2015年全国中考数学试卷解析分类汇编(第一期)专题4 一元一次方程及其应用

合集下载

2015年全国中考数学试卷解析分类汇编专题1_有理数

2015年全国中考数学试卷解析分类汇编专题1_有理数

有理数选择题1.(2015湖南岳阳第1题3分)实数﹣2015的绝对值是()A.2015 B.﹣2015 C. ±2015 D.考点:绝对值..分析:计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.解答:解:|﹣2015|=2015,故选:A.点评:本题考查了绝对值,解决本题的关键是熟记一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(2015湖北荆州第1题3分)﹣2的相反数是()A. 2 B.﹣2 C.D.考点:相反数.分析:根据相反数的定义:只有符号不同的两个数叫做互为相反数即可得到答案.解答:解:﹣2的相反数是2,故选:A.点评:此题主要考查了相反数,关键是掌握相反数的定义.3.(2015湖北鄂州第1题3分)的倒数是()A.B.3 C.D.【答案】C.考点:倒数.4.(2015•福建泉州第1题3分)﹣7的倒数是()A.7 B.﹣7 C.D.﹣解:﹣7的倒数是﹣,故选:D.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.5.(2015湖南邵阳第1题3分)计算(﹣3)+(﹣9)的结果是()A.﹣12 B.﹣6 C. +6 D. 12考点:有理数的加法..分析:根据有理数的加法运算法则计算即可得解.解答:解:(﹣3)+(﹣9)=﹣(3+9)=﹣12,故选:A.点评:本题考查了有理数的加法运算,是基础题,熟记运算法则是解题的关键.6.(2015湖北鄂州第2题3分)某小区居民王先生改进用水设施,在5年内帮助他居住小区的居民累计节水39400吨,将39400用科学计数法表示(结果保留2个有效数字)应为()A.3.9×10 4B.3.94×10 4C.39.4×10 3D.4.0×10 4【答案】A.考点:1.科学记数法---表示较大的数;2.有效数字.7.(2015湖南邵阳第3题3分)2011年3月,英国和新加坡研究人员制造出观测极限为0.000 000 05米的光学显微镜,其中0.000 000 05米用科学记数法表示正确的是()A.0.5×10﹣9米B. 5×10﹣8米C. 5×10﹣9米D. 5×10﹣7米考点:科学记数法—表示较小的数..分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 000 05米用科学记数法表示为5×10﹣8米.故选:B.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8. (2015辽宁大连,1,3分)﹣2的绝对值是()A. 2B.-2C.D.-【答案】A【解析】解:根据负数的绝对值等于它的相反数,得|﹣2|=2.故选A.9. (2015辽宁大连,9,3分)比较大小:3__________ -2(填>、<或=)【答案】>【解析】解:根据一切正数大于负数,故答案为>。

2015年中考数学真题分类汇编 二次根式、分式和一元一次方程

2015年中考数学真题分类汇编 二次根式、分式和一元一次方程

二次根式、分式和一元一次方程一.选择题(共12小题)1.(2015•东营)下列计算正确的是()﹣=﹣=2.(2015•孝感)已知x=2﹣,则代数式(7+4)x2+(2+)x+的值是()C+﹣代入代数式(7+4)7+4)3+.3.(2015•咸宁)方程2x﹣1=3的解是()4.(2015•济南)若代数式4x﹣5与的值相等,则x的值是()C D5=,5.(2015•无锡)方程2x﹣1=3x+2的解为()6.(2015•大连)方程3x+2(1﹣x)=4的解是()=7.(2015•杭州)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x公顷旱地改为林地,则可列方程()8.(2015•长沙)长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为()9.(2015•南充)学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,今年购置计算机的数量是()10.(2015•深圳)某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.11.(2015•大庆)某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同,则1月份的售价为()12.(2015•永州)永州市双牌县的阳明山风光秀丽,历史文化源远流长,尤以山顶数万亩野生杜鹃花最为壮观,被誉为“天下第一杜鹃红”.今年“五一”期间举办了“阳明山杜鹃花旅游文化节”,吸引了众多游客前去观光赏花.在文化节开幕式当天,从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知阳明上景区游客的饱和人数约为2000人,则据此可知开幕式当天该景区游客人数饱和的时间约为()二.填空题(共14小题)13.(2015•包头)计算:(﹣)×=8.﹣14.(2015•长沙)把+进行化简,得到的最简结果是2(结果保留根号).+..15.(2015•聊城)计算:(+)2﹣=5.+3=516.(2015•滨州)计算(+)(﹣)的结果为﹣1.,求出算式()﹣()﹣+)﹣17.(2015•黔西南州)已知x=,则x2+x+1=2.)﹣+1+)+18.(2015•甘孜州)已知关于x的方程3a﹣x=+3的解为2,则代数式a2﹣2a+1的值是1.+3+319.(2015•常州)已知x=2是关于x的方程a(x+1)=a+x的解,则a的值是.a.故答案为:.20.(2015•黑龙江)某超市“五一放价”优惠顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物合并成一次性付款可节省18或46.8元.21.(2015•荆门)王大爷用280元买了甲、乙两种药材,甲种药材每千克20元,乙种药材每千克60元,且甲种药材比乙种药材多买了2千克,则甲种药材买了5千克.22.(2015•孝感)某市为提倡节约用水,采取分段收费.若每户每月用水不超过20m3,每立方米收费2元;若用水超过20m3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水28m3.23.(2015•牡丹江)某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为100元.24.(2015•嘉兴)公元前1700年的古埃及纸草书中,记载着一个数学问题:“它的全部,加上它的七分之一,其和等于19.”此问题中“它”的值为.x=的值为,故答案为:.25.(2015•义乌市)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底离容器底5cm),现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm.(1)开始注水1分钟,丙的水位上升cm.(2)开始注入或分钟的水量后,乙的水位比甲高0.5cm.cm分钟,丙的水位上升cm分钟,丙的水位上升由题意得,t,×=65÷=分钟,×=,即经过分钟时容器的水到达管子底部,乙的水位上升+2×()﹣;∵乙的水位到达管子底部的时间为;+)÷÷分钟,2×(),综上所述开始注入或分钟的水量后,乙的水位比甲高故答案为cm或.26.(2015•湘潭)湘潭盘龙大观园开园啦!其中杜鹃园的门票售价为:成人票每张50元,儿童票每张30元.如果某日杜鹃园售出门票100张,门票收入共4000元.那么当日售出成人票50张.三.解答题(共4小题)27.(2015•大连)计算:(+1)(﹣1)+﹣()0.1+21+21=1+2.28.(2015•陕西)计算:×(﹣)+|﹣2|+()﹣3.+2+8+2+2+8.29.(2015•山西)阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170﹣1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用[﹣]表示(其中,n≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.[﹣()×[﹣[(﹣(×)﹣×1×30.(2015•广州)解方程:5x=3(x﹣4)。

2015年全国中考数学试卷解析分类汇编汇总11,函数与一次函数

2015年全国中考数学试卷解析分类汇编汇总11,函数与一次函数

函数与一次函数一.选择题1.(2015上海,第3题4分)下列y 关于x 的函数中,是正比例函数的为( )A 、y =x 2;B 、y =x 2;C 、y =2x ;D 、y =21+x .【答案】C【解析】122x y x ==,是正比例函数,选C 。

2、(2015·湖南省常德市,第5题3分)一次函数112y x =-+的图像不经过的象限是:A 、第一象限B 、第二象限C 、第三象限D 、第四象限【解答与分析】这是一次函数的k 与b 决定函数的图像,可以利用快速草图作法: 答案为C3.(2015湖南邵阳第9题3分)如图,在等腰△ABC 中,直线l 垂直底边BC ,现将直线l 沿线段BC 从B 点匀速平移至C 点,直线l 与△ABC 的边相交于E 、F 两点.设线段EF 的长度为y ,平移时间为t ,则下图中能较好反映y 与t 的函数关系的图象是( )A .B .C .D .考点:动点问题的函数图象..专题:数形结合.分析:作AD⊥BC于D,如图,设点F运动的速度为1,BD=m,根据等腰三角形的性质得∠B=∠C,BD=CD=m,当点F从点B运动到D时,如图1,利用正切定义即可得到y=tanB•t (0≤t≤m);当点F从点D运动到C时,如图2,利用正切定义可得y=tanC•CF=﹣tanB•t+2mtanB (m≤t≤2m),即y与t的函数关系为两个一次函数关系式,于是可对四个选项进行判断.解答:解:作AD⊥BC于D,如图,设点F运动的速度为1,BD=m,∵△ABC为等腰三角形,∴∠B=∠C,BD=CD,当点F从点B运动到D时,如图1,在Rt△BEF中,∵tanB=,∴y=tanB•t(0≤t≤m);当点F从点D运动到C时,如图2,在Rt△CEF中,∵tanC=,∴y=tanC•CF=tanC•(2m﹣t)=﹣tanB•t+2mtanB(m≤t≤2m).故选B.点评:本题考查了动点问题的函数图象:利用三角函数关系得到两变量的函数关系,再利用函数关系式画出对应的函数图象.注意自变量的取值范围.4(2015湖北荆州第9题3分)如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ 的面积为y(cm2),则y关于x的函数图象是()A.B.C.D.考点:动点问题的函数图象.分析:首先根据正方形的边长与动点P、Q的速度可知动点Q始终在AB边上,而动点P可以在BC边、CD边、AD边上,再分三种情况进行讨论:①0≤x≤1;②1<x≤2;③2<x≤3;分别求出y关于x的函数解析式,然后根据函数的图象与性质即可求解.解答:解:由题意可得BQ=x.①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=BP•BQ,解y=•3x•x=x2;故A选项错误;②1<x≤2时,P点在CD边上,则△BPQ的面积=BQ•BC,解y=•x•3=x;故B选项错误;③2<x≤3时,P点在AD边上,AP=9﹣3x,则△BPQ的面积=AP•BQ,解y=•(9﹣3x)•x=x﹣x2;故D选项错误.故选C.点评:本题考查了动点问题的函数图象,正方形的性质,三角形的面积,利用数形结合、分类讨论是解题的关键.5.(2015湖北鄂州第9题3分)甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t =或.其中正确的结论有()A.1个B.2个C.3个D.4个【答案】C.考点:函数的图象.6.(2015•福建泉州第7题3分)在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A.B.C.D.解:A、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,对称轴x=﹣<0,应在y轴的左侧,故不合题意,图形错误.B、对于直线y=bx+a来说,由图象可以判断,a<0,b<0;而对于抛物线y=ax2+bx来说,图象应开口向下,故不合题意,图形错误.C、对于直线y=bx+a来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,对称轴y=﹣位于y轴的右侧,故符合题意,D、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,a<0,故不合题意,图形错误.故选:C.7.(2015湖北鄂州第7题3分)如图,直线y=x-2与y轴交于点C,与x轴交于点B,与反比例函数的图象在第一象限交于点A,连接OA,若S△AOB S△BOC= 1:2,则k的值为()A.2 B.3 C.4 D.6【答案】B.考点:反比例函数与一次函数的交点问题.8. (2015•浙江衢州,第6题3分)下列四个函数图象中,当时,随的增大而减小的是【】A.B.C.D.【答案】B.【考点】函数图象的分析.【分析】由图象知,所给四个函数图象中,当时,随的增大而减小的是选项B. 故选B.9、(2015•四川自贡,第8题4分)小刚以400米/分的速度匀速骑车5分钟,在原地休息了6分钟,然后以500米/分的速度骑回出发地下列函数图象能表达这一过程的是()考点:函数的图象.分析:本题抓住函数的图象是表达的是距离原点的距离S (千米)与时间t (分)之间关系;主要根据在时间变化的情况下,与原地的距离远近来分析图象的变化趋势.略解:前面骑车5分钟S (千米)是随时间t (分)增大而增大至距离原地40052000m ⨯=处(即2千米),这一段图象由左至右呈上升趋势一条线段,线段末端点的坐标为(5,2);原地休息的6分钟内都是距离原地2千米(即纵坐标为2不变),这一段图象表现出来是平行x 轴的一条线段.6分钟之后S (千米)是随时间t (分)增大而减小至距离原地为0千米(回到原地),即线段末端点的坐标为(15,0),这一段图象由左至右呈下降趋势一条线段. 故选C .10. (2015•浙江杭州,第10题3分) 设二次函数y 1=a (x −x 1)(x −x 2)(a ≠0,x 1≠x 2)的图象与一次函数y 2=dx +e (d ≠0)的图象交于点(x 1,0),若函数y =y 2+y 1的图象与x 轴仅有一个交点,则( )A . a (x 1−x 2)=dB . a (x 2−x 1)=dC . a (x 1−x 2)2=dD . a (x 1+x 2)2=d【答案】B .【考点】一次函数与二次函数综合问题;曲线上点的坐标与方程的关系.【分析】∵一次函数()20y dx e d =+≠的图象经过点1(0)x ,, ∴110dx e e dx =+⇒=-.∴()211y dx dx d x x =-=-.∴()()[]2112112()()()y y y a x x x x d x x x x a x x d =+=--+-=--+.又∵二次函数11212()()(0)y a x x x x a x x =--≠≠,的图象与一次函数()20y dx e d =+≠的图象交于点1(0)x ,,函数21y y y =+的图象与x 轴仅有一个交点,∴函数21y y y =+是二次函数,且它的顶点在x 轴上,即()2211y y y a x x =+=-.ABCD∴()[]()()212121()()x x a x x d a x x a x x d a x x --+=-⇒-+=-..令1x x =,得()1211()a x x d a x x -+=-,即1221()0()0a x x d a x x d -+=⇒--=. 故选B .12. (2015•四川成都,第6题3分)一次函数12+=x y 的图像不经过(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限【答案】:D【解析】: ∵20,10k b =>=>,根据一次函数的图像即可判断函数所经过一、二、三象限,不经过第四象限,选D 。

2015年全国中考数学试卷解析分类汇编

2015年全国中考数学试卷解析分类汇编

二次函数一、选择题1. (2014•上海,第3题4分)如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的2. (2014•四川巴中,第10题3分)已知二次函数y=ax2+bx+c的图象如图,则下列叙述正确的是()A.abc<0B.﹣3a+c<0 C.b2﹣4ac≥0D.将该函数图象向左平移2个单位后所得到抛物线的解析式为y=ax2+c 考点:二次函数的图象和符号特征.分析:A.由开口向下,可得a<0;又由抛物线与y轴交于负半轴,可得c<0,然后由对称轴在y轴右侧,得到b与a异号,则可得b>0,故得abc>0.B.根据图知对称轴为直线x=2,即=2,得b=﹣4a,再根据图象知当x=1时,y<0,即可判断;C.由抛物线与x轴有两个交点,可得b2﹣4ac>0;D.把二次函数y=ax2+bx+c化为顶点式,再求出平移后的解析式即可判断.解答:A.由开口向下,可得a<0;又由抛物线与y轴交于负半轴,可得c<0,然后由对称轴在y轴右侧,得到b与a异号,则可得b>0,故得abc>0,故本选项错误;B.根据图知对称轴为直线x=2,即=2,得b=﹣4a,再根据图象知当x=1时,y=a+b+c=a ﹣4a+c=﹣3a+c<0,故本选项正确;C.由抛物线与x轴有两个交点,可得b2﹣4ac>0,故本选项错误;D.y=ax2+bx+c=,∵=2,∴原式=,向左平移2个单位后所得到抛物线的解析式为,故本选项错误;故选:B.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.3. (2014•山东威海,第11题3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).其中正确的个数是()该抛物线的对称轴是:的x、y的部分对应值如下表:=5. (2014•山东烟台,第11题3分)二次函数y=ax+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个考点:二次函数的图象与性质.解答:根据抛物线的对称轴为直线x=﹣=2,则有4a+b=0;观察函数图象得到当x=﹣3时,函数值小于0,则9a﹣3b+c<0,即9a+c<3b;由于x=﹣1时,y=0,则a﹣b+c=0,易得c=﹣5a,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,再根据抛物线开口向下得a<0,于是有8a+7b+2c>0;由于对称轴为直线x=2,根据二次函数的性质得到当x>2时,y随x 的增大而减小.解答:∵抛物线的对称轴为直线x=﹣=2,∴b=﹣4a,即4a+b=0,所以①正确;∵当x=﹣3时,y<0,∴9a﹣3b+c<0,即9a+c<3b,所以②错误;∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0,而b =﹣4a ,∴a +4a +c =0,即c =﹣5a ,∴8a +7b +2c =8a ﹣28a ﹣10a =﹣30a , ∵抛物线开口向下,∴a <0,∴8a +7b +2c >0,所以③正确; ∵对称轴为直线x =2,∴当﹣1<x <2时,y 的值随x 值的增大而增大,当x >2时,y 随x 的增大而减小,所以④错误.故选B .点评:本题考查了二次函数图象与系数的关系:二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置,当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定,△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.6.(2014山东济南,第15题,3分)二次函数的图象如图,对称轴为1=x .若关于x 的一元二次方程02=-+t bx x (为实数)在41<<-x 的范围内有解,则的取值范围是A .1-≥tB .31<≤-tC .81<≤-tD .83<<t 【解析】由对称轴为1=x ,得2-=b ,再由一元二次方程022=--t x x 在41<<-x 的范围内有解,得)4()1(y t y <≤,即81<≤-t ,故选C .7. (2014•山东聊城,第12题,3分)如图是二次函数y=ax 2+bx+c (a ≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b ﹣2a=0;②4a ﹣2b+c <0;③a ﹣b+c=﹣9a ;④若(﹣3,y 1),(,y 2)是抛物线上两点,则y 1>y 2,其中正确的是( )=8.(2014年贵州黔东南9.(3分))已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2012 B.2013 C.2014 D. 2015考点:抛物线与x轴的交点.分析:把x=m代入方程x2﹣x﹣1=0求得m2﹣m=1,然后将其整体代入代数式m2﹣m+2014,并求值.解答:解:∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,解得m2﹣m=1.∴m2﹣m+2014=1+2014=2015.故选:D.点评:本题考查了抛物线与x轴的交点.解题时,注意“整体代入”数学思想的应用,减少了计算量.9. (2014年贵州黔东南9.(4分))如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0其中正确结论的有()A.①②③B.①②④C.①③④D.②③④考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的值,然后根据抛物线与x轴交点的个数及x=﹣1时,x=2时二次函数的值的情况进行推理,进而对所得结论进行判断.解答:解:由二次函数的图象开口向上可得a>0,根据二次函数的图象与y轴交于正半轴知:c>0,由对称轴直线x=2,可得出b与a异号,即b<0,则abc<0,故①正确;把x=﹣1代入y=ax2+bx+c得:y=a﹣b+c,由函数图象可以看出当x=﹣1时,二次函数的值为正,即a+b+c>0,则b<a+c,故②选项正确;把x=2代入y=ax2+bx+c得:y=4a+2b+c,由函数图象可以看出当x=2时,二次函数的值为负,即4a+2b+c<0,故③选项错误;由抛物线与x轴有两个交点可以看出方程ax2+bx+c=0的根的判别式b2﹣4ac>0,故④D选项正确;故选B.点评:本题考查二次函数图象与二次函数系数之间的关系,二次函数与方程之间的转换,根的判别式的熟练运用.会利用特殊值代入法求得特殊的式子,如:y=a+b+c,y=4a+2b+c,然后根据图象判断其值.11. (2014•江苏苏州,第8题3分)二次函数y=ax+bx﹣1(a≠0)的图象经过点(1,1),则12. (2014•年山东东营,第9题3分)若函数y=mx+(m+2)x+m+1的图象与x轴只有一个交点,那么m的值为()A.0 B.0或2 C.2或﹣2 D.0,2或﹣2考点:抛物线与x轴的交点.分析:分为两种情况:函数是二次函数,函数是一次函数,求出即可.解答:解:分为两种情况:①当函数是二次函数时,∵函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,∴△=(m+2)2﹣4m(m+1)=0且m≠0,解得:m=±2,②当函数时一次函数时,m=0,此时函数解析式是y=2x+1,和x轴只有一个交点,故选D.点评:本题考查了抛物线与x轴的交点,根的判别式的应用,用了分类讨论思想,题目比较好,但是也比较容易出错.13.(2014•山东临沂,第14题3分)在平面直角坐标系中,函数y=x2﹣2x(x≥0)的图象为14.(2014•山东淄博,第8题4分)如图,二次函数y=x+bx+c的图象过点B(0,﹣2).它与反比例函数y=﹣的图象交于点A(m,4),则这个二次函数的解析式为()A.y=x2﹣x﹣2 B.y=x2﹣x+2 C.y=x2+x﹣2 D.y=x2+x+2考点:待定系数法求二次函数解析式;反比例函数图象上点的坐标特征.专题:计算题.分析:将A坐标代入反比例解析式求出m的值,确定出A的坐标,将A与B坐标代入二次函数解析式求出b与c的值,即可确定出二次函数解析式.解答:解:将A(m,4)代入反比例解析式得:4=﹣,即m=﹣2,∴A(﹣2,4),将A(﹣2,4),B(0,﹣2)代入二次函数解析式得:,解得:b=﹣1,c=﹣2,则二次函数解析式为y=x2﹣x﹣2.故选A.点评:此题考查l待定系数法求二次函数解析式,以及反比例函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.15.(2014•山东淄博,第12题4分)已知二次函数y=a(x﹣h)2+k(a>0),其图象过点A (0,2),B(8,3),则h的值可以是()A. 6 B. 5 C. 4 D. 3考点:二次函数的性质.专题:计算题.分析:根据抛物线的顶点式得到抛物线的对称轴为直线x=h,由于所给数据都是正数,所以当对称轴在y轴的右侧时,比较点A和点B都对称轴的距离可得到h<4.解答:解:∵抛物线的对称轴为直线x=h,∴当对称轴在y轴的右侧时,A(0,2)到对称轴的距离比B(8,3)到对称轴的距离小,∴x=h<4.故选D.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.16.(2014•四川南充,第10题,3分)二次函数y=ax2+bx+c(a≠0)图象如图,下列结论:①abc>0;②2a+b=0;③当m≠1时,a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,x1+x2=2.其中正确的有()A.①②③B.②④C.②⑤D.②③⑤分析:根据抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣=1,得到b=﹣2a>0,即2a+b=0,由抛物线与y轴的交点位置得到c>0,所以abc<0;根据二次函数的性质得当x=1时,函数有最大值a+b+c,则当m≠1时,a+b+c>am2+bm+c,即a+b>am2+bm;根据抛物线的对称性得到抛物线与x轴的另一个交点在(﹣1,0)的右侧,则当x=﹣1时,y<0,所以a﹣b+c<0;把ax12+bx1=ax22+bx2先移项,再分解因式得到(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,则a(x1+x2)+b]=0,即x1+x2=﹣,然后把b=﹣2a代入计算得到x1+x2=2.解:∵抛物线开口向下,∴a<0,∵抛物线对称轴为性质x=﹣=1,∴b=﹣2a>0,即2a+b=0,所以②正确;∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;∵抛物线对称轴为性质x=1,∴函数的最大值为a+b+c,∴当m≠1时,a+b+c>am2+bm+c,即a+b>am2+bm,所以③正确;∵抛物线与x轴的一个交点在(3,0)的左侧,而对称轴为性质x=1,∴抛物线与x轴的另一个交点在(﹣1,0)的右侧∴当x=﹣1时,y<0,∴a﹣b+c<0,所以④错误;∵ax12+bx1=ax22+bx2,∴ax12+bx1﹣ax22﹣bx2=0,∴a(x1+x2)(x1﹣x2)+b(x1﹣x2)=0,∴(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,∴a(x1+x2)+b]=0,即x1+x2=﹣,∵b=﹣2a,∴x1+x2=2,所以⑤正确.故选D.点评:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a 决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x 轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x 轴没有交点.17.(2014•甘肃白银、临夏,第9题3分)二次函数y=x2+bx+c,若b+c=0,则它的图象一定过点()19.(2014•甘肃兰州,第11题4分)把抛物线y=﹣2x先向右平移1个单位长度,再向上平轴是直线x=1,则下列四个结论错误的是(),得二、填空题1. (2014•浙江杭州,第15题,4分)设抛物线y=ax2+bx+c(a≠0)过A(0,2),B(4,3),C三点,其中点C在直线x=2上,且点C到抛物线的对称轴的距离等于1,则抛物线的函数解析式为y=x2﹣x+2或y=﹣x2+x+2.=x=2. *(2014年河南9.(4分))已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点.若点A 的坐标为(-2,0),抛物线的对称轴为直线x=2.则线段AB的长为.答案:8.解析:根据点A到对称轴x=2的距离是4,又点A、点B关于x=2对称,∴AB=8.3. (2014年湖北咸宁15.(3分))科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如表:温度t/℃﹣4 ﹣2 0 1 4植物高度增长量l/mm 41 49 49 46 25科学家经过猜想、推测出l与t之间是二次函数关系.由此可以推测最适合这种植物生长的温度为﹣1℃.考点:二次函数的应用.分析:首先利用待定系数法求二次函数解析式解析式,在利用二次函数最值公式求法得出即可.解答:解:设y=ax2+bx+c (a≠0),选(0,49),(1,46),(4,25)代入后得方程组,解得:,所以y与x之间的二次函数解析式为:y=﹣x2﹣2x+49,当x=﹣=﹣1时,y有最大值50,即说明最适合这种植物生长的温度是﹣1℃.故答案为:﹣1.点评:此题主要考查了二次函数的应用以及待定系数法求二次函数解析式,得出二次函数解析式是解题关键.3.4.5.6.7.8.三、解答题1. (2014•上海,第24题12分)在平面直角坐标系中(如图),已知抛物线y=x2+bx+c与x 轴交于点A(﹣1,0)和点B,与y轴交于点C(0,﹣2).(1)求该抛物线的表达式,并写出其对称轴;(2)点E为该抛物线的对称轴与x轴的交点,点F在对称轴上,四边形ACEF为梯形,求点F的坐标;(3)点D为该抛物线的顶点,设点P(t,0),且t>3,如果△BDP和△CDP的面积相等,求t的值.,B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由;(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出∠BDA 的度数.=.×==,.,,=的图象与x轴交于A、B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).(1)求∠OBC的度数;(2)连接CD、BD、DP,延长DP交x轴正半轴于点E,且S△OCE=S四边形OCDB,求此时P点的坐标;,,解得,5. (2014•山东潍坊,第24题13分)如图,抛物线y=ax+bx+c(a≠O)与y轴交于点C(O,4),与x轴交于点A和点B,其中点A的坐标为(-2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线Z与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标。

2015年全国中考数学试卷解析分类汇编-专题6-不等式(第一期)

2015年全国中考数学试卷解析分类汇编-专题6-不等式(第一期)

不等式(组)一.选择题1.(2015•,第8题3分)不等式组x x 11023的解集是 .答案:解析: 由112x ≤0得x ≤2 ,由-3x <9得x >-3,∴不等式组的解集是-3<x ≤2.2、(2015·省市,第3题3分)不等式组1011x x +>⎧⎨-⎩≤的解集是:A 、2x ≤B 、1x >-C 、1x -<≤2D 、无解 [解答与分析]这是一元一次不等式组的解法:答案为C3.(2015·省市,第6题3分)不等式组的解集在数轴上表示为( ).A .B .C .D .4.(2015•,第11题3分)不等式组的解集是 ___________ .[答案]﹣1<x <1.考点:解一元一次不等式组.5.(2015第4题3分)一个关于x的一元一次不等式组的解集在数轴上表示如图,则该不等式组的解集是()A.﹣2<x<1 B.﹣2<x≤1C.﹣2≤x<1 D.﹣2≤x≤1考点:在数轴上表示不等式的解集..分析:根据不等式解集的表示方法即可判断.解答:解:该不等式组的解集是:﹣2≤x<1.应选C.点评:此题考查了不等式组的解集的表示,不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.6.(2015第8题3分)不等式组的整数解的个数是()A.3B.5C.7D.无数个考点:一元一次不等式组的整数解..分析:先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.解答:解:,解①得:x>﹣2,解②得:x≤3.则不等式组的解集是:﹣2<x≤3.则整数解是:﹣1,0,1,2,3共5个.应选B.点评:此题考查不等式组的解法与整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.(2015•第3题3分)把不等式x+2≤0的解集在数轴上表示出来,则正确的是()A.B.C.D.解:解不等式x+2≤0,得x≤﹣2.表示在数轴上为:.应选:D.8.(2015•,第7题4分)使不等式x﹣1≥2与3x﹣7<8同时成立的x的整数值是()A .3,4 B.4,5 C.3,4,5 D.不存在考点:一元一次不等式组的整数解.菁优网分析:先分别解出两个一元一次不等式,再确定x的取值围,最后根据x的取值围找出x的整数解即可.解答:解:根据题意得:,解得:3≤x<5,则x的整数值是3,4;应选A.点评:此题考查了一元一次不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.9.(2015•,第6题3分)不等式组的解集是()[中&国教^育出%版~网]A .x>1 B.x<2 C.1≤x≤2D.1<x<2考点:解一元一次不等式组.菁优网分析:先求出每个不等式的解集,再根据找不等式组解集的规律找出即可.解答:解:∵解不等式①得:x<2,解不等式②得:x>1,∴不等式组的解集为1<x<2,应选D.点评:此题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集,难度适中.10. (2015•,第6题3分)若m>n,以下不等式不一定成立的是()(A)m+2>n+2 (B)2m>2n (C)(D)[答案]D考点:不等式的应用.11. (2015•,第8题4分)一元一次不等式2(x+1)≥4的解在数轴上表示为(▲)考点:在数轴上表示不等式的解集;解一元一次不等式..分析:首先根据解一元一次不等式的方法,求出不等式2(x+1)≥4的解集,然后根据在数轴上表示不等式的解集的方法,把不等式2(x+1)≥4的解集在数轴上表示出来即可.解答:解:由2(x+1)≥4,可得x+1≥2,解得x≥1,所以一元一次不等式2(x+1)≥4的解在数轴上表示为:[中国~*教#育出&版网].应选:A.点评:(1)此题主要考查了在数轴上表示不等式的解集的方法,要熟练掌握,解答此题的关键是要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.(2)此题还考查了解一元一次不等式的方法,要熟练掌握,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.12. (2015•,第6题3分)如图,数轴上所表示关于错误!不能通过编辑域代码创建对象。

2015年中考数学试卷(word解析版)

2015年中考数学试卷(word解析版)

省2015年中考数学试卷一、选择题〔共10小题,每题3分,计30分,每题只有一个选项是符合题意的〕1.计算:〔﹣〕0=〔〕A.1 B.﹣C.0 D.考点:零指数幂.分析:根据零指数幂:a0=1〔a≠0〕,求出〔﹣〕0的值是多少即可.解答:解:〔﹣〕0=1.应选:A.点评:此题主要考察了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1〔a≠0〕;②00≠1.2.〔3分〕〔2015•〕如图是一个螺母的示意图,它的俯视图是〔〕A.B.C.D.考点:简单组合体的三视图.分析:根据从上面看得到的图形是俯视图,可得答案.解答:解:从上面看外面是一个正六边形,里面是一个没有圆心的圆,应选:B.点评:此题考察了简单组合体的三视图,从上面看得到的图形是俯视图.3.〔3分〕〔2015•〕以下计算正确的选项是〔〕A.a2•a3=a6B.〔﹣2ab〕2=4a2b2C.〔a2〕3=a5D.3a2b2÷a2b2=3ab考点:整式的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘法、积的乘方、幂的乘方、整式的除法,即可解答.解答:解:A、a2•a3=a5,故正确;B、正确;C、〔a2〕3=a6,故错误;D、3a2b2÷a2b2=3,故错误;应选:B.点评:此题考察了同底数幂的乘法、积的乘方、幂的乘方、整式的除法,解决此题的关键是熟记同底数幂的乘法、积的乘方、幂的乘方、整式的除法的法那么.4.〔3分〕〔2015•〕如图,AB∥CD,直线EF分别交直线AB,CD于点E,F.假设∠1=46°30′,那么∠1的度数为〔〕A.43°30′B.53°30′C.133°30′D.153°30′考点:平行线的性质.分析:先根据平行线的性质求出∠EFD的度数,再根据补角的定义即可得出结论.解答:解:∵AB∥CD,∠1=46°30′,∴∠EFD=∠1=46°30′,∴∠2=180°﹣46°30′=133°30′.应选C.点评:此题考察的是平行线的性质,用到的知识点为:两线平行,同位角相等.5.〔3分〕〔2015•〕设正比例函数y=mx的图象经过点A〔m,4〕,且y的值随x值的增大而减小,那么m=〔〕A.2 B.﹣2 C.4 D.﹣4考点:正比例函数的性质.分析:直接根据正比例函数的性质和待定系数法求解即可.解答:解:把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而减小,所以m=﹣2,应选B点评:此题考察了正比例函数的性质:正比例函数y=kx〔k≠0〕的图象为直线,当k>0,图象经过第一、三象限,y值随x的增大而增大;当k<0,图象经过第二、四象限,y值随x的增大而减小.6.〔3分〕〔2015•〕如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.假设在边AB上截取BE=BC,连接DE,那么图中等腰三角形共有〔〕A.2个B.3个C.4个D.5个考点:等腰三角形的判定与性质.分析:根据条件分别求出图中三角形的角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.解答:解:∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°﹣∠DBC﹣∠C=180°﹣36°﹣72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=〔180°﹣36°〕÷2=72°,∴∠ADE=∠BED﹣∠A=72°﹣36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有5个.应选D.点评:此题考察了等腰三角形的判定,用到的知识点是等腰三角形的判定、三角形角和定理、三角形外角的性质、三角形的角平分线定义等,解题时要找出所有的等腰三角形,不要遗漏.7.〔3分〕〔2015•〕不等式组的最大整数解为〔〕A.8 B.6 C.5 D.4考点:一元一次不等式组的整数解.分析:先求出各个不等式的解集,再求出不等式组的解集,最后求出答案即可.解答:解:∵解不等式①得:x≥﹣8,解不等式②得:x<6,∴不等式组的解集为﹣8≤x<6,∴不等式组的最大整数解为5,应选C.点评:此题考察了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是能根据不等式的解集求出不等式组的解集,难度适中.8.〔3分〕〔2015•陕西〕在平面直角坐标系中,将直线l1:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,那么以下平移作确的是〔〕A.将l向右平移3个单位长度B.将l1向右平移6个单位长度1C.将l向上平移2个单位长度D.将l1向上平移4个单位长度1考点:一次函数图象与几何变换.分析:利用一次函数图象的平移规律,左加右减,上加下减,得出即可.解答:解:∵将直线l:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,1∴﹣2〔x+a〕﹣2=﹣2x+4,解得:a=﹣3,故将l1向右平移3个单位长度.应选:A.点评:此题主要考察了一次函数图象与几何变换,正确把握变换规律是解题关键.9.〔3分〕〔2015•陕西〕在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,假设四边形AECF为正方形,那么AE的长为〔〕A.7 B.4或10 C.5或9 D.6或8考点:平行四边形的性质;勾股定理;正方形的性质.专题:分类讨论.分析:设AE的长为x,根据正方形的性质可得BE=14﹣x,根据勾股定理得到关于x的方程,解方程即可得到AE的长.解答:解:如图:设AE的长为x,根据正方形的性质可得BE=14﹣x,在△ABE中,根据勾股定理可得x2+〔14﹣x〕2=102,解得x1=6,x2=8.故AE的长为6或8.应选:D.点评:考察了平行四边形的性质,正方形的性质,勾股定理,关键是根据勾股定理得到关于AE的方程.10.〔3分〕〔2015•〕以下关于二次函数y=ax2﹣2ax+1〔a>1〕的图象与x轴交点的判断,正确的选项是〔〕A.没有交点B.只有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D.有两个交点,且它们均位于y轴右侧考点:抛物线与x轴的交点.分析:根据函数值为零,可得相应的方程,根据根的判别式,公式法求方程的根,可得答案.解答:解:当y=0时,ax2﹣2ax+1=0,∵a>1∴△=〔﹣2a〕2﹣4a=4a〔a﹣1〕>0,ax2﹣2ax+1=0有两个根,函数与有两个交点,x=>0,应选:D.点评:此题考察了抛物线与x轴的交点,利用了函数与方程的关系,方程的求根公式.二、填空题〔共5小题,每题3分,计12分,其中12、13题为选做题,任选一题作答〕11.〔3分〕〔2015•〕将实数,π,0,﹣6由小到大用“<〞号连起来,可表示为﹣6 .考点:实数大小比拟.分析:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.解答:解:≈2.236,π≈3.14,∵﹣6<0<2.236<3.14,∴﹣6.故答案为:﹣6.点评:此题主要考察了实数大小比拟的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.12.〔3分〕〔2015•〕正八边形一个角的度数为135°.考点:多边形角与外角.分析:首先根据多边形角和定理:〔n﹣2〕•180°〔n≥3且n为正整数〕求出角和,然后再计算一个角的度数.解答:解:正八边形的角和为:〔8﹣2〕×180°=1080°,每一个角的度数为×1080°=135°.故答案为:135°.点评:此题主要考察了多边形角和定理,关键是熟练掌握计算公式:〔n﹣2〕•180 〔n≥3〕且n为整数〕.13.〔2015•〕如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,那么∠A的度数约为27.8°〔用科学计算器计算,结果准确到0.1°〕.考点:解直角三角形的应用-坡度坡角问题.分析:直接利用坡度的定义求得坡角的度数即可.解答:解:∵tan∠A==≈0.5283,∴∠A=27.8°,故答案为:27.8°.点评:此题考察了坡度坡角的知识,解题时注意坡角的正切值等于铅直高度与水平宽度的比值,难度不大.14.〔3分〕〔2015•〕如图,在平面直角坐标系中,过点M〔﹣3,2〕分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,那么四边形MAOB的面积为10 .考点:反比例函数系数k的几何意义.分析:设点A的坐标为〔a,b〕,点B的坐标为〔c,d〕,根据反比例函数y=的图象过A,B 两点,所以ab=4,cd=4,进而得到S△AOC=|ab|=2,S△BOD=|cd|=2,S矩形MCDO=3×2=6,根据四边形MAOB的面积=S△AOC+S△BOD+S矩形MCDO,即可解答.解答:解:如图,设点A的坐标为〔a,b〕,点B的坐标为〔c,d〕,∵反比例函数y=的图象过A,B两点,∴ab=4,cd=4,∴S△AOC=|ab|=2,S△BOD=|cd|=2,∵点M〔﹣3,2〕,∴S矩形MCDO=3×2=6,∴四边形MAOB的面积=S△AOC+S△BOD+S矩形MCDO=2+2+6=10,故答案为:10.点评:此题主要考察反比例函数的对称性和k的几何意义,根据条件得出S=|ab|=2,△AOC S△BOD=|cd|=2是解题的关键,注意k的几何意义的应用.15.〔3分〕〔2015•〕如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.假设点M,N分别是AB,BC的中点,那么MN长的最大值是 3 .考点:三角形中位线定理;等腰直角三角形;圆周角定理.分析:根据中位线定理得到MN的最大时,AC最大,当AC最大时是直径,从而求得直径后就可以求得最大值.解答:解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC时直径时,最大,如图,∵∠ACB=∠D=45°,AB=6,∴AD=6,∴MN=AD=3故答案为:3.点评:此题考察了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大.三、解答题〔共11小题,计78分,解答时写出过程〕16.〔5分〕〔2015•〕计算:×〔﹣〕+|﹣2|+〔〕﹣3.考点:二次根式的混合运算;负整数指数幂.专题:计算题.分析:根据二次根式的乘法法那么和负整数整数幂的意义得到原式=﹣+2+8,然后化简后合并即可.解答:解:原式=﹣+2+8=﹣3+2+8=8﹣.点评:此题考察了二次根式的计算:先把各二次根式化为最简二次根式,再进展二次根式的乘除运算,然后合并同类二次根式.也考察了负整数整数幂、17.〔5分〕〔2015•〕解分式方程:﹣=1.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x2﹣5x+6﹣3x﹣9=x2﹣9,解得:x=,经检验x=是分式方程的解.点评:此题考察了解分式方程,解分式方程的根本思想是“转化思想〞,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.〔5分〕〔2015•〕如图,△ABC,请用尺规过点A作一条直线,使其将△ABC分成面积相等的两局部.〔保存作图痕迹,不写作法〕考点:作图—复杂作图.分析:作BC边上的中线,即可把△ABC分成面积相等的两局部.解答:解:如图,直线AD即为所求:点评:此题主要考察三角形中线的作法,同时要掌握假设两个三角形等底等高,那么它们的面积相等.19.〔5分〕〔2015•〕某校为了了解本校九年级女生体育测试项目“仰卧起坐〞的训练情况,让体育教师随机抽查了该年级假设干名女生,并严格地对她们进展了1分钟“仰卧起坐〞测试,同时统计了每个人做的个数〔假设这个个数为x〕,现在我们将这些同学的测试结果分为四个等级:优秀〔x≥44〕、良好〔36≤x≤43〕、及格〔25≤x≤35〕和不及格〔x≤24〕,并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答以下问题:〔1〕补全上面的条形统计图和扇形统计图;〔2〕被测试女生1分钟“仰卧起坐〞个数的中位数落在良好等级;〔3〕假设该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐〞个数到达优秀的人数.考点:条形统计图;用样本估计总体;扇形统计图.分析:〔1〕根据各个等级的百分比得出答案即可;〔2〕根据中位数的定义知道中位数是第25和26个数的平均数,由此即可得出答案;〔3〕首先根据扇形图得出优秀人数占的百分比,条形统计图可以求出平均数的最小值,然后即可求出答案.解答:解:〔1〕;〔2〕∵13+20+12+5=50,50÷2=25,25+1=26,∴中位数落在良好等级,故答案为:良好;〔3〕650×26%=169〔人〕,即该年级女生中1分钟“仰卧起坐〞个数到达优秀的人数是169.点评:此题难度中等,主要考察统计图表的识别;解此题要懂得频率分布直分图的意义.同时考察了平均数和中位数的定义.20.〔7分〕〔2015•〕如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.考点:全等三角形的判定与性质.专题:证明题.分析:根据平行线的性质得出∠EAC=∠ACB,再利用ASA证出△ABD≌△CAE,从而得出AD=CE.解答:证明:∵AE∥BD,∴∠EAC=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,,∴△ABD≌△CAE,∴AD=CE.点评:此题考察了全等三角形的判定与性质,用到的知识点是全等三角形的判定与性质、平行线的性质,关键是利用ASA证出△ABD≌△CAE.21.〔7分〕〔2015•〕晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?〞小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点〔距N点5块地砖长〕时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点〔距N点9块地砖长〕时,其影长BF恰好为2块地砖长.广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC 为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.〔结果准确到0.01米〕考点:相似三角形的应用.分析:先证明△CAD~△MND,利用相似三角形的性质求得MN=9.6,再证明△EFB~△MFN,即可解答.解答:解:由题意得:∠CAD=∠MND=90°,∠CDA=MDN,∴△CAD~△MND,∴,∴,∴MN=9.6,又∵∠EBF=∠MNF=90°,∠EFB=∠MFN,∴△EFB~△MFN,∴,∴∴EB≈1.75,∴小军身高约为1.75米.点评:此题考察的是相似三角形的判定及性质,解答此题的关键是相似三角形的判定.22.〔7分〕〔2015•〕胡教师计划组织朋友暑假去革命圣地两日游,经了解,现有甲、乙两家旅行社比拟适宜,报价均为每人640元,且提供的效劳完全一样,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,假设人数不超过20人,每人都按九折收费,超过20人,那么超出局部每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x人.〔1〕请分别写出甲、乙两家旅行社收取组团两日游的总费用y〔元〕与x〔人〕之间的函数关系式;〔2〕假设胡教师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡教师选择收取总费用较少的一家.考点:一次函数的应用.专题:应用题.分析:〔1〕根据总费用等于人数乘以打折后的单价,易得y=640×0.85x,对于乙两家旅甲行社的总费用,分类讨论:当0≤x≤20时,y乙=640×0.9x;当x>20时,y乙=640×0.9×20+640×0.75〔x﹣20〕;〔2〕把x=32分别代入〔1〕中对应得函数关系计算y甲和y乙的值,然后比拟大小即可.解答:解:〔1〕甲两家旅行社的总费用:y=640×0.85x=544x;甲乙两家旅行社的总费用:当0≤x≤20时,y乙=640×0.9x=576x;当x>20时,y乙=640×0.9×20+640×0.75〔x﹣20〕=480x+1920;〔2〕当x=32时,y甲=544×32=17408〔元〕,y乙=480×32+1920=17280,因为y甲>y乙,所以胡教师选择乙旅行社.点评:此题考察了一次函数的应用:利用实际问题中的数量关系建立一次函数关系,特别对乙旅行社的总费用要采用分段函数解决问题.23.〔7分〕〔2015•陕西〕某中学要在全校学生中举办“中国梦•我的梦〞主题演讲比赛,要求每班选一名代表参赛.九年级〔1〕班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛〔胜者参赛〕.规那么如下:两人同时随机各掷一枚完全一样且质地均匀的骰子一次,向上一面的点数都是奇数,那么小亮胜;向上一面的点数都是偶数,那么小丽胜;否那么,视为平局,假设为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规那么各掷一次骰子,那么请你解答以下问题:〔1〕小亮掷得向上一面的点数为奇数的概率是多少?〔2〕该游戏是否公平?请用列表或树状图等方法说明理由.〔骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体〕考点:游戏公平性;列表法与树状图法.分析:〔1〕首先判断出向上一面的点数为奇数有3种情况,然后根据概率公式,求出小亮掷得向上一面的点数为奇数的概率是多少即可.〔2〕首先应用列表法,列举出所有可能的结果,然后分别判断出小亮、小丽获胜的概率是多少,再比拟它们的大小,判断出该游戏是否公平即可.解答:解:〔1〕∵向上一面的点数为奇数有3种情况,∴小亮掷得向上一面的点数为奇数的概率是:.〔2〕填表如下:1 2 3 4 5 61 〔1,1〕〔1,2〕〔1,3〕〔1,4〕〔1,5〕〔1,6〕2 〔2,1〕〔2,2〕〔2,3〕〔2,4〕〔2,5〕〔2,6〕3 〔3,1〕〔3,2〕〔3,3〕〔3,4〕〔3,5〕〔3,6〕4 〔4,1〕〔4,2〕〔4,3〕〔4,4〕〔4,5〕〔4,6〕5 〔5,1〕〔5,2〕〔5,3〕〔5,4〕〔5,5〕〔5,6〕6 〔6,1〕〔6,2〕〔6,3〕〔6,4〕〔6,5〕〔6,6〕由上表可知,一共有36种等可能的结果,其中小亮、小丽获胜各有9种结果.∴P〔小亮胜〕=,P〔小丽胜〕==,∴游戏是公平的.点评:〔1〕此题主要考察了判断游戏公平性问题,要熟练掌握,首先计算每个事件的概率,然后比拟概率的大小,概率相等就公平,否那么就不公平.〔2〕此题主要考察了列举法〔树形图法〕求概率问题,解答此类问题的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.24.〔8分〕〔2015•〕如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.〔1〕求证:∠BAD=∠E;〔2〕假设⊙O的半径为5,AC=8,求BE的长.考点:切线的性质;勾股定理;相似三角形的判定与性质.分析:〔1〕根据切线的性质,和等角的余角相等证明即可;〔2〕根据勾股定理和相似三角形进展解答即可.解答:〔1〕证明:∵AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,∴∠ABE=90°,∴∠BAE+∠E=90°,∵∠DAE=90°,∴∠BAD+∠BAE=90°,∴∠BAD=∠E;〔2〕解:连接BC,如图:∵AB是⊙O的直径,∴∠ACB=90°,∵AC=8,AB=2×5=10,∴BC=,∵∠BCA=∠ABE=90°,∠BAD=∠E,∴△ABC∽△EAB,∴,∴,∴BE=.点评:此题考察了切线的性质、相似三角形等知识点,关键是根据切线的性质和相似三角形的性质分析.25.〔10分〕〔2015•〕在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交于A,B两点,与y轴交于C点.〔1〕求点A,B,C的坐标;〔2〕求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式;〔3〕设〔2〕中所求抛物线的顶点为M′,与x轴交于A′,B′两点,与y轴交于C′点,在以A,B,C,M,A′,B′,C′,M′这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.考点:二次函数综合题.分析:〔1〕令y=0,求出x的值;令x=0,求出y,即可解答;〔2〕先求出A,B,C关于坐标原点O对称后的点为〔4,0〕,〔1,0〕,〔0,﹣4〕,再代入解析式,即可解答;〔3〕取四点A,M,A′,M′,连接AM,MA′,A′M′,M′A,MM′,由中心对称性可知,MM′过点O,OA=OA′,OM=OM′,由此判定四边形AMA′M′为平行四边形,又知AA′与MM′不垂直,从而平行四边形AMA′M′不是菱形,过点M作MD⊥x轴于点D,求出抛物线的顶点坐标M,根据,即可解答.解答:解:〔1〕令y=0,得x2+5x+4=0,∴x1=﹣4,x2=﹣1,令x=0,得y=4,∴A〔﹣4,0〕,B〔﹣1,0〕,C〔0,4〕.〔2〕∵A,B,C关于坐标原点O对称后的点为〔4,0〕,〔1,0〕,〔0,﹣4〕,∴所求抛物线的函数表达式为y=ax2+bx﹣4,将〔4,0〕,〔1,0〕代入上式,得解得:,∴y=﹣x2+5x﹣4.〔3〕如图,取四点A,M,A′,M′,连接AM,MA′,A′M′,M′A,MM′,由中心对称性可知,MM′过点O,OA=OA′,OM=OM′,∴四边形AMA′M′为平行四边形,又知AA′与MM′不垂直,∴平行四边形AMA′M′不是菱形,过点M作MD⊥x轴于点D,∵y=,∴M〔〕,又∵A〔﹣4,0〕,A′〔4,0〕∴AA′=8,MD=,∴=点评:此题考察了二次函数的性质与图象、中心对称、平行四边形的判定、菱形的判定,综合性较强,解决此题的关键是根据中心对称,求出抛物线的解析式,在〔3〕中注意菱形的判定与数形结合思想的应用.26.〔12分〕〔2015•〕如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.〔1〕如图①,点M是四边形ABCD边AD上的一点,那么△BMC的面积为24 ;〔2〕如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;〔3〕如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?假设存在,求出此时cos∠BPC的值;假设不存在,请说明理由.考点:四边形综合题.专题:综合题.分析:〔1〕如图①,过A作AE⊥BC,可得出四边形AECF为矩形,得到EC=AD,BE=BC﹣EC,在直角三角形ABE中,求出AE的长,即为三角形BMC的高,求出三角形BMC面积即可;〔2〕如图②,作点C关于直线AD的对称点C′,连接C′N,C′D,C′B交AD于点N′,连接CN′,那么BN+NC=BN+NC′≥BC′=BN′+CN′,可得出△BNC周长的最小值为△BN′C的周长=BN′+CN′+BC=BC′+BC,求出即可;〔3〕如图③所示,存在点P,使得cos∠BPC的值最小,作BC的中垂线PQ交BC于点Q,交AD于点P,连接BP,CP,作△BPC的外接圆O,圆O与直线PQ交于点N,那么PB=PC,圆心O在PN上,根据AD与BC平行,得到圆O与AD相切,根据PQ=DC,判断得到PQ大于BQ,可得出圆心O在BC上方,在AD上任取一点P′,连接P′B,P′C,P′B交圆O于点M,连接MC,可得∠BPC=∠BMC≥∠BP′C,即∠BPC最小,cos∠BPC 的值最小,连接OB,求出即可.解答:解:〔1〕如图①,过A作AE⊥BC,∴四边形AECD为矩形,∴EC=AD=8,BE=BC﹣EC=12﹣8=4,在Rt△ABE中,∠ABE=60°,BE=4,∴AB=2BE=8,AE==4,那么S△BMC=BC•AE=24;故答案为:24;〔2〕如图②,作点C关于直线AD的对称点C′,连接C′N,C′D,C′B交AD于点N′,连接CN′,那么BN+NC=BN+NC′≥BC′=BN′+CN′,∴△BNC周长的最小值为△BN′C的周长=BN′+CN′+BC=BC′+BC,∵AD∥BC,AE⊥BC,∠ABC=60°,∴过点A作AE⊥BC,那么CE=AD=8,∴BE=4,AE=BE•tan60°=4,∴CC′=2CD=2AE=8,∵BC=12,∴BC′==4,∴△BNC周长的最小值为4+12;〔3〕如图③所示,存在点P,使得cos∠BPC的值最小,作BC的中垂线PQ交BC于点Q,交AD于点P,连接BP,CP,作△BPC的外接圆O,圆O与直线PQ交于点N,那么PB=PC,圆心O在PN上,∵AD∥BC,∴圆O与AD相切于点P,∵PQ=DC=4>6,∴PQ>BQ,∴∠BPC<90°,圆心O在弦BC的上方,在AD上任取一点P′,连接P′B,P′C,P′B交圆O于点M,连接MC,∴∠BPC=∠BMC≥∠BP′C,∴∠BPC最大,cos∠BPC的值最小,连接OB,那么∠BON=2∠BPN=∠BPC,∵OB=OP=4﹣OQ,在Rt△BOQ中,根据勾股定理得:OQ2+62=〔4﹣OQ〕2,解得:OQ=,∴OB=,∴cos∠BPC=cos∠BOQ==,那么此时cos∠BPC的值为.点评:此题属于四边形综合题,涉及的知识有:勾股定理,矩形的判定与性质,对称的性质,圆的切线的判定与性质,以及锐角三角函数定义,熟练掌握定理及性质是解此题的关键.。

【9份】2015年全国各地中考数学试题(真题)分类汇编(精品推荐)

【9份】2015年全国各地中考数学试题(真题)分类汇编(精品推荐)
A.2B.3C. D.
二、填空题
1.(2015•南京)若式子 在实数范围内有意义,则x的取值范围是.
2.(2015•南京)计算 的结果是.
3.(2015•四川自贡)化简: =.
考点:绝对值、无理数、二次根式
分析:本题关键是判断出 值得正负,再根据绝对值的意义化简.
略解:∵ ∴ ∴ ;故应填 .
4.(2015•四川自贡)若两个连续整数 满足 ,则 的值是.
A.x≤2 B. x≥2 C. x<2 D.x>2
6.(2015•浙江杭州)若 k<<k+1(k是整数),则k=( )
A. 6B.7C. 8D. 9
【答案】D.
【考点】估计无理数的大小.
【分析】∵ ,
∴k=9. B. C. D.
8.(2015•重庆B)计算 的值是()
考点:无理数、二次根式、求代数式的值.
分析:本题关键是判断出 值是在哪两个连续整数之间.
略解:∵ ∴ ∴ ∴ ;故应填7.
5.(2015•四川资阳)已知: ,则 的值为_________.
三.解答题
1.(2015•江苏苏州)计算: .
【考点分析】考察实数计算,中考必考题型。难度很小。
【详细分析】解:原式=3+5-1=7.
涉及的公式为:金额=单价×数量
金额
单价
数量
乒乓球
1.5×20=30
1.5
20
球拍
22
将相关数据代入①即可解得:
解:设购买球拍 个,依题意得:
解之得:
由于 取整数,故 的最大值为7。
6.(山东菏泽)13.不等式组 的解集是__________-1≤x<3
7.(云南)已知不等式组 ,其解集在数轴上表示正确的是( )

2015年中考数学试题(附答案及分析)

2015年中考数学试题(附答案及分析)

2015年中考数学试题考生须知:1. 答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上2. 用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内.答 在试题卷上无效.3.考生必须保持答题卡整洁.考试结束后,请将本试题卷和答题卡一并上交.试题卷一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案. 1、和数轴上的点一一对应的是( )(A)整数 (B)有理数 (C)无理数 (D)实数 2、化简:322)3(x x -的结果是( )(A )53x - (B )518x (C )56x - (D )518x - 3、已知一组数据54321x x x x x 、、、、的平均数是5,则另一组 新数组5432154321+++++x x x x x 、、、、的平均数是( )(A )6 (B )8 (C )10 (D )无法计算 4、下列语句中,属于命题..的是( ) (A) 作线段的垂直平分线 (B) 等角的补角相等吗 (C) 平行四边形是轴对称图形 (D) 用三条线段去拼成一个三角形5、一次函数2)3(+-=x k y ,若y 随x 的增大而增大,则k 的值可以是( ) (A )1 (B )2 (C )3 (D )46、有两个圆,⊙1O 的半径等于地球的半径,⊙2O 的半径等于一个篮球的半径,现将两个圆都向外膨胀(相当于作同心圆),使周长都增加1米,则半径伸长的较多的圆是( ) A 、⊙1O B 、⊙2O C 、两圆的半径伸长是相同的 D 、无法确定7.数学活动课上,小明,小华各画了△ABC 和△DEF,尺寸如下图,两个三角形面积分别记作S △ABC 和S △DEF ,那么你认为( )8、若不等式组 -2 x+4≥0 (x 为未知数)无解,则二次函数的图象y=ax 2-2x+1 x >a 与x 的交点( )A.没有交点B.一个交点C.两个交点D.不能确定 9.已知w 关于t 的函数:32w t t=,则下列有关此函数图像的描述正确的是( ) (A )该函数图像与坐标轴有两个交点 (B )该函数图像经过第一象限 (C )该函数图像关于原点中心对称 (D )该函数图像在第四象限 10.如图,在等腰Rt ABC △中,908C AC ∠==°,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =.连接DE 、DF 、EF .在此运动变化的过程中,下列结论:①DFE △是等腰直角三角形;②四边形CDFE 不可能为正方形,③DE 长度的最小值为4;④四边形CDFE 的面积保持不变;⑤△CDE 面积的最大值为8.其中正确的结论是( )A .①④⑤B .③④⑤C .①③④D .①②③二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案 11. 21-的倒数是 ,写出一个比-3大而比-2小的无理数是 . 12. 数据1、5、6、5、6、5、6、6的众数是 ,方差是 .13. 正方形ABCD 的边长为a cm ,E 、F 分别是BC 、CD 的中点,连接BF 、DE ,则图中阴A 第13题CEBAFD(第10题)影部分的面积是 cm 2. 14. 已知关于x 的不等式组0521x a x -⎧⎨->⎩≥,只有3个整数解,则实数a 的取值范围是 .15.具有方向的线段叫做有向线段,以A 为起点,B 为终点的有向线段记作AB u u u v,已知BC=AC AB +u u u v u u u v u u u v ,如下图所示:如果a AB =u u u v v ,BC=b u u u v v ,则AC a b =+u u u v v v。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程及其应用一.选择题1.(2015•江苏无锡,第4题2分)方程2x﹣1=3x+2的解为()A.x=1 B.x=﹣1 C.x=3 D.x=﹣3考点:解一元一次方程.分析:方程移项合并,把x系数化为1,即可求解.解答:解:方程2x﹣1=3x+2,移项得:2x﹣3x=2+1,合并得:﹣x=3.解得:x=﹣3,故选D.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求解.2. (2015•四川南充,第4题3分)学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,则今年购置计算机的数量是()(A)25台(B)50台(C)75台(D)100台【答案】C考点:一元一次方程的应用.3. (2015•浙江杭州,第7题3分)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地占林地面积的20%,设把x公顷旱地改为林地,则可列方程( )A. 54−x=20%×108B. 54−x=20%×(108+x)C. 54+x=20%×162D. 108−x=20%(54+x)【答案】B .【考点】由实际问题列方程.【分析】根据题意,旱地改为林地后,旱地面积为54x -公顷,林地面积为108x +公顷,等量关系为“旱地占林地面积的20%”,即()5420%108x x -=⨯+. 故选B .4.(2015•北京市,第9题,3分)一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠: 会员年卡类型办卡费用(元) 每次游泳收费(元) A 类50 25 B 类200 20 C 类 400 15例如,购买A 类会员卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为A .购买A 类会员年卡B .购买B 类会员年卡C .购买C 类会员年卡D .不购买会员年卡【考点】一元一次方程【难度】中等【答案】C【点评】本题考查一元一次方程的基本概念。

5.(2015·深圳,第10题 分)某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元。

A 、140B 、120C 、160D 、100【答案】B .【解析】设进价为x 元,则200X 0.8-x =40,解得:x =120,选B 。

二.填空题1.(2015·湖北省孝感市,第14题3分)某市为提倡节约用水,采取分段收费.若每户每月用水不超过20m 3,每立方米收费2 元;若用水超过20m 3,超过部分每立方米加收1元.小明家5月份交水费64 元,则他家该月用水 ☆ m 3. 考点:一元一次方程的应用..分析:20立方米时交40元,题中已知五月份交水费64元,即已经超过20立方米,所以在64元水费中有两部分构成,列方程即可解答.解答:解:设该用户居民五月份实际用水x 立方米,故20×2+(x ﹣20)×3=64, 故x =28.故答案是:28.点评:本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.2.(2015·四川甘孜、阿坝,第22题4分)已知关于x 的方程3a ﹣x =+3的解为2,则代数式a 2﹣2a +1的值是 1 . 考点: 一元一次方程的解.. 分析: 先把x =2代入方程求出a 的值,再把a 的值代入代数式进行计算即可. 解答: 解:∵关于x 的方程3a ﹣x =+3的解为2, ∴3a ﹣2=+3,解得a =2,∴原式=4﹣4+1=1.故答案为:1.点评: 本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.3. (2015•浙江省绍兴市,第16题,5分)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,,用两个相同的管子在容器的5cm 高度处连通(即管子底端离容器底5cm ),现三个容器中,只有甲中有水,水位高1cm ,如图所示。

若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升65cm ,则开始注入 ▲ 分钟的水量后,甲与乙的水位高度之差是0.5cm考点:一元一次方程的应用..专题:分类讨论.分析:由甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,注水1分钟,乙的水位上升cm,得到注水1分钟,丙的水位上升cm,设开始注入t分钟的水量后,甲与乙的水位高度之差是0.5cm,甲与乙的水位高度之差是0.5cm有三种情况:①当乙的水位低于甲的水位时,②当甲的水位低于乙的水位时,甲的水位不变时,③当甲的水位低于乙的水位时,乙的水位到达管子底部,甲的水位上升时,分别列方程求解即可.解答:解:∵甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,∵注水1分钟,乙的水位上升cm,∴注水1分钟,丙的水位上升cm,设开始注入t分钟的水量后,甲与乙的水位高度之差是0.5cm,甲与乙的水位高度之差是0.5cm有三种情况:①当乙的水位低于甲的水位时,有1﹣t=0.5,解得:t=分钟;②当甲的水位低于乙的水位时,甲的水位不变时,∵t﹣1=0.5,解得:t=,∵×=6>5,∴此时丙容器已向甲容器溢水,∵5÷=分钟,=,即经过分钟边容器的水到达管子底部,乙的水位上升,∴,解得:t=;③当甲的水位低于乙的水位时,乙的水位到达管子底部,甲的水位上升时,∵乙的水位到达管子底部的时间为;分钟,∴5﹣1﹣2×(t﹣)=0.5,解得:t=,综上所述开始注入,,,分钟的水量后,甲与乙的水位高度之差是0.5cm.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.4. (2015•浙江嘉兴,第15题5分)公元前1700年的古埃及纸草书中,记载着一个数学问题:“它的全部,加上它的七分之一,其和等于19.”此问题中“它”的值为____▲____. 考点:一元一次方程的应用..专题:数字问题.分析:设“它”为x ,根据它的全部,加上它的七分之一,其和等于19列出方程,求出方程的解得到x 的值,即可确定出“它”的值.解答:解:设“它”为x ,根据题意得:x +x =19,解得:x =,则“它”的值为, 故答案为:. 点评:此题考查了一元一次方程的应用,弄清题中的等量关系是解本题的关键.5. (2015•浙江丽水,第14题4分)解一元二次方程错误!不能通过编辑域代码创建对象。

时,可转化为两个一元一次方程,请写出其中的一个一元一次方程 ▲ .【答案】30x +=(答案不唯一).【考点】开放型;解一元二次方程.【分析】∵由2230x x +-=得()()310x x +-=, ∴30x +=或10x -=.三.解答题1. (2015•浙江宁波,第22题10分)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A 、B 两种花木共6600棵,若A 花木数量是B 花木数量的2倍少600棵. (1)A 、B 两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A 花木60棵或B 花木40棵,应分别安排多少人种植A 花木和B 花木,才能确保同时完成各自的任务?【答案】解:(1)设B 种花木的数量是x 棵,则A 种花木的数量是()2600x -棵. 根据题意,得()26006600x x +-=,解得2400,2x 6004200x =-= .答: A 种花木的数量是4200棵,B 种花木的数量是2400棵.(2)设安排y 人种植A 种花木,则安排()26y -人种植B 种花木. 根据题意,得()42002400604026y y =-,解得14y =. 经检验,14y =是原方程的根,且符合题意.2612y -=.答:安排14人种植A 种花木,安排12人种植B 种花木,才能确保同时完成各自的任务.【考点】一元一次方程和分式方程的应用.【分析】(1)方程的应用解题关键是找出等量关系,列出方程求解. 本题设B 种花木的数量是x 棵,则A 种花木的数量是()2600x -棵,等量关系为:“广场内种植A 、B 两种花木共6600棵”.(2)方程的应用解题关键是找出等量关系,列出方程求解. 本题设安排y 人种植A 种花木,则安排()26y -人种植B 种花木,等量关系为:“每人每天能种植A 花木60棵或B 花木40棵”2. (2015•四川乐山,第22题10分)“六一”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:(1)小张如何进货,使进货款恰好为1300元?(2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小张设计一个进货方案,并求出其所获利润的最大值.【答案】(1)A 文具为40只,B 文具60只;(2)各进50只,最大利润为500元.考点:1.一次函数的应用;2.一元一次方程的应用;3.一元一次不等式的应用.3.(2015•江苏泰州,第21题10分)某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件.商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?【答案】每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标.【解析】试题分析:设每件衬衫降价x元,根据销售完这批衬衫正好达到盈利45%的预期目标,列出方程求解即可.试题解析:设每件衬衫降价x元,依题意有120×400+(120-x)×100=80×500×(1+45%),解得x=20.答:每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标.考点:一元一次方程的应用.4.(2015•广东广州,第17题9分)解方程:5x=3(x﹣4)考点:解一元一次方程.专题:计算题.分析:方程去括号,移项合并,把x系数化为1,即可求出解.解答:解:方程去括号得:5x=3x﹣12,移项合并得:2x=﹣12,解得:x=﹣6.点评:此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.。

相关文档
最新文档