分式方程的分类应用(详细)
《分式方程的应用》 知识清单

《分式方程的应用》知识清单一、分式方程的定义分式方程是指分母中含有未知数的方程。
例如:\(\frac{1}{x} + 2 = 3\)就是一个简单的分式方程。
二、分式方程的解法1、去分母将分式方程两边同乘各分母的最简公分母,化为整式方程。
例如,对于方程\(\frac{x}{x 1} =\frac{2}{x 1}\),最简公分母是\(x 1\),两边同乘\(x 1\)得到:\(x = 2\)。
2、解整式方程按照解整式方程的方法求解。
3、验根将求得的解代入原分式方程的分母中,若分母不为零,则该解是原分式方程的解;若分母为零,则该解不是原分式方程的解,应舍去。
例如,对于上面求出的解\(x = 2\),代入\(x 1\)中,\(2 1 = 1\neq 0\),所以\(x = 2\)是原方程的解。
三、分式方程的应用类型1、行程问题行程问题中,基本公式为:路程=速度×时间。
例如:甲、乙两人分别从 A、B 两地同时出发,相向而行。
甲的速度为\(x\)千米/小时,乙的速度为\(y\)千米/小时,经过\(t\)小时相遇,A、B 两地相距\(s\)千米。
可列出方程:\(xt + yt = s\)。
如果已知路程和其中一人的速度,求另一人的速度,就可能用到分式方程。
2、工程问题工程问题中,基本公式为:工作总量=工作效率×工作时间。
例如:一项工程,甲单独完成需要\(x\)天,乙单独完成需要\(y\)天,两人合作需要\(t\)天完成。
可列出方程:\(\frac{t}{x} +\frac{t}{y} = 1\)。
3、销售问题销售问题中,涉及到利润、成本、售价、销售量等。
例如:某商品进价为\(a\)元,售价为\(b\)元,销售量为\(x\)件,利润为\(y\)元。
根据利润=售价进价,可列出方程:\(y =(b a)x\)。
如果已知利润、进价和售价,求销售量,可能会用到分式方程。
4、浓度问题浓度问题中,基本公式为:浓度=溶质质量÷溶液质量。
分式方程的应用知识点

分式方程的应用知识点分式方程主要涉及到有关比例、百分比和利率的应用问题。
在实际生活中,分式方程可以帮助我们解决各种与比例相关的问题,例如货币兑换、混合液体的配制、百分比的计算等。
以下是一些分式方程应用的知识点:1.货币兑换问题在国际贸易中,经常需要将一种货币兑换成另一种货币。
如果已知兑换比例和要兑换的数量,我们可以使用分式方程来计算兑换后的货币数量。
例如,如果1美元兑换为5人民币,那么用x美元可以换成多少人民币可以表示为:5/1=y/x,其中y表示兑换后的人民币数量。
2.比例问题比例问题是分式方程应用的常见场景,比如:种植的草地数量与所需耕地数量之间的关系、两个不同容器中液体的比例、不同材料的配比等。
比例可以表示为a/b=c/d,其中a、b、c、d分别表示不同元素或数量之间的关系。
3.百分比问题百分比是分式方程应用中的另一个重要知识点。
百分比表示一个数相对于另一个数的比例。
通常用百分号表示,例如60%表示60/100。
在解决百分比问题时,我们常常需要找到未知数的百分数或一部分,并通过解分式方程来计算。
例如,如果商品价格上涨了20%,现在的价格是120元,那么原来的价格可以表示为x,方程为:x*(1+20/100)=120。
4.利率问题5.代数表达式的分式有时候我们还需要将代数表达式视为分式,并在求解方程时运用分式的性质。
例如,对于表达式(a+b)/c,我们可以通过分数的加法和乘法性质来合并分式、约分,从而求解方程。
6.比例和个体数量问题综上所述,分式方程主要应用于与比例、百分比和利率相关的问题。
熟练掌握这些知识点,可以帮助我们解决各种实际生活中的应用问题。
第十六章_分式方程应用题分类解析

分式方程应用题分类解析一.行程问题 【重点考点例析】(2010山东淄博)小明7:20离开家步行去上学,走到距离家500米的商店时,买学习用品用了5分钟.从商店出来,小明发现要按原来的速度还要用30分钟才能到校.为了在8:00之前赶到学校,小明加快了速度,每分钟平均比原来多走25米,最后他到校的时间是7:55.求小明从商店到学校的平均速度.(1)一般行程问题1、从甲地到乙地有两条公路:一条是全长600Km 的普通公路,另一条是全长480Km 的告诉公路。
某客车在高速公路上行驶的平均速度比在普通公路上快45Km ,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。
2、我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的1.5倍,才能按要求提前2小时到达,求急行军的速度。
(2)水航问题 3、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。
已知水流的速度是3千米/时,求轮船在静水中的速度。
二.工程问题1、一台甲型拖拉机4天耕完一块地的一半,加一天乙型拖拉机,两台合耕,1天耕完这块地的另一半。
乙型拖拉机单独耕这块地需要几天?2、某 市为治理污水,需要铺设一段全长3000米的污水输送管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成了任务,实际每天铺设多长管道? 3.某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.三.利润(成本、产量、价格、合格)问题1、某煤矿现在平均每天比原计划多采330吨,已知现在采煤33000吨煤所需的时间和原计划采23100吨煤的时间相同,问现在平均每天采煤多少吨。
分式方程的运算

分式方程的运算摘要:一、分式方程简介1.分式方程的定义2.分式方程的组成部分二、分式方程的运算规则1.加法与减法2.乘法与除法3.通分与约分三、分式方程的解法1.替换法2.消元法3.矩阵法四、分式方程的应用1.实际问题中的应用2.数学问题中的应用五、总结1.分式方程运算的重要性2.提高分式方程运算能力的建议正文:分式方程的运算分式方程是数学中一种重要的方程形式,它包含分式和整式两部分,表示两个或多个分式相等的关系。
分式方程的求解过程涉及到一系列的运算规则和方法。
一、分式方程简介分式方程是形如$frac{P(x)}{Q(x)}=R(x)$的方程,其中$P(x)$, $Q(x)$, $R(x)$是多项式函数。
分式方程的定义包括分母不为零、多项式函数的定义等。
二、分式方程的运算规则1.加法与减法分式方程的加法和减法需要满足同类项相加减的条件,即分式的分母相同。
在进行运算时,先将分式通分,然后按照整式加减法的规则进行计算。
2.乘法与除法分式方程的乘法是将两个分式相乘,其结果仍为分式。
除法则需要转换为乘法,即将除以一个分式转换为乘以它的倒数。
在进行乘法和除法时,需要注意分母的约分。
3.通分与约分通分是将两个或多个分式的分母变为相同的数,以便进行加减运算。
约分是将分式的分母约简到最简形式。
三、分式方程的解法1.替换法替换法是将分式方程中的未知量用其他变量替换,从而将分式方程转化为整式方程求解。
2.消元法消元法是将分式方程中的分母消去,转化为整式方程求解。
3.矩阵法矩阵法是将分式方程表示为矩阵形式,通过高斯消元法等矩阵运算求解。
四、分式方程的应用分式方程在实际问题和数学问题中都有广泛的应用,例如物理中的速度、加速度问题,化学中的反应速率问题,数学中的最值问题等。
五、总结分式方程的运算在数学中占有重要地位,熟练掌握分式方程的运算规则和解法对于解决实际问题和数学问题具有重要意义。
分式方程应用题分类讲解与训练(很全面)

分式方程应用题分类讲解与训练一、【行程中的应用性问题】例1 甲、乙两个车站相距96千米,快车和慢车同时从甲站开出,1小时后快车在慢车前12千米,快车比慢车早40分钟到达乙站,快车和慢车的速度各是多少?分析:等量关系:慢车用时=快车用时+ (小时)例2 甲、乙两地相距828km ,一列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通快车平均速度的1。
5倍.直达快车比普通快车晚出发2h ,比普通快车早4h 到达乙地,求两车的平均速度.分析:这是一道实际生活中的行程应用题,基本量是路程、速度和时间,基本关系是路程= 速度×时间,应根据题意,找出追击问题总的等量关系,即普通快车走完路程所用的时间与直达快车由甲地到乙地所用时间相等.解:设普通快车车的平均速度为x km /h ,则直达快车的平均速度为1.5x km /h ,依题意,得xx 6828-=x 5.1828,解得46x =, 经检验,46x =是方程的根,且符合题意. ∴46x =,1.569x =,即普通快车车的平均速度为46km /h,直达快车的平均速度为69km /h .评析:列分式方程与列整式方程一样,注意找出应用题中数量间的相等关系,设好未知数,列出方程.不同之处是:所列方程是分式方程,最后进行检验,既要检验其是否为所列方程的解,要要检验是否符合题意,即满足实际意义.4060例3 A 、B 两地相距87千米,甲骑自行车从A 地出发向B 地驶去,经过30分钟后,乙骑自行车由B 地出发,用每小时比甲快4千米的速度向A 地驶来,两人在距离B 地45千米C 处相遇,求甲乙的速度.分析:等量关系:甲用时间=乙用时间+ (小时)例4 一队学生去校外参观.他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍.若骑车的速度是队伍行进速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间?解: 设步行速度为x 千米/时,骑车速度为2x 千米/时,依题意,得:方程两边都乘以2x ,去分母,得 30—15=x , 所以,x =15. 检验:当x =15时,2x =2×15≠0,所以x =15是原分式方程的根,并且符合题意.∵,∴骑车追上队伍所用的时间为30分钟.所行距离 速度 时间甲(87-45)千米x 千米/小时乙45千米(x+4)千米/小时30608745x-454x +例5 农机厂职工到距工厂15千米的生产队检修农机,一部分人骑自行车先走,40分钟后,其余的人乘汽车出发,结果他们同时到达,已知汽车的速度是自行车的3倍,求两车的速度.解: 设自行车的速度为x千米/小时,那么汽车的速度为3x千米/小时,依题意,得:解得x=15.经检验x=15是这个方程的解.当x=15时,3x=45.即自行车的速度是15千米/小时,汽车的速度为45千米/小时.例6 甲乙两人同时从一个地点相背而行,1小时后分别到达各自的终点A与B;若从原地出发,但是互换彼此的目的地,则甲将在乙到达A之后35分钟到达B,求甲与乙的速度之比。
分式方程的解法与应用

分式方程的解法与应用分式方程是指含有分数形式的方程,其中包含了分数的加减乘除运算。
解决分式方程需要运用一些特定的解法和技巧,以及理解分式方程在实际生活中的应用。
本文将介绍分式方程的解法和应用,并讨论其在数学和日常生活中的重要性。
一、分式方程的解法分式方程的解法有多种方法,以下是其中常见的几种:1. 清除分母法:当分式方程中存在分母时,可以通过乘以适当的整数或者多项式的方法,将方程的分母消除,从而转化为含有整数或多项式的方程。
通过进行这样的清除分母操作,可以简化方程的求解过程。
2. 相同分母法:当分式方程中存在多个分式且分母相同的情况时,可以通过将这些分式相加或相减,生成一个分子相加或相减的新分式,从而将分式方程转化为一个更简单的方程。
然后,可以继续使用其他解方程的方法求解。
3. 倒数法:当分式方程的分子或分母中含有复杂的表达式时,可以通过倒数的方式,将方程进行转化。
将方程的分母转化为分子,分子转化为分母,然后利用等式的性质进行化简,最后得到一个更为简单的方程。
二、分式方程的应用分式方程在实际生活中有着广泛的应用。
以下是一些常见的应用场景:1. 比例问题:比例问题是分式方程的常见应用之一。
在计算比例时,常常需要解决分式方程。
例如,在商业领域中,计算销售增长率、成本与利润的关系等问题,都需要运用分式方程进行计算。
2. 涉及面积和体积的问题:分式方程在计算面积和体积相关问题时也很有用。
例如,计算不规则形状的面积、计算容器中液体的体积等都可能涉及到分式方程的应用。
3. 财务问题:在处理财务问题时,分式方程同样发挥着重要的作用。
例如,在计算股票交易、利息计算以及贷款还款等问题时,常常需要解决分式方程来进行计算。
总结:分式方程是一种特殊的方程类型,运用特定的解法和技巧可以解决。
掌握分式方程的解法不仅在数学学科中重要,也在实际生活中具有广泛的应用。
通过应用不同的解法,我们能够更好地理解和解决涉及分数运算的各类问题,提高解决实际问题的能力。
分式方程的应用

分式方程的应用分式方程是数学中的一个重要概念,它在现实生活中有着广泛的应用。
本文将就分式方程的应用进行探究。
一、商业中的分式方程商业中经常会出现类似于“三个人合伙投资开店,其中甲投入3000元,乙投入4000元,丙投入5000元。
如果合伙开店一年后,甲乙丙三人分得利润比例为3:4:5,则这笔利润总共多少元?”的问题。
这类问题可以用分式方程来解决。
设利润为x元,则有:甲的利润:乙的利润:丙的利润=3:4:5甲的利润为3x/12,即x/4元;乙的利润为4x/12,即x/3元;丙的利润为5x/12元。
因此,根据题意可得:x/4+ x/3+ 5x/12=利润总额解得x=24000元,即这笔利润的总额为24000元。
二、比例中的分式方程在比例问题中,也经常会用到分式方程。
例如,“甲、乙两人同时从A地出发前往B地,甲的速度是乙的1.5倍,两人相距160千米时,甲比乙早到20分钟。
求甲、乙各自的速度是多少?”这类问题可以用分式方程来解决。
设甲、乙的速度分别为v1、v2,则有:v1=1.5v2设甲比乙早到的时间为t,则有:v1t- v2t=20又因为:v1t+ v2t=160解得t=40/3小时,v1=60千米/小时,v2=40千米/小时。
三、化学中的分式方程在化学反应中,也常常会出现分式方程的应用。
例如,“硫酸和碳酸钙反应生成二氧化碳、水和硫酸钙,当反应物的质量比为9:10时,反应生成的硫酸钙的质量与反应物的质量之比是多少?”这类问题可以用分式方程来解决。
设反应物的质量为x,则有:硫酸钙的质量=反应物的质量-二氧化碳的质量-水的质量= x- 2/5x- 1/5x= 2/5x因此,硫酸钙的质量与反应物的质量之比为2/5。
四、其他领域中的分式方程除了以上几个领域,分式方程还在其他领域中得到应用。
例如在物理学中,可以用分式方程来解决速度、加速度等问题;在工程中,可以用分式方程来解决力学平衡、杠杆原理等问题。
分式方程在现实生活中有着广泛的应用,它帮助我们解决了许多实际问题。
分式方程的解法与应用

分式方程的解法与应用在数学中,分式方程是含有分数的方程,通常形式为一个或多个包含有未知数的分式等于一个已知数或者另一个分式。
解分式方程的过程需要注意一些特殊的技巧和方法。
本文将介绍解分式方程的常用方法,并探讨分式方程在现实生活中的应用。
一、一次分式方程的解法对于一次分式方程,即含有一个未知数的分式方程,我们可以通过以下步骤来求解:1. 将分式方程的分母清零,即使分子等于0。
这样可以排除分母为0的情况。
2. 化简方程。
将方程两端的分式进行通分,并将分式约简到最简形式。
3. 消去分母。
将方程两端的分母消去,得到一个一次方程。
4. 求解一次方程。
将消去分母后的方程进行移项和合并同类项的运算,得到未知数的解。
二、二次分式方程的解法对于二次分式方程,即含有未知数的平方的分式方程,我们可以通过以下步骤来求解:1. 将方程的分母清零,使分子等于0。
2. 化简方程,将方程两端的分式通分,并将分式约简到最简形式。
3. 进行配方法。
对于二次分式方程,我们可以通过配方法将方程转化为一次分式方程。
4. 解一次分式方程。
按照一次分式方程的解法,求解配方法后得到的一次分式方程。
5. 核对解的有效性。
将求得的解代入原分式方程,并检查是否成立。
三、分式方程的应用分式方程在现实生活中有着广泛的应用,下面举几个例子:1. 比例问题:分式方程可以用于解决比例问题,比如某个产品的销售量与价格之间的关系。
2. 浓度计算:在化学领域,分式方程可用于计算溶液的浓度,如溶液A中含有5%的某种物质,溶液B中含有10%的同种物质,问如何将溶液A和溶液B混合得到含有8%的溶液。
3. 财务分析:在财务领域,分式方程可用于计算财务指标,如利润率、毛利率等。
4. 随机问题:分式方程可以用于解决随机问题,如抛硬币的概率问题、抽奖问题等。
通过上述例子,我们可以看到分式方程在实际生活中的应用十分广泛。
综上所述,解分式方程的方法根据方程的次数和具体形式有所区别,但总体思路是将方程转化为一次方程进行求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式方程的分类应用(详细)要点感知 列分式方程解应用题的一般步骤:(1)审清题意;(2)设未知数(要有单位);(3)根据题目中的数量关系列出式子,找出相等关系,列出方程;(4)解方程,并验根,还要看方程的解是否符合题意;(5)写出答案(要有单位).预习练习 甲、乙两人同时从A 地出发,骑自行车到B 地,已知AB 两地的距离为30 km ,甲每小时比乙多走3 km ,并且比乙先到40分钟.设乙每小时走x km ,则可列方程为( ) A.30x -30x -3=23 B .30x -30x +3=23 C .30x +3-30x =23 D .30x -3-30x =23 题型一:行程问题路程=速度*时间。
列分式方程解决实际问题的变形公式:速度=路程/时间,时间=路程/速度。
例2、某次列车平均提速v km /h ,用相同的时间,列车提速前行驶s km ,提速后比提速前多行驶50 km ,提速前列车的平均速度为多少?分析:这里的字母v ,s 表示已知数据,设提速前列车的平均速度为x km /h ,那么提速前列车行驶s km 所用时间为________h ,提速后列车的平均速度为________km /h ,提速后列车运行(s +50)km 所用时间为________h .本题是列含字母系数的分式方程,解这个方程并且检验是难点,在解题过程中注意把s ,v 当作已知数.等量关系:列方程:1、走完全长3000米的道路,如果速度增加25%,可提前30分到达,那么速度应达到多少?2、从甲地到乙地有两条公路:一条是全长600Km 的普通公路,另一条是全长480Km 的告诉公路。
某客车在高速公路上行驶的平均速度比在普通公路上快45Km ,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。
3、从甲地到乙地的路程是15千米,A 骑自行车从甲地到乙地先走,40分钟后,B 骑自行车从甲地出发,结果同时到达。
已知B 的速度是A 的速度的3倍,求两车的速度。
4、假日工人到离厂25千米的浏览区去旅游;一部分人骑自行车,出发1小时20分钟后,其余的人乘汽车出发,结果两部分人同时到达,已知汽车速度是自行车的3倍,求汽车和自行车速度5、我部队到某桥头阻击敌人,出发时敌人离桥头24千米,我部队离桥头30千米,我部队急行军速度是敌人的1.5倍,结果比敌人提前48分钟到达,求我部队的速度。
6、某中学到离学校15千米的某地旅游,先遣队和大队同时出发,行进速度是大队的1.2倍,以便提前半小时到达目的地做准备工作。
求先遣队和大队的速度各是多少?7、我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的1.5倍,才能按要求提前2小时到达,求急行军的速度8、八年级(1)班学生周末乘汽车到游览区游览,游览区到学校120千米,一部分学生乘慢车先行,出发1小时后,另一部分学生乘快车前往,结果他们同时到达,已知快车速度是慢车的1。
5倍,求慢车的速度9、两地相距360千米,回来时车速比去时提高了50%,因而回来比去时途中时间缩短了2小时,求去时的速度.10、甲、乙两人同时从A 、B 两地相向而行,如果都走1小时,两人之间的距离等于A 、B 两地距离的81;如果甲走32小时,乙走半小时,这样两人之间的距离等于A 、B 间全程的一半,求甲、乙两人各需多少时间走完全程?11、某人骑自行车比步行每小时多走8千米,已知他步行12千米所用时间和骑自行车走36千米所用时间相等,求这个人步行每小时走多少千米?12、某校少先队员到离市区15千米的地方去参加活动,先遣队与大队同时出发,但行进的速度是大队的2.1倍,以便提前半小时到达目的地做准备工作,求先遣队和大队的速度各是多少.13、供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达.已知抢修车的速度是摩托车的1.5倍,求这两种车的速度.题型二:水流问题顺水速度=船的静水速度+水速;逆水速度=船的静水速度-水速.1、轮船顺流航行66千米所需时间和逆流航行48千米所需时间相等,已知水流速度每小时3千米,求轮船在静水中的速度。
2、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。
已知水流的速度是3千米/时,求轮船在静水中的速度。
3、某人沿一条河顺流游泳l米,然后逆流游回出发点,设此人在静水中的游泳速度为xm/s,水流速度为nm/s,求他来回一趟所需的时间t。
4、小芳在一条水流速度是0.01m/s 的河中游泳,她在静水中游泳的速度是0.39m/s,而出发点与河边一艘固定小艇间的距离是60m,求她从出发点到小艇来回一趟所需的时间。
5、志勇是小芳的邻居,也喜欢在该河中游泳,他记得有一次出发点与柳树间来回一趟大约用了2.5min ,假设当时水流的速度是0.015m/s ,而志勇在静水中的游泳速度是0.585m/s ,那么出发点与柳树间的距离大约是多少?6、甲乙两地相距360千米,新修的高叔公路开通后,在甲乙两地间行驶的长途客运车平均车速提高了50%,而从甲到乙的时间缩短 了2小时,求原来的平均速度7、一船自甲地顺流航行至乙地,用5.2小时,再由乙地返航至距甲地尚差2千米处,已用了3小时,若水流速度每小时2千米,求船在静水中的速度.题型三:工程问题工作量=工作效率*工作时间。
列分式方程解决实际问题用它的变形公式:工作效率=工作量/工作时间。
特别地,有时工作总量可以看作整体“1”,这时,工作效率=1/工作时间。
例1、 两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的13,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.哪个队的施工速度快?分析:甲队1个月完成工程的13,设乙队单独施工1个月能完成总工程的1x,那么甲队半个月完成总工程的________,乙队半个月完成总工程的________,两队半个月完成总工程的________.本题是工程问题,注意基本公式是:工作量=工时×工效.等量关系为:列方程:1、某项紧急工程,由于乙没有到达,只好由甲先开工,6小时后完成一半,乙到来后俩人同时进行,1小时完成了后一半,如果设乙单独x小时可以完成后一半任务,那么x应满足的方程是什么?2、某运输公司需要装运一批货物,由于机械设备没有到位,只好先用人工装运,6小时后完成一半,后来机械装运和人工同时进行,1小时完成了后一半,如果设单独采用机械装运X小时可以完成后一半任务,那么应满足的方程是什么?3、某车间加工1200个零件,采用新工艺,工效是原来的1.5倍,这样加工同样多的零件就少用10小时,采用新工艺前后每时分别加工多少个零件?4、某人现在平均每天比原计划多加工33个零件,已知现在加工3300个零件所需的时间和原计划加工2310个零件的时间相同,问现在平均每天加工多少个零件。
5、一台甲型拖拉机4天耕完一块地的一半,加一天乙型拖拉机,两台合耕,1天耕完这块地的另一半。
乙型拖拉机单独耕这块地需要几天?6、A做90个零件所需要的时间和B做120个零件所用的时间相同,又知每小时A、B两人共做35个机器零件。
求A、B每小时各做多少个零件。
7、某市为治理污水,需要铺设一段全长3000米的污水输送管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成了任务,实际每天铺设多长管道?8、有三堆数量相同的煤,用小卡车独运一堆的天数是大卡车独运一堆天数的一半的3倍.第三堆大小卡车同时运6天,运了这堆煤的一半,求大小卡车单独运一堆煤各要多少天?9、有一工程需在规定日期内完成,如果甲单独工作,刚好能够按期完成;如果乙单独工作,就要超过规定日期3天.现在甲、乙合作2天后,余下的工程由乙单独完成,刚好在规定日期完成,求规定日期是几天?10、某水泵厂在一定天数内生产4000台水泵,工人为支援四化建设,每天比原计划增产%25,可提前10天完成任务,问原计划日产多少台?11、现要装配30台机器,在装配好6台后,采用了新的技术,每天的工作效率提高了一倍,结果共用了3天完成任务。
求原来每天装配的机器数.12、某车间需加工1500个螺丝,改进操作方法后工作效率是原计划的212倍,所以加工完比原计划少用9小时,求原计划和改进操作方法后每小时各加工多少个螺丝?13、打字员甲的工作效率比乙高%25,甲打2000字所用时间比乙打1800字的时间少5分钟,求甲乙二人每分钟各打多少字?题型四:耕地问题1、块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000Kg和15000Kg,已知第一块试验田的每公顷的产量比第二块少3000Kg,分别求这块试验田每公顷的产量。
2、某农场原有水田400公顷,旱田150公顷,为了提高单位面积产量,准备把部分旱田改为水田,改完之后,要求旱田占水田的10%,问应把多少公顷旱田改为水田。
3、某煤矿现在平均每天比原计划多采330吨,已知现在采煤33000吨煤所需的时间和原计划采23100吨煤的时间相同,问现在平均每天采煤多少吨。
4、退耕还林还草是我国西部地区实施的一项重要生态工程,某地规划退耕面积69000公顷,退耕还林与退耕还草的面积比是5:3,设退耕还林的面积是X公顷,那么应满足的分式方程是什么?题型五:盈利问题商品的进价:商店购进商品的价格;商品的标价:商店销售商品时标出的价格;商品的售价:商店售出商品时的实际价格;利润:商店在销售商品时所赚的钱;利润率:商店在销售商品时利润占商品进价的百分率;打折:商店在销售商品时的实际售价占商品标价的百分率。
其次,还要弄清它们之间的关系:商品的售价=商品的标价*商品的打折率;商品的利润=商品的售价-商品的进价;1、一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款。
小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果购买60枝,那么可以按批发价付款,同样需要120元,(1)这个八年级的学生总数在什么范围内?(2)若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人(3)这个八年级的学生总数在什么范围内?(4)若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人?2、某工厂去年赢利25万元,按计划这笔赢利额应是去、今两年赢利总额的20%,今年的赢利额应是多少?3、某商品的标价比成本高p%,当该商品降价出售,为了不亏本,降价幅度不得超过d%,请用p表示d。