.选择题1.(2022·天津)计算1122a a a ++++的结果是( ) A .1 B .22a + C .2a + D .2a a + 【答案】A【分析】利用同分母分式的加法法则计算,约分得到结果即可. 【详解】解:1121222a a a a a +++==+++.故选:A . 【点睛】本题主要考查了分式的加减,解题的关键是掌握分式加减运算顺序和运算法则. 2.(2022·浙江杭州)照相机成像应用了一个重要原理,用公式()111v f f u v=+≠表示,其中f 表示照相机镜头的焦距,u 表示物体到镜头的距离,v 表示胶片(像)到镜头的距离.已知f ,v ,则u =( ) A .fvf v -B .f vfv-C .fvv f- D .v ffv-【答案】C【分析】利用分式的基本性质,把等式()111v f f u v =+≠恒等变形,用含f 、v 的代数式表示u .【详解】解:∵()111v f f u v =+≠,∵111f u ν=+,即111u f ν=-,∵1f uf νν-=,∵f u fνν=-,故选:C . 【点睛】本题考查分式的加、减法运算,关键是异分母通分,掌握通分法则. 3.(2022·四川眉山)化简422a a +-+的结果是( ) A .1 B .22a a +C .224a a -D .2a a + 【答案】B【分析】根据分式的混合运算法则计算即可.【详解】解:422a a +-+244=22-+++a a a 2=2+a a .故选:B【点睛】本题考查分式的混合运算法则,解题的关键是掌握分式的混合运算法则. 4.(2022·湖南怀化)代数式25x ,1π,224x +,x 2﹣23,1x ,12x x ++中,属于分式的有( ) A .2个 B .3个 C .4个 D .5个【答案】B【分析】看分母中是否含有字母,如果含有字母则是分式,如果不含字母则不是,根据此依据逐个判断即可.【详解】分母中含有字母的是224x +,1x ,12x x ++,∵分式有3个,故选:B . 【点睛】本题考查分式的定义,能够准确判断代数式是否为分式是解题的关键. 5.(2022·四川凉山)分式13x+有意义的条件是( ) A .x =-3 B .x ≠-3 C .x ≠3 D .x ≠0【答案】B【分析】根据分式的分母不能为0即可得.【详解】解:由分式的分母不能为0得:30x +≠,解得3x ≠-, 即分式13x+有意义的条件是3x ≠-,故选:B . 【点睛】本题考查了分式有意义的条件,熟练掌握分式的分母不能为0是解题关键.6.(2022·四川南充)已知0a b >>,且223a b ab +=,则2221111a b a b ⎛⎫⎛⎫+÷- ⎪ ⎪⎝⎭⎝⎭的值是( )AB .CD .【答案】B【分析】先将分式进件化简为a bb a+-,然后利用完全平方公式得出a b -=a b +,代入计算即可得出结果.【详解】解:2221111a b a b ⎛⎫⎛⎫+÷- ⎪ ⎪⎝⎭⎝⎭22222a b b a ab a b +-⎛⎫=÷ ⎪⎝⎭()()()22222a b a b a b b a b a +=⨯+-a b b a +=-,∵223a b ab +=,∵222a ab b ab -+=,∵()2a b ab -=, ∵a>b>0,∵a b -=∵223a b ab +=,∵2225a ab b ab ++=,∵()25a b ab +=,∵a>b>0,∵a b +=,∵原式=,故选:B . 【点睛】题目主要考查完全公式的计算,分式化简等,熟练掌握运算法则是解题关键. 7.(2022·云南)某地开展建设绿色家园活动,活动期间,计划每天种植相同数量的树木,该活动开始后、实际每天比原计划每天多植树50棵,实际植树400棵所需时间与原计划植树300棵所需时间相同.设实际每天植树x 棵.则下列方程正确的是( ) A .40030050x x=- B .30040050x x=- C .40030050x x=+ D .30040050x x=+ 【答案】B【分析】设实际平均每天植树x 棵,则原计划每天植树(x -50)棵,根据:实际植树400棵所需时间=原计划植树300棵所需时间,这一等量关系列出分式方程即可. 【详解】解:设现在平均每天植树x 棵,则原计划每天植树(x -50)棵, 根据题意,可列方程:30040050x x=-,故选:B . 【点睛】此题考查了由实际问题列分式方程,关键在寻找相等关系,列出方程.8.(2022·山东泰安)某工程需要在规定时间内完成,如果甲工程队单独做,恰好如期完成; 如果乙工程队单独做,则多用3天,现在甲、乙两队合做2天,剩下的由乙队单独做,恰好如期完成,求规定时间.如果设规定日期为x 天,下面所列方程中错误的是( ) A .2x1xx 3+=+ B .23x x 3=+ C .11x 221x x 3x 3-⎛⎫+⨯+= ⎪++⎝⎭ D .1x1x x 3+=+ 【答案】D【分析】设总工程量为1,因为甲工程队单独去做,恰好能如期完成,所以甲的工作效率为1x;因为乙工程队单独去做,要超过规定日期3天,所以乙的工作效率为1x 3+,根据甲、乙两队合做2天,剩下的由乙队独做,恰好在规定日期完成,列方程即可.【详解】解:设规定日期为x 天,由题意可得,11x 221xx 3x 3-⎛⎫+⨯+= ⎪++⎝⎭, 整理得2x 1x x 3+=+,或2x 1x x 3=-+或23x x 3=+. 则ABC 选项均正确,故选:D .【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程. 9.(2022·四川德阳)关于x 的方程211x ax +=-的解是正数,则a 的取值范围是( ) A .a >-1 B .a >-1且a ≠0 C .a <-1 D .a <-1且a ≠-2 【答案】D【分析】将分式方程变为整式方程求出解,再根据解为正数且不能为增根,得出答案. 【详解】方程左右两端同乘以最小公分母x -1,得2x+a=x -1.解得:x=-a -1且x 为正数.所以-a -1>0,解得a <-1,且a≠-2.(因为当a=-2时,方程不成立.) 【点睛】本题难度中等,易错点:容易漏掉了a≠-2这个信息. 10.(2022·四川遂宁)若关于x 的方程221mxx =+无解,则m 的值为( ) A .0 B .4或6 C .6 D .0或4【答案】D【分析】现将分时方程化为整式方程,再根据方程无解的情况分类讨论,当40m -=时,当40m -≠时,0x =或210x +=,进行计算即可.【详解】方程两边同乘(21)x x +,得2(21)x mx +=,整理得(4)2m x -=, 原方程无解,∴当40m -=时,4m =; 当40m -≠时,0x =或210x +=,此时,24x m =-,解得0x =或12x =-,当0x =时,204x m ==-无解; 当12x =-时,2142x m ==--,解得0m =; 综上,m 的值为0或4;故选:D .【点睛】本题考查了分式方程无解的情况,即分式方程有增根,分两种情况,分别是最简公分母为0和化成的整式方程无解,熟练掌握知识点是解题的关键.11.(2022·浙江丽水)某校购买了一批篮球和足球.已知购买足球的数量是篮球的2倍,购买足球用了5000元,购买篮球用了4000元,篮球单价比足球贵30元.根据题意可列方程50004000302x x=-,则方程中x 表示( ) A .足球的单价 B .篮球的单价 C .足球的数量 D .篮球的数量【答案】D 【分析】由50004000302x x=-的含义表示的是篮球单价比足球贵30元,从而可以确定x 的含义. 【详解】解:由50004000302x x=-可得: 由50002x 表示的是足球的单价,而4000x表示的是篮球的单价, x 表示的是购买篮球的数量,故选D【点睛】本题考查的是分式方程的应用,理解题意,理解方程中代数式的含义是解本题的关键. 二.填空题12.(2022·湖北黄冈)若分式21x -有意义,则x 的取值范围是________. 【答案】1x ≠【分析】根据分式有意义的条件即可求解. 【详解】解:∵分式21x -有意义,∵10x -≠, 解得1x ≠.故答案为:1x ≠.【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件是解题的关键.13.(2022·浙江湖州)当a =1时,分式1a a+的值是______. 【答案】2【分析】直接把a 的值代入计算即可. 【详解】解:当a =1时,11121a a ++==.故答案为:2. 【点睛】本题主要考查了分式求值问题,在解题时要根据题意代入计算即可. 14.(2022·湖南怀化)计算52x x ++﹣32x +=_____. 【答案】1【分析】根据同分母分式相加减,分母不变,把分子相加减计算即可. 【详解】解:52x x ++﹣32x +=532122x x x x +-+==++故答案为:1. 【点睛】本题考查分式的加减,解题关键是熟练掌握同分母分式相加减时分母不变,分子相加减,异分母相加减时,先通分变为同分母分式,再加减.15.(2022·四川自贡)化简:22a 3a 42a 3a 2a 4a 4--⋅+-+++ =____________. 【答案】2a a + 【分析】根据分式混合运算的顺序,依次计算即可.【详解】22a 3a 42a 3a 2a 4a 4--⋅+-+++=2a 3(a 2)(a 2)2a 3a 2(a 2)-+-⋅+-++ 22222a a a a a -=+=+++故答案为2a a + 【点睛】本题考查了分式的混合运算,熟练掌握约分,通分,因式分解的技巧是解题的关键. 16.(2022·四川泸州)若方程33122x x x-+=--的解使关于x 的不等式()230-->a x 成立,则实数a 的取值范围是________. 【答案】1a <-【分析】先解分式方程得1x =,再把1x =代入不等式计算即可. 【详解】33122x x x-+=--去分母得:323x x -+-=-解得:1x = 经检验,1x =是分式方程的解 把1x =代入不等式()230-->a x 得:230a -->解得1a <-故答案为:1a <-【点睛】本题综合考查分式方程的解法和一元一次不等式的解法,解题的关键是熟记相关运算法则.17.(2022·浙江宁波)定义一种新运算:对于任意的非零实数a ,b ,11ba b a⊗=+.若21(1)++⊗=x x x x ,则x 的值为___________. 【答案】12-【分析】根据新定义可得221(1)x x x x x ++⊗=+,由此建立方程22121x x x x x++=+解方程即可. 【详解】解:∵11ba b a ⊗=+,∵()211121(1)11x x x x x x x x x x x ++++⊗=+==+++, 又∵21(1)++⊗=x x x x ,∵22121x x x x x++=+,∵()()()221210x x x x x ++-+=,∵()()2210x x x x +-+=,∵()2210x x +=,∵21(1)++⊗=x x x x即0x ≠,∵210x +=,解得12x =-, 经检验12x =-是方程22121x x x x x++=+的解,故答案为:12-. 【点睛】本题主要考查了新定义下的实数运算,解分式方程,正确理解题意得到关于x 的方程是解题的关键.18.(2022·江西)甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x 人,则可列分式方程为__________. 【答案】16014010xx =- 【分析】先表示乙每小时采样(x -10)人,进而得出甲采样160人和乙采样140人所用的时间,再根据时间相等列出方程即可.【详解】根据题意可知乙每小时采样(x -10)人,根据题意,得16014010xx =-. 故答案为:16014010xx =-. 【点睛】本题主要考查了列分式方程,确定等量关系是列方程的关键. 19.(2022·浙江金华)若分式23x -的值为2,则x 的值是_______. 【答案】4【分析】根据题意建立分式方程,再解方程即可; 【详解】解:由题意得:223x =- 去分母:()223x =- 去括号:226x =- 移项,合并同类项:28x = 系数化为1:4x =经检验,x =4是原方程的解, 故答案为:4;【点睛】本题考查了分式方程,掌握解分式方程的步骤是解题关键. 20.(2022·四川成都)分式方程31144x x x-+=--的解是_________. 【答案】3x =【分析】找出分式方程的最简公分母,方程左右两边同时乘以最简公分母,去分母后再利用去括号法则去括号,移项合并,将x 的系数化为1,求出x 的值,将求出的x 的值代入最简公分母中进行检验,即可得到原分式方程的解. 【详解】解:31144x x x-+=-- 解:化为整式方程为:3﹣x ﹣1=x ﹣4,解得:x =3,经检验x =3是原方程的解, 故答案为:3x =.【点睛】此题考查了分式方程的解法.注意解分式方程一定要验根,熟练掌握分式方程的解法是关键.21.(2022·重庆)为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为_________. 【答案】35【分析】适当引进未知数,合理转化条件,构造等式求解即可.【详解】设三座山各需香樟数量分别为4x 、3x 、9x .甲、乙两山需红枫数量2a 、3a . ∵425336x a x a +=+,∵3a x =,故丙山的红枫数量为()742955x a x x +-=,设香樟和红枫价格分别为m 、n .∵()()()()()16695161 6.25%120%695125%mx x x x n x m x x x n +++=-⋅-+++⋅+,∵:5:4m n =,∵实际购买香樟的总费用与实际购买红枫的总费用之比为()()()()161 6.25%120%3695125%5x mx x x n ⋅-⋅-=++⋅+,故答案为:35.【点睛】本题考查未知数的合理引用,熟练掌握未知数的科学设置,灵活构造等式计算求解是解题的关键.22.(2022·湖南衡阳)计算:2422a a a +=++_________. 【答案】2【分析】分式分母相同,直接加减,最后约分. 【详解】解:2422a a a +++242a a +=+()222a a +=+2= 【点睛】本题考查了分式的加减,掌握同分母分式的加减法法则是解决本题的关键. 23.(2022·浙江台州)如图的解题过程中,第∵步出现错误,但最后所求的值是正确的,则图中被污染的x 的值是____.先化简,再求值:314xx -+-,其中x =解:原式3(4)(4)4xx x x -=⋅-+--34x x =-+-1=-【答案】5【分析】根据题意得到方程3114xx -+=--,解方程即可求解. 【详解】解:依题意得:3114x x -+=--,即3204xx -+=-, 去分母得:3-x +2(x -4)=0, 去括号得:3-x +2x -8=0, 解得:x =5,经检验,x =5是方程的解, 故答案为:5.【点睛】本题考查了解分式方程,一定要注意解分式方程必须检验. 24.(2022·四川成都)已知2272a a -=,则代数式2211a a a a a --⎛⎫-÷⎪⎝⎭的值为_________. 【答案】72【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值;【详解】解:2211a a a a a --⎛⎫-÷ ⎪⎝⎭=22211a a a a a a ⎛⎫---÷ ⎪⎝⎭=22211a a a a a -+-÷ =22(1)1a a a a -⨯-=(1)a a -=2-a a . 2272a a -=,移项得2227a a -=,左边提取公因式得22()7a a -=, 两边同除以2得272a a -=, ∵原式=72.故答案为:72.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键. 25.(2022·湖南常德)方程()21522x x x x +=-的解为________. 【答案】4x =【分析】根据方程两边同时乘以()22x x -,化为整式方程,进而进行计算即可求解,最后注意检验.【详解】解:方程两边同时乘以()22x x -,()()222252x x ⨯-+=⨯-482510x x -+=-解得4x =经检验,4x =是原方程的解 故答案为:4x =【点睛】本题考查了解分式方程,解分式方程一定要注意检验. 三.解答题26.(2022·江苏宿迁)解方程:21122x x x =+--. 【答案】x =﹣1【分析】根据解分式方程的步骤,先去分母化为整式方程,再求出方程的解,最后进行检验即可. 【详解】解:21122x x x =+--, 2x =x ﹣2+1, x =﹣1,经检验x =﹣1是原方程的解, 则原方程的解是x =﹣1.【点睛】本题考查解分式方程,得出方程的解之后一定要验根.27.(2022·四川泸州)化简:22311(1).m m m m m-+-+÷ 【答案】11m m -+ 【分析】直接根据分式的混合计算法则求解即可.【详解】解:22311(1)m m m m m-+-+÷ ()()231`11m m m m m m m÷++=--+()()2211`1m m m mm m -+=⋅+-()()()21`11mm mm m +⋅--=11m m -=+. 【点睛】本题主要考查了分式的混合计算,熟知相关计算法则是解题的关键.28.(2022·新疆)先化简,再求值:22931121112a a a a a a a ⎛⎫--÷-⋅⎪-+--+⎝⎭,其中2a =. 【答案】1【分析】根据平方差公式、完全平方公式和分式的混合运算法则对原式进行化简,再把a 值代入求解即可.【详解】解:22931121112a a a a a a a ⎛⎫--÷-⋅⎪-+--+⎝⎭()()()2331113121a a a a a a a ⎡⎤+--=⋅-⋅⎢⎥--+-⎢⎥⎣⎦311112a a a a +⎛⎫=-⋅⎪--+⎝⎭ 2112a a a +=⋅-+ 11a =-, ∵2a =, ∵原式111121a ===--. 【点睛】本题考查分式的化简求值,熟练掌握平方差公式、完全平方公式和分式的混合运算法则是解题的关键.29.(2022·四川乐山)先化简,再求值:211121xx x x ⎛⎫-÷ ⎪+++⎝⎭,其中x = 【答案】1x +1【分析】先将括号内的通分、分式的除法变乘法,再结合完全平方公式即可化简,代入x 的值即可求解. 【详解】21(1-)121xx x x ÷+++ 21121(-)11x x x x x x+++=⨯++ 211(1)1x x x x+-+=⨯+ 1x =+,∵x∵原式=11x +=.【点睛】本题考查了分式混合运算,掌握分式的混合运算法则是解答本题的关键. 30.(2022·湖南邵阳)先化简,再从-1,0,1x 值代入求值.211111x x x x ⎛⎫+÷ ⎪+--⎝⎭.【答案】11x + 【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把合适的x 的值代入计算即可求出值. 【详解】解:211111x x x x ⎛⎫+÷⎪+--⎝⎭11(1)(1)(1)(1)1x x x x x x x ⎡⎤-=+÷⎢⎥+-+--⎣⎦1(1)(1)x x x x x-=⋅+-=11x +, ∵x +1≠0,x -1≠0,x ≠0,∵x ≠±1,x ≠0当x=【点睛】本题主要考查了分式的化简求值,分母有理化,解题的关键是掌握分式混合运算顺序和运算法则.31.(2022·陕西)化简:212111a a a a +⎛⎫+÷ ⎪--⎝⎭. 【答案】1a +【分析】分式计算先通分,再计算乘除即可.【详解】解:原式211112a a a a a++--=⋅-2(1)(1)12a a a a a +-=⋅-1a =+. 【点睛】本题考查了分式的混合运算,正确地计算能力是解决问题的关键. 32.(2022·湖南株洲)先化简,再求值:2111144x x x x +⎛⎫+⋅ ⎪+++⎝⎭,其中4x =. 【答案】12x +,16 【分析】先将括号内式子通分,再约分化简,最后将4x =代入求值即可. 【详解】解:2221111111441114241(2)2x x x x x x x x x x x x x x +++⎛⎫+⋅=⋅=⋅= ⎪+++++++++⎝⎭+++, 将4x =代入得,原式1112426x ===++. 【点睛】本题考查分式的化简求值,熟练掌握分式的运算法则和完全平方公式是解题的关键.33.(2022·江苏扬州)计算:(1)(02cos 45π︒+ (2)22221121m m m m +⎛⎫+÷⎪--+⎝⎭【答案】(1)1 (2)12m - 【分析】(1)根据特殊锐角三角函数值、零指数幂、二次根式进行计算即可; (2)先合并括号里的分式,再对分子和分母分别因式分解即可化简; (1)解:原式=21-1 (2)解:原式=()()21211121m m m m m --⎛⎫+⋅ ⎪--+⎝⎭=()()211121m m m m -+⋅-+=12m -. 【点睛】本题主要考查分式的化简、特殊锐角三角函数值、零指数幂、二次根式的计算,掌握相关运算法则是解题的关键.34.(2022·江西)以下是某同学化筒分式2113422x x x x +⎛⎫-÷⎪-+-⎭的部分运算过程: (1)上面的运算过程中第__________步出现了错误;(2)请你写出完整的解答过程. 【答案】(1)∵(2)见解析【分析】根据分式的运算法则:先乘方,再加减,最后乘除,有括号先算括号里面的计算即可. (1)第∵步出现错误,原因是分子相减时未变号,故答案为:∵; (2)解:原式=112(2)(2)23x x x x x ⎡⎤+--⨯⎢⎥+-+⎣⎦122(2)(2)(2)(2)3x x x x x x x ⎡⎤+--=-⨯⎢⎥+-+-⎣⎦122(2)(2)3x x x x x +-+-=⨯+-32(2)(2)3x x x -=⨯+-12x =+ 【点睛】本题主要考查了分式的混合运算,熟练掌握分式的运算法则是解决本题的关键. 35.(2022·重庆)计算:(1)()()(2)x y x y y y +-+-;(2)2244124m m m m m -+⎛⎫-÷⎪⎝⎭-+. 【答案】(1)22x y -(2)22m - 【分析】(1)根据平方差公式和单项式乘多项式法则进行计算,再合并同类项即可; (2)先将括号里通分计算,所得的结果再和括号外的分式进行通分计算即可. (1)解:()()(2)x y x y y y +-+-=2222x y y y -+-=22x y -(2)解: 2244124m m m m m -+⎛⎫-÷⎪⎝⎭-+ =()()()222222m m m m m m -+-÷++- =()()()222222m m m m +-⨯+- =22m - 【点睛】本题考查了平方差公式、单项式乘多项式、合并同类项、分式的混合运算等知识点,熟练掌握运算法则是解答本题的关键.36.(2022·江苏连云港)化简:221311x x x x -+--. 【答案】11x x -+ 【分析】根据异分母分式的加法计算法则求解即可.【详解】解:原式2221311x x xx x +-=+-- 22131x x x x ++-=-22211x x x -+=-22(1)1x x -=- 2(1)=(1)(1)x x x -+- 11x x -=+. 【点睛】本题主要考查了异分母分式的加法,熟知相关计算法则是解题的关键.37.(2022·四川达州)化简求值:222112111a a a a a a a ⎛⎫-+÷+ ⎪-+--⎝⎭,其中31a.【答案】11a +【分析】先将分子因式分解,再进行通分,然后根据分式减法法则进行计算,最后再根据分式除法法则计算即可化简,再把a 的值代入计算即可求值.【详解】解:原式=()()()2211111a a a a a a a -+++÷+-- ()()()()2211111a a a a a +--=⋅-+1=1a +;当31a=. 【点睛】本题考查分式的化简求值,分母有理化,熟练掌握分式的运算法则以及正确的计算是解题的关键.38.(2022·浙江舟山)观察下面的等式:111236=+,1113412=+,1114520=+,…… (1)按上面的规律归纳出一个一般的结论(用含n 的等式表示,n 为正整数) (2)请运用分式的有关知识,推理说明这个结论是正确的. 【答案】(1)1111(1)n n n n =+++(2)见解析【分析】(1)根据所给式子发现规律,第一个式子的左边分母为2,第二个式子的左边分母为3,第三个式子的左边分母为4,…;右边第一个分数的分母为3,4,5,…,另一个分数的分母为前面两个分母的乘积;所有的分子均为1;所以第(n +1)个式子为1111(1)n n n n =+++.(2)由(1)的规律发现第(n +1)个式子为1111(1)n n n n =+++,用分式的加法计算式子右边即可证明. (1)解:∵第一个式子()1111123621221=+=+++,第二个式子()11111341231331=+=+++, 第三个式子()11111452041441=+=+++,……∵第(n +1)个式子1111(1)n n n n =+++; (2)解:∵右边=111111(1)(1)(1)(1)n n n n n n n n n n n n++=+==+++++=左边, ∵1111(1)n n n n =+++. 【点睛】此题考查数字的变化规律,分式加法运算,解题关键是通过观察,分析、归纳发现其中各分母的变化规律.39.(2022·四川凉山)先化简,再求值:524(2)23m m m m-++⋅--,其中m 为满足-1<m <4的整数.【答案】26--m ,当0m =时,式子的值为6-;当1m =时,式子的值为8-.【分析】先计算括号内的分式加法,再计算分式的乘法,然后根据分式有意义的条件确定m 的值,代入计算即可得.【详解】解:原式(2)(2)52(2)223m m m m m m+--⎡⎤=+⋅⎢⎥---⎣⎦ 2452(2)()223m m m m m --=+⋅---292(2)23m m m m--=⋅--(3)(3)2(2)23m m m m m +--=⋅--2(3)m =-+26m =--, 20,30m m -≠-≠,2,3m m ∴≠≠,又m 为满足14-<<m 的整数,0m ∴=或1m =,当0m =时,原式262066m =--=-⨯-=-, 当1m =时,原式262168m =--=-⨯-=-,综上,当0m =时,式子的值为6-;当1m =时,式子的值为8-.【点睛】本题考查了分式的化简求值,熟练掌握分式的运算法则是解题关键.40.(2022·山东滨州)先化简,再求值:2344111a a a a a ++⎛⎫+-÷ ⎪--⎝⎭,其中10(1tan 45π2)a -=︒+-【答案】22a a -+,0 【分析】先算括号内的减法,再将除法变成乘法进行计算,然后根据锐角三角函数,负指数幂和零次幂的性质求出a ,最后代入计算.【详解】解:2344111a a a a a ++⎛⎫+-÷⎪--⎝⎭()22213111a a a a a +⎛⎫-=-÷ ⎪---⎝⎭()222411a a a a +-=÷--()()()222112a a a a a +--=⋅-+22a a -=+; ∵101tan 45π122)2(1a -=︒+-=+-=,∵原式2220222a a --===++. 【点睛】本题考查了分式的化简求值,锐角三角函数,负指数幂和零次幂的性质,熟练掌握运算法则是解题的关键.41.(2022·重庆)计算:(1)()()224x x x ++-;(2)2212a a bb b -⎛⎫-÷ ⎪⎝⎭.【答案】(1)224x +(2)2a b+ 【分析】(1)先计算乘法,再合并,即可求解;(2)先计算括号内的,再计算除法,即可求解. (1)解:原式22444x x x x =+++-224x =+ (2)解:原式2()()a b b b a b a b -=⨯+-2a b=+ 【点睛】本题主要考查了整式的混合运算,分式的混合运算,熟练掌握相关运算法则是解题的关键.42.(2022·山东泰安)(1)若单项式14m n x y -与单项式33812m n x y --是一多项式中的同类项,求m 、n 的值;(2)先化简,再求值:211111xx x x ⎛⎫+÷ ⎪+--⎝⎭,其中1x =. 【答案】(1)m =2,n =-1;(2)21x +,4-【分析】(1)根据同类项的概念列二元一次方程组,然后解方程组求得m 和n 的值; (2)先通分算小括号里面的,然后算括号外面的,最后代入求值. 【详解】解:(1)由题意可得33814m n m n -=⎧⎨-=⎩①②,∵-∵3⨯,可得:55n -=,解得:1n =-, 把1n =-代入∵,可得:(1)3m --=,解得:2m =,m ∴的值为2,n 的值为1-;(2)原式(1)(1)[](1)(1)(1)(1)x x x x x x x -++=⋅+-+-21(1)(1)(1)(1)x x x x x x x -++=⋅+-+-21x =+,当1x 时,原式21)12114=+=-+=-【点睛】本题考查同类项,解二元一次方程组,分式的化简求值,二次根式的混合运算,理解同类项的概念,掌握消元法解二元一次方程组的步骤以及完全平方公式222()2a b a ab b +=++的结构是解题关键.43.(2022·四川乐山)第十四届四川省运动会定于2022年8月8日在乐山市举办,为保证省运会期间各场馆用电设施的正常运行,市供电局为此进行了电力抢修演练.现抽调区县电力维修工人到20千米远的市体育馆进行电力抢修.维修工人骑摩托车先行出发,10分钟后,抢修车装载完所需材料再出发,结果他们同时到达体育馆,已知抢修车是摩托车速度的1.5倍,求摩托车的速度.【答案】摩托车的速度为40千米/时【分析】设摩托车的速度为x 千米/时,则抢修车的速度为1.5x 千米/时,根据抢修车比摩托车少用10分钟,即可得出关于x 的分式方程,解之经检验后即可得出结论. 【详解】解:设摩托车的速度为x 千米/时,则抢修车的速度为1.5x 千米/时, 依题意,得:2020101.560x x -=,解得:x =40, 经检验,x =40是所列方程的根,且符合题意, 答:摩托车的速度为40千米/时.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 44.(2022·湖南怀化)去年防洪期间,某部门从超市购买了一批数量相等的雨衣(单位:件)和雨鞋(单位:双),其中购买雨衣用了400元,购买雨鞋用了350元,已知每件雨衣比每双雨鞋贵5元.(1)求每件雨衣和每双雨鞋各多少元?(2)为支持今年防洪工作,该超市今年的雨衣和雨鞋单价在去年的基础上均下降了20%,并按套(即一件雨衣和一双雨鞋为一套)优惠销售. 优惠方案为:若一次购买不超过5套,则每套打九折:若一次购买超过5套,则前5套打九折,超过部分每套打八折.设今年该部门购买了a 套,购买费用为W 元,请写出W 关于a 的函数关系式.(3)在(2)的情况下,今年该部门购买费用不超过320元时最多可购买多少套?【答案】(1)每件雨衣40元,每双雨鞋35元(2)()600.954052705600.848305a a a W a a a ⨯⨯=≤<⎧=⎨+-⨯⨯=+≥⎩(3)最多可购买6套 【分析】(1)根据题意,设每件雨衣()5+x 元,每双雨鞋x 元,列分式方程求解即可; (2)根据题意,按套装降价20%后得到每套60元,根据费用=单价×套数即可得出结论; (3)根据题意,结合(2)中所求,得出不等式4830320a +≤,求解后根据实际意义取值即可.(1)解:设每件雨衣()5+x 元,每双雨鞋x 元,则4003505x x=+,解得35x =, 经检验,35x =是原分式方程的根,540x ∴+=,答:每件雨衣40元,每双雨鞋35元;(2)解:根据题意,一套原价为354075+=元,下降20%后的现价为()75120%60⨯-=元,则()600.954,052705600.84830,5a a a W a a a ⨯⨯=≤<⎧=⎨+-⨯⨯=+≥⎩; (3)解:320270>,∴购买的套数在5a ≥范围内,即4830320a +≤,解得145 6.04224a ≤≈, 答:在(2)的情况下,今年该部门购买费用不超过320元时最多可购买6套.【点睛】本题考查实际应用题,涉及分式方程的实际应用、一次分段函数的实际应用和不等式解实际应用题等知识,熟练掌握实际应用题的求解步骤“设、列、解、答”,根据题意得出相应关系式是解决问题的关键.45.(2022·重庆)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A 地沿相同路线骑行去距A地30千米的B地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A地出发,则甲、乙恰好同时到达B地,求甲骑行的速度.【答案】(1)24/千米时(2)18千米/时【分析】(1)设乙的速度为x千米/时,则甲的速度为1.2x千米/时,根据甲出发半小时恰好追上乙列方程求解即可;(2)设乙的速度为x千米/时,则甲的速度为1.2x千米/时,根据甲、乙恰好同时到达B地列方程求解即可.(1)解:设乙的速度为x千米/时,则甲的速度为1.2x千米/时,由题意得:0.5 1.20.52x x⨯=+,解得:20x,则1.224x=(千米/时),答:甲骑行的速度为24千米/时;(2)设乙的速度为x千米/时,则甲的速度为1.2x千米/时,由题意得:301303 1.2x x-=,解得15x=,经检验15x=是分式方程的解,则1.218x=(千米/时),答:甲骑行的速度为18千米/时.【点睛】本题考查了一元一次方程的应用和分式方程的应用,找准等量关系,正确列出方程是解题的关键.46.(2022·重庆)为保障蔬菜基地种植用水,需要修建灌溉水渠.(1)计划修建灌溉水渠600米,甲施工队施工5天后,增加施工人员,每天比原来多修建20米,再施工2天完成任务,求甲施工队增加人员后每天修建灌溉水渠多少米?(2)因基地面积扩大,现还需修建另一条灌溉水渠1800米,为早日完成任务,决定派乙施工队与甲施工队同时开工合作修建这条水渠,直至完工.甲施工队按(1)中增加人员后的修建速度进行施工.乙施工队修建360米后,通过技术更新,每天比原来多修建20%,灌溉水渠完工时,两施工队修建的长度恰好相同.求乙施工队原来每天修建灌溉水渠多少米?【答案】(1)100米(2)90米【分析】(1)设甲施工队增加人员后每天修建灌溉水渠x 米,原来每天修建()20x -米,根据工效问题公式:工作总量=工作时间×工作效率,列出关于x 的一元一次方程,解方程即可得出答案;(2)设乙施工队原来每天修建灌溉水渠y 米,技术更新后每天修建()120y +%米,根据水渠总长1800米,完工时,两施工队修建长度相同,可知每队修建900米,再结合两队同时开工修建,直至同时完工,可得两队工作时间相同,列出关于y 的分式方程,解方程即可得出答案.(1)解:设甲施工队增加人员后每天修建灌溉水渠x 米,原来每天修建()20x -米,则有()5202600x x -+=解得100x =∵甲施工队增加人员后每天修建灌溉水渠100米.(2)∵水渠总长1800米,完工时,两施工队修建长度相同∵两队修建的长度都为1800÷2=900(米)乙施工队技术更新后,修建长度为900-360=540(米)解:设乙施工队原来每天修建灌溉水渠y 米,技术更新后每天修建()120y +%米,即1.2y 米 则有5403609001.2100y y +=解得90y =经检验,90y=是原方程的解,符合题意∵乙施工队原来每天修建灌溉水渠90米.【点睛】本题考查一元一次方程和分式方程的实际应用,应注意分式方程要检验,读懂题意,正确设出未知数,并列出方程,是解题的关键.47.(2022·四川自贡)学校师生去距学校45千米的吴玉章故居开展研学活动,骑行爱好者张老师骑自行车先行2小时后,其余师生乘汽车出发,结果同时到达;已知汽车速度是自行车速度的3倍,求张老师骑车的速度.【答案】张老师骑车的速度为15千米/小时【分析】实际应用题的解题步骤“设、列、解、答”,根据问题设未知数,找到题中等量关系张老师先走2小时,结果同时达到列分式方程,求解即可.【详解】解:设张老师骑车的速度为x千米/小时,则汽车速度是3x千米/小时,根据题意得:454523x x=+,解之得15x=,经检验15x=是分式方程的解,答:张老师骑车的速度为15千米/小时.【点睛】本题考查分式方程解实际应用题,根据问题设未知数,读懂题意,找到等量关系列出分式方程是解决问题的关键.48.(2022·江苏扬州)某中学为准备十四岁青春仪式,原计划由八年级(1)班的4个小组制作360面彩旗,后因1个小组另有任务,其余3个小组的每名学生要比原计划多做3面彩旗才能完成任务.如果这4个小组的人数相等,那么每个小组有学生多少名?【答案】每个小组有学生10名.【分析】设每个小组有学生x名,根据题意列出方程,求出方程的解即可得到结果.【详解】解:设每个小组有学生x名,。
【精品】2017年全国中考数学真题《分式与分式方程》分类汇编解析

2017年全国中考数学真题《分式与分式方程》分类汇编解析分式与分式方程考点一、分式 (8~10分)1、分式的概念一般地,用A 、B 表示两个整式,A ÷B 就可以表示成B A 的形式,如果B 中含有字母,式子BA就叫做分式。
其中,A 叫做分式的分子,B 叫做分式的分母。
分式和整式通称为有理式。
2、分式的性质(1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
(2)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。
3、分式的运算法则;;bcad c d b a d c b a bd ac d c b a =⨯=÷=⨯一、选择题1.(2017·山东省滨州市·3分)下列分式中,最简分式是( )A .B .C .D .2.(2017·山东省德州市·3分)化简﹣等于( )A .B .C .﹣D .﹣3.(2017·广西百色·3分)A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( )C.﹣=D.+=304.(2017·广西桂林·3分)当x=6,y=3时,代数式()•的值是()A.2 B.3 C.6 D.95. (2017·云南省昆明市·4分)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=6. (2017·重庆市A卷·4分)函数y=中,x的取值范围是()A.x≠0B.x>﹣2 C.x<﹣2 D.x≠﹣27.(2017贵州毕节3分)为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x棵,则列出的方程为()A.B.C.D.8.(2017海南3分)解分式方程,正确的结果是()A.x=0 B.x=1 C.x=2 D.无解10. (2017·湖北武汉·3分)若代数式在31-x实数范围内有意义,则实数x的取值范围是()A.x<3 B.x>3 C.x≠3D.x=312.(2017·四川攀枝花)化简+的结果是()A.m+n B.n﹣m C.m﹣n D.﹣m﹣n13.(2017·四川内江)甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地,已知A,C两地间的距离为110千米,B,C两地间的距离为100千米,甲骑自行车的平均速度比乙快2千米/时,结果两人同时到达C地,求两人的平均速度分别为多少.为解决此问题,设乙骑自行车的平均速度为x千米/时,由题意列出方程,其中正确的是( )A.1102x+=100xB.1100x=1002x+C.1102x-=100xD.1100x=1002x-14.(2017·四川内江)在函数y x的取值范围是( )A.x>3 B.x≥3 C.x>4 D.x≥3且x≠4驶100km,设提速前列车的平均速度为xkm/h,下列方程正确的是()A.=B.=C.=D.=16. (2017·黑龙江龙东·3分)关于x的分式方程=3的解是正数,则字母m的取值范围是()A.m>3 B.m>﹣3 C.m>﹣3 D.m<﹣317.(2017·黑龙江齐齐哈尔·3分)若关于x的分式方程=2﹣的解为正数,则满足条件的正整数m 的值为()A.1,2,3 B.1,2 C.1,3 D.2,318.(2017·湖北荆门·3分)化简的结果是()A.B.C.x+1 D.x﹣119.(2017·内蒙古包头·3分)化简()•ab,其结果是()A.B.C.D.20. (2017·山东潍坊·3分)计算:20•2﹣3=()A.﹣B.C.0 D.821. (2017·山东潍坊·3分)若关于x的方程+=3的解为正数,则m的取值范围是()A.m<B.m<且m≠C.m>﹣D.m>﹣且m≠﹣22. (2017·四川眉山·3分)已知x2﹣3x﹣4=0,则代数式的值是()A.3 B.2 C.D.二、填空题1.(2017·山东省济宁市·3分)已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是km/h.2. (云南省昆明市·3分)计算:﹣=.4.(2017·贵州安顺·4分)在函数中,自变量x的取值范围是.5.(2017贵州毕节5分)若a2+5ab﹣b2=0,则的值为.6.(2017·四川南充)计算:=.7.(2017·四川攀枝花)已知关于x的分式方程+=1的解为负数,则k的取值范围是.8.(2017·四川泸州)分式方程﹣=0的根是.9.(2017·四川内江)化简:(2a+93a-)÷3aa+=______.10. (2017·湖北荆州·3分)当a=﹣1时,代数式的值是.三、解答题1.(2017·湖北随州·6分)先化简,再求值:(﹣x+1)÷,其中x=﹣2.2. (2017·湖北随州·6分)某校学生利用双休时间去距学校10km的炎帝故里参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.3. (2017·吉林·5分)解方程:=.4. (2017·江西·6分)先化简,再求值:(+)÷,其中x=6.5. (2017·辽宁丹东·10分)某商场购进甲、乙两种商品,乙商品的单价是甲商品单价的2倍,购买240元甲商品的数量比购买300元乙商品的数量多15件,求两种商品单价各为多少元?6.(2017·四川泸州)化简:(a+1﹣)•.7.(2017·四川宜宾)2017年“母亲节”前夕,宜宾某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?8.(2017·四川宜宾)化简:÷(1﹣)9.(2017·黑龙江龙东·6分)先化简,再求值:(1+)÷,其中x=4﹣tan45°.10.(2017·黑龙江齐齐哈尔·5分)先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣15=0.11.(2017·湖北黄石·6分)先化简,再求值:÷•,其中a=2017.12.(2017·湖北荆州·12分)已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n =0②中,k、m、n均为实数,方程①的根为非负数.(1)求k的取值范围;(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.13.(2017·青海西宁·7分)化简:,然后在不等式x≤2的非负整数解中选择一个适14. (2017·陕西)化简:(x﹣5+)÷.15. (2017·四川眉山)先化简,再求值:,其中a=3.16. (2017·四川眉山)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场.顺风车行经营的A型车2015年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元(用列方程的方法解答);(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如表:17.(2017·山东省滨州市·4分)先化简,再求值:÷(﹣),其中a =.18.(2017·山东省东营市·4分)化简,再求值:(a +1-4a -5a -1)÷(1a -1a 2-a ),其中a =2+3.19.(2017·山东省东营市·8分)东营市某学校2015年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2900元,那么这所学校最多可购买多少个乙种足球?20.(2017·山东省菏泽市·3分)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)21. (2017·重庆市A卷·5分)(+x﹣1)÷.22. (2017·重庆市B卷·5分)÷(2x﹣)23. (2017·浙江省绍兴市·4分))解分式方程:+=4.24.(2017·福建龙岩·6分)先化简再求值:,其中x=2+.25.(2017·广西桂林·8分)五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同 (1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?26.(2017·贵州安顺·10分)先化简,再求值:1211)1(+-+÷-x x x ),从﹣1,2,3中选择一个适当的数作为x 值代入.27.(2017·黑龙江哈尔滨·7分)先化简,再求代数式(﹣)÷的值,其中a =2sin 60°+tan 45°.28.(2017·黑龙江哈尔滨·10分)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?29.(2017广西南宁)在南宁市地铁1号线某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作了15天,共完成总工程的.(1)求乙队单独完成这项工程需要多少天?(2)为了加快工程进度,甲、乙两队各自提高工作效率,提高后乙队的工作效率是,甲队的工作效率是乙队的m倍(1≤m≤2),若两队合作40天完成剩余的工程,请写出a关于m的函数关系式,并求出乙队的最大工作效率是原来的几倍?30.(2017河南)先化简,再求值:(﹣1)÷,其中x的值从不等式组的整数解中选取.答案分式与分式方程一、选择题1.(2017·山东省滨州市·3分)下列分式中,最简分式是()A.B.C.D.【考点】最简分式.【专题】计算题;分式.【分析】利用最简分式的定义判断即可.【解答】解:A、原式为最简分式,符合题意;B、原式==,不合题意;C、原式==,不合题意;D、原式==,不合题意,故选A【点评】此题考查了最简分式,最简分式为分式的分子分母没有公因式,即不能约分的分式.2.(2017·山东省德州市·3分)化简﹣等于( )A .B .C .﹣D .﹣【考点】分式的加减法. 【专题】计算题;分式.【分析】原式第二项约分后两项通分并利用同分母分式的加法法则计算即可得到结果.【解答】解:原式=+=+==,故选B【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.3.(2017·广西百色·3分)A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( )A .﹣=30 B .﹣=C .﹣= D .+=30【考点】由实际问题抽象出分式方程.【分析】设甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,根据两车同时从A 地出发到B 地,乙车比甲车早到30分钟列出方程即可.【解答】解:设甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,根据题意得,﹣=.故选B .4.(2017·广西桂林·3分)当x =6,y =3时,代数式()•的值是( )A .2B .3C .6D .9 【考点】分式的化简求值.【分析】先对所求的式子化简,然后将x =6,y =3代入化简后的式子即可解答本题.【解答】解:()•==,当x=6,y=3时,原式=,故选C.5. (2017·云南省昆明市·4分)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=【考点】由实际问题抽象出分式方程.【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【解答】解:由题意可得,﹣=,故选C.6. (2017·重庆市A卷·4分)函数y=中,x的取值范围是()A.x≠0B.x>﹣2 C.x<﹣2 D.x≠﹣2【分析】由分式有意义的条件得出不等式,解不等式即可.【解答】解:根据题意得:x+2≠0,解得x≠﹣2.故选:D.【点评】本题考查了函数中自变量的取值范围、分式有意义的条件;由分式有意义得出不等式是解决问题的关键.7.(2017贵州毕节3分)为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x棵,则列出的方程为()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】设现在平均每天植树x 棵,则原计划每天植树(x ﹣30)棵,根据:现在植树400棵所需时间=原计划植树300棵所需时间,这一等量关系列出分式方程即可.【解答】解:设现在平均每天植树x 棵,则原计划每天植树(x ﹣30)棵,根据题意,可列方程: =,故选:A .8.(2017海南3分)解分式方程,正确的结果是( )A .x =0B .x =1C .x =2D .无解 【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【解答】解:去分母得:1+x ﹣1=0, 解得:x =0, 故选A【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验. 9.(2017河北3分)下列运算结果为x -1的是( )A .11x-B .211x x x x -∙+ C .111x x x +÷- D .2211x x x +++ 答案:B解析:挨个算就可以了,A 项结果为—— , B 项的结果为x -1,C 项的结果为—— D 项的结果为x +1。
2023学年人教中考数学重难点题型分类 专题10 分式与分式方程压轴题真题

专题10 分式与分式方程压轴题真题-高分必刷题(原卷版)专题简介:本份资料包含《分式与分式方程》这一章在各次月考、期末中的主流压轴题,所选题目源自各名校月考、期末试题中的典型考题,本专题资料适合于培训机构的老师培养尖子生时使用或者学生想挑战高分时刷题使用。
题型一:分式方程的无解问题1. (长郡)(1)若关于x 的方程933312-+=++-x kx k x 无解,求k 的值; (2)若 n 是自然数,关于 x 的分式方程122=-+++xnx n x 的解为t ,且t t =,求n t -+)1(的值。
【解答】解:(1)去分母,得:x +3+k (x ﹣3)=3+k ,即(1+k )x =4k ,∴k =﹣1时,方程无解, ∵分式方程无解,即x 2﹣9=0,解得:x =3或x =﹣3,当x =3时,3+3+0=3+k ,解得:k =3; 当x =﹣3时,﹣3+3﹣6k =3+k ,解得:k =﹣.(2)去分母,得:(x+n)(2-x)+n(x+2)=(x+2)(2-x),∴x=2-2n ,∵方程的解为t ,解不为増根,最简公分母(x+2)(2-x)≠0,∴x ≠-2且x ≠2,∴2-2n ≠-2,得n ≠2且2-2n ≠2得n ≠0,2-2n=t ,t t =, ∴t ≥0,∴2-2n ≥0,∴n ≤1,n 为自然数,∴n=0(舍)或n=1,当n=1时,t=2-2n=0,(t+1)-n=(0+1)-1=1综上,原式的值为1.2.(中雅)对于平面直角坐标系中的点(),P a b ,若点'P 的坐标为,a a kb b k ⎛⎫++ ⎪⎝⎭(其中k 为常数,且0k ≠)则称点'P 为点P 的“k 系雅培点”。
例如:()3,2P 的“3系雅培点”为3'332,23P ⎛⎫+⨯+ ⎪⎝⎭,即()'9,3P 。
(1)点()6,1P 的“2系雅培点”'P 的坐标为 ;(2)若点P 在y 轴的正半轴上,点P 的“k 系雅培点”为'P 点,若在△'OPP 中,'2PP OP =,求k 的值; (3)已知点(),A x y 在第四象限,且满足12xy =-。
分式与分式方程(3大考点)(解析版)三年(2022-2024)中考数学真题分类汇编(全国通用)

专题07分式与分式方程(3大考点)(解析版)三年(2022-2024)中考数学真题分类汇编(全国通用)【考点归纳】一、考点01解分式方程----------------------------------------------------------------------------------------------------------------------------1二、考点02分式方程的解-----------------------------------------------------------------------------------------------------------------------11三、考点03分式方程的应用-------------------------------------------------------------------------------------------------------------------16考点01解分式方程一、考点01解分式方程1.(2024·山东济宁·中考真题)解分式方程1513126x x-=---时,去分母变形正确的是()A .2625x -+=-B .6225x --=-C .2615x --=D .6215x -+=2.(2024·四川泸州·中考真题)分式方程322x x-=--的解是()A .73x =-B .=1x -C .53x =D .3x =1362x -+=-,39x -=-,3x =,经检验3x =是该方程的解,故选:D .3.(2024·四川德阳·中考真题)分式方程153x x =+的解是()A .3B .2C .32D .344.(2023·辽宁大连·中考真题)解方程311x x x+=--去分母,两边同乘(1)x -后的式子为()A .133(1)x x +=-B .13(1)3x x +-=-C .133x x -+=-D .13(1)3x x+-=【答案】B【分析】本题考查了解分式方程时去分母,找到分式方程的公分母是解题的关键.根据分式方程的解法,两侧同乘(1)x -化简分式方程即可.【详解】解:分式方程的两侧同乘(1)x -得:13(1)3x x +-=-.故选:B .5.(2023·海南·中考真题)分式方程115x =-的解是()A .6x =B .6x =-C .5x =D .5x =-【答案】A【分析】先去分母将分式方程化为整式方程,解方程得到x 的值,再检验即可得到答案.【详解】解:去分母得:15x =-,解得:6x =,检验,当6x =时,510x -=≠,∴原分式方程的解是6x =,故选:A .【点睛】本题主要考查了解分式方程,熟练掌握解分式方程的步骤,注意要检验.6.(2023·黑龙江哈尔滨·中考真题)方程231x x =+的解为()A .1x =B .=1x -C .2x =D .2x =-7.(2023·湖南·中考真题)将关于x 的分式方程21x x =-去分母可得()A .332x x -=B .312x x -=C .31x x -=D .33x x-=8.(2023·甘肃兰州·中考真题)方程213x =+的解是()A .1x =B .=1x -C .5x =D .5x =-【答案】B【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得解.【详解】解:去分母得:23x =+,解得=1x -,经检验=1x -是分式方程的解.故选:B .【点睛】本题考查了解分式方程,熟练掌握解分式方程的方法是解题的关键.9.(2023·上海·中考真题)在分式方程2221521x x x x -+=-中,设221x y x -=,可得到关于y 的整式方程为()A .2550y y ++=B .2550y y -+=C .2510y y ++=D .2510y y -+=10.(2024·浙江·中考真题)若11x =-,则x =【答案】3【分析】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:去分母得:21x =-,移项合并得:3x -=-,解得:3x =,经检验,3x =是分式方程的解,故答案为:311.(2024·北京·中考真题)方程11023x x+=的解为.12.(2024·四川宜宾·中考真题)分式方程301x x +-=的解为.13.(2023·江苏·中考真题)方程1121x -=+的解是.故答案为:2x =-【点睛】此题考查了分式方程的求解,解题的关键是掌握分式方程的求解方法.14.(2023·北京·中考真题)方程31512x x=+的解为.【答案】1x =【分析】方程两边同时乘以()251x x +化为整式方程,解整式方程即可,最后要检验.【详解】解:方程两边同时乘以()251x x +,得651x x =+,解得:1x =,经检验,1x =是原方程的解,故答案为:1x =.【点睛】本题考查了解分式方程,熟练掌握解分式方程的步骤是解题的关键.15.(2023·江苏苏州·中考真题)分式方程123x x +=的解为x =.【答案】3-【分析】方程两边同时乘以3x ,化为整式方程,解方程验根即可求解.【详解】解:方程两边同时乘以3x ,()312x x +=解得:3x =-,经检验,3x =-是原方程的解,故答案为:3-.【点睛】本题考查了解分式方程,熟练掌握解分式方程的步骤是解题的关键.16.(2023·重庆·中考真题)若关于x 的一元一次不等式组+34222x x a ⎧≤⎪⎨⎪-≥⎩,至少有2个整数解,且关于y 的分式方程14222a y y-+=--有非负整数解,则所有满足条件的整数a 的值之和是.17.(2022·山东威海·中考真题)按照如图所示的程序计算,若输出y的值是2,则输入x的值是.18.(2022·四川成都·中考真题)分式方程144x x x-+=的解是.19.(2024·福建·中考真题)解方程:122x x +=+-.20.(2024·陕西·中考真题)解方程:2111x x +=--.【答案】3x =-【分析】本题主要考查了解分式方程,先去分母变分式方程为整式方程,然后再解整式方程,最后对方程的解进行检验即可.21.(2024·广东广州·中考真题)解方程:x x=.2522.(2023·西藏·中考真题)解分式方程:1-=.11x x23.(2023·山西·中考真题)解方程:1122x x +=.24.(2022·青海西宁·中考真题)解方程:220x x x x-=+-.【答案】7x =【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:方程两边同乘()()11x x x +-,得()()41310x x --+=,解得7x =,检验:当7x =时,()()110x x x +-≠,所以,原分式方程的解为7x =.【点睛】本题主要考查了解分式方程,掌握求解的方法是解题的关键,注意解分式方程一定要验根.25.(2022·江苏苏州·中考真题)解方程:311x x x+=.二、考点02分式方程的解26.(2024·四川遂宁·中考真题)分式方程2111m x x =---的解为正数,则m 的取值范围()A .3m >-B .3m >-且2m ≠-C .3m <D .3m <且2m ≠-27.(2024·黑龙江齐齐哈尔·中考真题)如果关于x 的分式方程01m x x -=+的解是负数,那么实数m 的取值范围是()A .1m <且0m ≠B .1m <C .1m >D .1m <且1m ≠-【答案】A【分析】本题考查了根据分式方程的解的情况求参数,解分式方程求出分式方程的解,再根据分式方程的28.(2024·黑龙江大兴安岭地·中考真题)已知关于x 的分式方程233x x -=--无解,则k 的值为()A .2k =或1k =-B .2k =-C .2k =或1k =D .1k =-29.(2023·山东淄博·中考真题)已知1x =是方程322x x -=--的解,那么实数m 的值为()A .2-B .2C .4-D .430.(2023·黑龙江·中考真题)已知关于x 的分式方程122x x +=--的解是非负数,则m 的取值范围是()A .2m ≤B .2m ≥C .2m ≤且2m ≠-D .2m <且2m ≠-31.(2022·重庆·中考真题)若关于x 的一元一次不等式组1351x x a-⎧-≥⎪⎨⎪-⎩<的解集为2x ≤-,且关于y 的分式方程1211y a y y -=-++的解是负整数,则所有满足条件的整数a 的值之和是()A .-26B .-24C .-15D .-1332.(2024·黑龙江牡丹江·中考真题)若分式方程311x mx x x =-的解为正整数,则整数m 的值为.33.(2024·重庆·中考真题)若关于x 的一元一次不等式组2133423x x x a+⎧≤⎪⎨⎪-<+⎩的解集为4x ≤,且关于y 的分式方程8122a y y y --=++的解均为负整数,则所有满足条件的整数a 的值之和是.34.(2024·四川达州·中考真题)若关于x 的方程122x x --=无解,则k 的值为.35.(2023·四川巴中·中考真题)关于x 的分式方程322x x ++=有增根,则m =.三、考点03分式方程的应用36.(2024·山东·中考真题)为提高生产效率,某工厂将生产线进行升级改造,改造后比改造前每天多生产100件,改造后生产600件的时间与改造前生产400件的时间相同,则改造后每天生产的产品件数为()A .200B .300C .400D .50037.(2024·内蒙古呼伦贝尔·中考真题)A,B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运30千克,A型机器人搬运900千克所用时间与B型机器人搬运600千克所用时间相等.A,B 两种机器人每小时分别搬运多少干克化工原料?()A.60,30B.90,120C.60,90D.90,6038.(2024·四川达州·中考真题)甲乙两人各自加工120个零件,甲由于个人原因没有和乙同时进行,乙先加工30分钟后,甲开始加工.甲为了追赶上乙的进度,加工的速度是乙的1.2倍,最后两人同时完成.求乙每小时加工零件多少个?设乙每小时加工x个零件.可列方程为()A.120120301.2x x-=B.120120301.2x x-=C.120120301.260x x-=D.120120301.260x x-=39.(2024·甘肃临夏·中考真题)端午节期间,某商家推出“优惠酬宾”活动,决定每袋粽子降价2元销售.细心的小夏发现,降价后用240元可以比降价前多购买10袋,求:每袋粽子的原价是多少元?设每袋粽子的原价是x元,所得方程正确的是()A.240240102x x-=+B.240240102x x-=-C.240240102x x-=D.240240102x x-=40.(2023·山东青岛·中考真题)某校组织学生进行劳动实践活动,用1000元购进甲种劳动工具,用2400元购进乙种劳动工具,乙种劳动工具购买数量是甲种的2倍,但单价贵了4元.设甲种劳动工具单价为x 元,则x满足的分式方程为.41.(2023·内蒙古呼和浩特·中考真题)甲、乙两船从相距150km的A,B两地同时匀速沿江出发相向而行,甲船从A地顺流航行90km时与从B地逆流航行的乙船相遇.甲、乙两船在静水中的航速均为30km/h,则江水的流速为km/h.42.(2023·湖北武汉·中考真题)我国古代数学经典著作《九章算术》记载:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”如图是善行者与不善行者行走路程s(单位:步)关于善行者的行走时间t的函数图象,则两图象交点P的纵坐标是.43.(2022·江西·中考真题)甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x人,则可列分式方程为.44.(2024·云南·中考真题)某旅行社组织游客从A地到B地的航天科技馆参观,已知A地到B地的路程为300千米,乘坐C型车比乘坐D型车少用2小时,C型车的平均速度是D型车的平均速度的3倍,求D型车的平均速度.答:D型车的平均速度为100km/h.45.(2024·江苏扬州·中考真题)为了提高垃圾处理效率,某垃圾处理厂购进A、B两种机器,A型机器比B 型机器每天多处理40吨垃圾,A型机器处理500吨垃圾所用天数与B型机器处理300吨垃圾所用天数相等.B 型机器每天处理多少吨垃圾?46.(2024·广西·中考真题)综合与实践在综合与实践课上,数学兴趣小组通过洗一套夏季校服,探索清洗衣物的节约用水策略.【洗衣过程】步骤一:将校服放进清水中,加入洗衣液,充分浸泡揉搓后拧干;步骤二:将拧干后的校服放进清水中,充分漂洗后拧干.重复操作步骤二,直至校服上残留洗衣液浓度达到洗衣目标.假设第一次漂洗前校服上残留洗衣液浓度为0.2%,每次拧干后校服上都残留0.5kg水.浓度关系式:0.50.5ddw=+前后.其中d前、d后分别为单次漂洗前、后校服上残留洗衣液浓度;w为单次漂洗所加清水量(单位:kg)【洗衣目标】经过漂洗使校服上残留洗衣液浓度不高于0.01%【动手操作】请按要求完成下列任务:(1)如果只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要多少清水?(2)如果把4kg清水均分,进行两次漂洗,是否能达到洗衣目标?(3)比较(1)和(2)的漂洗结果,从洗衣用水策略方面,说说你的想法.【答案】(1)只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要9.5kg清水.(2)进行两次漂洗,能达到洗衣目标;(3)两次漂洗的方法值得推广学习47.(2024·重庆·中考真题)为促进新质生产力的发展,某企业决定投入一笔资金对现有甲、乙两类共30条生产线的设备进行更新换代.(1)为鼓励企业进行生产线的设备更新,某市出台了相应的补贴政策.根据相关政策,更新1条甲类生产线的设备可获得3万元的补贴,更新1条乙类生产线的设备可获得2万元的补贴.这样更新完这30条生产线的设备,该企业可获得70万元的补贴.该企业甲、乙两类生产线各有多少条?(2)经测算,购买更新1条甲类生产线的设备比购买更新1条乙类生产线的设备需多投入5万元,用200万元购买更新甲类生产线的设备数量和用180万元购买更新乙类生产线的设备数量相同,那么该企业在获得70万元的补贴后,还需投入多少资金更新生产线的设备?48.(2023·山东济南·中考真题)某校开设智能机器人编程的校本课程,购买了A,B两种型号的机器人模型.A 型机器人模型单价比B型机器人模型单价多200元,用2000元购买A型机器人模型和用1200元购买B型机器人模型的数量相同.(1)求A型,B型机器人模型的单价分别是多少元?(2)学校准备再次购买A型和B型机器人模型共40台,购买B型机器人模型不超过A型机器人模型的3倍,且商家给出了两种型号机器人模型均打八折的优惠.问购买A型和B型机器人模型各多少台时花费最少?最少花费是多少元?49.(2023·辽宁沈阳·中考真题)甲、乙两人加工同一种零件,每小时甲比乙多加工2个这种零件,甲加工25个这种零件所用的时间与乙加工20个这种零件所用的时间相等,求乙每小时加工多少个这种零件.【答案】乙每小时加工8个这种零件.50.(2023·宁夏·中考真题)“人间烟火味,最抚凡人心”,地摊经济、小店经济是就业岗位的重要来源.某经营者购进了A型和B型两种玩具,已知用520元购进A型玩具的数量比用175元购进B型玩具的数量多30个,且A型玩具单价是B型玩具单价的1.6倍.(1)求两种型号玩具的单价各是多少元?根据题意,甲、乙两名同学分别列出如下方程:甲:520175301.6x x=+,解得5x=,经检验5x=是原方程的解.乙:5201751.630x x=⨯-,解得65x=,经检验65x=是原方程的解.则甲所列方程中的x表示_______,乙所列方程中的x表示_______;(2)该经营者准备用1350元以原单价再次购进这两种型号的玩具共200个,则最多可购进A型玩具多少个?51.(2023·山东·中考真题)某校组织学生去郭永怀纪念馆进行研学活动.纪念馆距学校72千米,部分学生乘坐大型客车先行,出发12分钟后,另一部分学生乘坐小型客车前往,结果同时到达.已知小型客车的速度是大型客车速度的1.2倍,求大型客车的速度.52.(2023·贵州·中考真题)为推动乡村振兴,政府大力扶持小型企业.根据市场需求,某小型企业为加快生产速度,需要更新生产设备,更新设备后生产效率比更新前提高了25%,设更新设备前每天生产x件产品.解答下列问题:(1)更新设备后每天生产_______件产品(用含x的式子表示);(2)更新设备前生产5000件产品比更新设备后生产6000件产品多用2天,求更新设备后每天生产多少件产品.53.(2023·广东·中考真题)某学校开展了社会实践活动,活动地点距离学校12km,甲、乙两同学骑自行车同时从学校出发,甲的速度是乙的1.2倍,结果甲比乙早到10min,求乙同学骑自行车的速度.54.(2023·重庆·中考真题)某公司不定期为员工购买某预制食品厂生产的杂酱面、牛肉面两种食品.(1)该公司花费3000元一次性购买了杂酱面、牛肉面共170份,此时杂酱面、牛肉面的价格分别为15元、20元,求购买两种食品各多少份?(2)由于公司员工人数和食品价格有所调整,现该公司分别花费1260元、1200元一次性购买杂酱面、牛肉面两种食品,已知购买杂酱面的份数比牛肉面的份数多50%,每份杂酱面比每份牛肉面的价格少6元,求购买牛肉面多少份?。
中考数学《分式分式方程》计算题(附)

中考《分式及分式方程》计算题、答案一.解答题(共30小题)1.(2011•自贡)解方程:.2.(2011•孝感)解关于的方程:.3.(2011•咸宁)解方程.4.(2011•乌鲁木齐)解方程:=+1.5.(2011•威海)解方程:.6.(2011•潼南县)解分式方程:.7.(2011•台州)解方程:.8.(2011•随州)解方程:.9.(2011•陕西)解分式方程:.10.(2011•綦江县)解方程:.11.(2011•攀枝花)解方程:.12.(2011•宁夏)解方程:.13.(2011•茂名)解分式方程:.14.(2011•昆明)解方程:.(2)解不等式组.16.(2011•大连)解方程:.17.(2011•常州)①解分式方程;②解不等式组.18.(2011•巴中)解方程:.19.(2011•巴彦淖尔)(1)计算:|﹣2|+(+1)0﹣()﹣1+tan60°;(2)解分式方程:=+1.20.(2010•遵义)解方程:21.(2010•重庆)解方程:+=122.(2010•孝感)解方程:.23.(2010•西宁)解分式方程:24.(2010•恩施州)解方程:25.(2009•乌鲁木齐)解方程:26.(2009•聊城)解方程:+=127.(2009•南昌)解方程:29.(2008•昆明)解方程:30.(2007•孝感)解分式方程:.答案与评分标准一.解答题(共30小题)1.(2011•自贡)解方程:.考点:解分式方程。
专题:计算题。
分析:方程两边都乘以最简公分母y(y﹣1),得到关于y的一元一方程,然后求出方程的解,再把y的值代入最简公分母进行检验.解答:解:方程两边都乘以y(y﹣1),得2y2+y(y﹣1)=(y﹣1)(3y﹣1),2y2+y2﹣y=3y2﹣4y+1,3y=1,解得y=,检验:当y=时,y(y﹣1)=×(﹣1)=﹣≠0,∴y=是原方程的解,∴原方程的解为y=.点评:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.2.(2011•孝感)解关于的方程:.考点:解分式方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年中考试题分类 ——分式与分式方程(2018.自贡)化简1x+1+2x 2−1结果是__1x−1 解答:原式=x−1(x+1)(x−1)+2x 2−1=1x−1(2018.淄博)“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A.()606030125%x x-=+ B.()606030125%x x-=+C.()60125%6030x x⨯+-=D.()60125%6030x x⨯+-=(2018.淄博)化简21211a aa a ----的结果为( ) A . 11a a +- B. 1a - C. a D.1(2018.资阳)(2018.株洲)先化简,再求值:x 2+2x+1y⋅(1−1x+1)−x 2y,其中x =2,y =√2. 解答:x 2+2x+1y⋅(1−1x+1)−x 2y =(x+1)2y⋅x+1−1x+1−x 2y=x(x+1)y−x 2y=xy当x =2,y =√2时,原式=√2=√2.(2018.株洲)关于x 的分式方程2x+3x−a =0解为x =4,则常数a 的值为( D )A. a =1ﻩB. a =2 C. a =4ﻩD . a =10点拨:根据分式方程的解的定义把x =4代入原分式方程得到关于a的一次方程,解得a =−1.(2018.重庆B )在美丽乡村建设中,某县政府投入专项资金,用于乡村沼气池和垃圾集中处理点建设,该县政府计划:2018年前5个月,新建沼气池和垃圾集中处理点共计50个,且沼气池的个数不低于垃圾集中处理点个数的4倍。
(1)按计划,2018年前5个月至少要修建多少个沼气池?(2)到2018年5月底,该县按原计划刚好完成了任务,共花费资金78万元,且修建的沼气池个数恰好是原计划的最小值,据核算,前5个月,修建每个沼气池与垃圾集中处理点的平均费用之比为1:2,为加大美丽乡村建设的力度,政府计划加大投入,今年后7个月,在前5个月花费资金的基础上增加投人10a % ,全部用于沼气池和垃圾集中处理点建设,经测算:从今年6月起,修建每个沼气池和垃圾集中处理点的平均费用在2018年前5个月的基础上分别增加a% ,5a %,新建沼气池和垃圾集中处理点的个数将会在2018年前5个月的基础上分别增加5a% ,8a%.求a 的值。
解答:(1)设修建沼气池x 个,则修建的垃圾集中处理点为(50-x)个,由题意得:X ≥4(50-x),解得x ≥40.答:至少要修建40个沼气池;(2)由题意,2018年前5个月修建沼气池与垃圾集中处理点的个数分别为40个,10个.设2018年前5个月修建每个沼气池的平均费用为y 万元,由题意得:40y+10×2y=78,解得y=1.3,即2018年前5个月修建每个沼气池与垃圾集中处理点的平均费用分别为1.3万元,2.6万元.由题意得: 1.3(1+a %)×40(1+5a%)+2.6(1+5a%)×10(1+8a%)=78(1+10a%)., 设t=a%,则有:1.3(1+t)×40(1+5t)+2.6(1+5t)×10(1+8t)=78(1+10t). 整理得10t 2-t=0. 解得t 1=0,t 2=0.1. ∴a 1=0(舍去),a2=10. ∴a=10,答:a 的值是10.(2018.重庆B)1a 16a 8a )1a 1a 41a (2++-÷+---。
解答:原式=222)4a (1a 1a )4a (a 1a )4a (1a )1a 4(1a -+•+-=+-÷+---=4a a - (2018.重庆B)若数a 使关于x 的不等式组⎪⎩⎪⎨⎧-≤--≤-)x 1(3a x 2)1x (211x 31有且仅有三个整数解,且使关于y 的分式方程1y212a 2y y 3=-++-有整数解,则满足条件的所有a 的值之和是( B)A、-10;B 、-12;C 、-16;D 、-18. (2018.重庆A) 解答:原式===.(2018.重庆A)若数使关于x 的不等式组有且只有四个整数解,且使关于y的方程的解为非负数,则符合条件的所有整数的和为( C )A .B.C. 1 D . 2点拨:先求出不等式的解集,根据只有四个整数解确定出a的取值范围,解分式方程后根据解为非负数,可得关于a 的不等式组,解不等式组求得a 的取值范围,即可最终确定出a 的范围,将范围内的整数相加即可得.解答:解不等式,得,由于不等式组只有四个整数解,即只有4个整数解,∴,∴;解分式方程,得,∵分式方程的解为非负数,∴,∴a≤2且a≠1,∴且a≠1,∴符合条件的所有整数为:-1,0,2,和为:-1+0+2=1.(2018.长春)答案:原式=x+1=√5;(2018.张家界)若关于x 的分式方程 113=--x m 的解为2=x ,则m 的值为( C ) A 5B 4C 3D 2(2018.玉林)(2018.永州)化简:(1+)÷=.解答:(1+)÷===.(2018.宜宾)化简:(1-错误!未定义书签。
)÷ 错误!;(2018.宜宾)我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部。
(2018.盐城)先化简,再求值:,其中.解答:原式= = ,当 时,原式= 。
(2018.烟台)(2018.宿迁)函数中,自变量x的取值范围是( D )A.x≠0 B. x<1 C. x>1 D. x≠1(2018.宿迁)为了改善生态环境,防止水土流失,红旗村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵数是原计划的2倍,结果提前4天完成任务,则原计划每天种树的棵数是________.解答:设原计划每天种树x棵,则实际每天种树2x棵,依题可得:,解得:x=120,经检验x=120是原分式方程的根,故答案为:120.(2018.新疆)某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的倍,购进数量比第一次少了30支.则该商店第一次购进的铅笔,每支的进价是 4 元.解答:设该商店第一次购进铅笔的单价为x元/支,则第二次购进铅笔的单价为x元/支,根据题意得:﹣=30,解得:x=4,经检验,x=4是原方程的解,且符合题意.答:该商店第一次购进铅笔的单价为4元/支.故答案为:4.(2018.新疆)先化简,再求值:(+1)÷,其中x是方程x2+3x=0的根.解答:(+1)÷===x+1,由x2+3x=0可得,x=0或x=﹣3,当x=0时,原来的分式无意义,∴当x=﹣3时,原式=﹣3+1=﹣2.(2018.襄阳)计算﹣的结果是.点拨:分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.(2018.襄阳)正在建设的“汉十高铁”竣工通车后,若襄阳至武汉段路程与当前动车行驶的路程相等,约为325千米,且高铁行驶的速度是当前动车行驶速度的2.5倍,则从襄阳到武汉乘坐高铁比动车所用时间少1.5小时.求高铁的速度.解答:设高铁的速度为x千米/小时,则动车速度为0.4x千米/小时,根据题意得:﹣=1.5,解得:x=325,经检验x=325是分式方程的解,且符合题意,则高铁的速度是325千米/小时.(2018.湘潭)分式方程=1的解为x=2 .点拨:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解. (2018.湘潭)先化简,再求值:(1+)÷.其中x=3.解答:(1+)÷=×=x+2.当x=3时,原式=3+2=5.(2018.武威)已知,下列变形错误的是( B )A. B. C. D.点拨:由得,3a=2b,A. 由得,所以变形正确,故本选项错误;B. 由得3a=2b,所以变形错误,故本选项正确;C.由可得,所以变形正确,故本选项错误;D.3a=2b变形正确,故本选项错误.故选B.(2018.武威)若分式的值为0,则的值是( A )A. 2或-2B. 2 C.-2 D.0点拨:分式值为零的条件是:分子为零,分母不为零.(2018.武威)使得代数式有意义的的取值范围是_____.点拨:代数式有意义的条件是:解得:(2018.武威)计算:.解答:原式==﹒.(2018.武汉)若分式在实数范围内有意义,则实数x的取值范围是( D )A.x>﹣2 B.x<﹣2ﻩC.x=﹣2 D.x≠﹣2点拨:直接利用分式有意义的条件分析得出答案.(2018.武汉)计算﹣的结果是.点拨:根据分式的运算法则即可求出答案.(2018.无锡)函数y=中自变量x的取值范围是( B )A.x≠﹣4ﻩB.x≠4ﻩC.x≤﹣4ﻩD.x≤4点拨:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.(2018.无锡)方程=的解是 x=﹣.点拨:方程两边都乘以x(x+1)化分式方程为整式方程,解整式方程得出x的值,再检验即可得出方程的解.解分式方程,解题的关键是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.(2018.温州) 若分式的值为0,则的值是( A )A. 2 B. 0 C. -2 D. -5点拨:根据题意得:x-2=0,且x+5≠0,解得x=2.根据分式的值为0的条件:分子为0且分母不为0,得出混合组,求解得出x的值。
(2018.潍坊)当___2___时,解分式方程会出现增根.分析:分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.点睛:本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.(2018.威海)化简(a﹣1)÷(﹣1)•a的结果是( A )A.﹣a2 B.1ﻩC.a2D.﹣1点拨:根据分式的混合运算顺序和运算法则计算可得原式=(a﹣1)÷•a=(a﹣1)••a=﹣a2,故选:A.(2018.威海)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?解:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+)x个零件,根据题意得:﹣=+,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴(1+)x=80.答:软件升级后每小时生产80个零件.(2018.通辽)答案:B(2018.通辽)(2018.泰州)化简:(2﹣)÷.原式=(﹣)÷=•=.(2018.遂宁)先化简,再求值:x 2−y2x2−2xy+y2∙xyx2+xy+xx−y,(其中x=1,y=2)(2018.随州)先化简,再求值:,其中x为整数且满足不等式组. 解:===,由得,2<x≤3,∵x是整数,∴x=3,∴原式=.(2018.十堰)化简:222111121aa a a a a--÷-+++.(2018.沈阳)化简:22124a a a ---= 。