等差数列数列练习题(5篇)
经典等差数列练习题(含答案)

经典等差数列练习题(含答案)等差数列一、选择题:1.2005是数列7,13,19,25,31, ,中的第()项.A.332B.333C.334D.3352.已知等差数列首项为2,末项为62,公差为4,则这个数列共有()A.13项B.14项C.15项D.16项3.已知等差数列的通项公式为a n3na,a为常数,则公差d=()4.首项为24的等差数列从第10项起开始为正数,则公差d的取值范围是()A.d 8 8D.8B.d3C. d3 d33 3 3()A.第22项B.第21项C.第20项D.第19项6. 已知数列a,-15,b,c,45 是等差数列,则a+b+c 的值是( )A.-5 B .0 C .5 D .10( ) A.45 B .48 C .52 D .558.已知等差数列的首项a1和公差d是方程x2-2x-3=0 的两根,且知d>a1,则这个数列的第30项是( )A.86 B.85 C.84D.83()A.3B.2C.1D.-110、若x≠y,且两个数列:x,a1,a2,y 和x,b1,b2,b3,y 各成等差数列,那么a1x()(A) 3(B) 4(C) 2 (D)值不确定y b3 4 3 3二填空题1.等差数列a n中,a29,a533,则a n的公差为______________。
2.数列{a n}是等差数列,a47 ,则s7_________3.等差数列a n中,a3a524,a23,则a621.4.在等差数列{a n}中,若a4a6a8a10 a12 120,则2a10a12 .5.在首项为31,公差为-4的等差数列中,与零最接近的项是6.如果等差数列a n的第5项为5,第10项为5,则此数列的第1个负数项是第项.7.已知{a n}是等差数列,且a4a7a1057,a4a5a6a14 77,若ak13,则k=8.在△ABC中,A,B,C成等差数列,则tan A tan C3tan A tanC.三、解答题:2 22 21.根据数列的前几项写出数列的一个通项公式。
等差数列练习题附答案

等差数列练习题附答案一、选择题1、已知等差数列{an}中,S10=120,那么a1+a10=()A.12B.24C.36D.482、已知等差数列{an},an=2n-19,那么这个数列的前n项和Sn()A.有最小值且是整数B.有最小值且是分数C.有最大值且是整数 D.有最大值且是分数3、已知等差数列{an}的公差d=1/80,a2+a4+⋯+a100=80,那么S100=()A.135B.160C.120D.1954、已知等差数列{an}中,a2+a5+a9+a12=60,那么S13=()A.390B.195C.180D.1205、从前180个正偶数的和中减去前180个正奇数的和,其差为()A.90B.180C.3606、等差数列{an}的前m项的和为30,前2m项的和为100,则它的前3m项的和为()A.130B.170C.210D.2607、在等差数列{an}中,a2=-6,a8=6,若数列{an}的前n 项和为Sn,则()A.S4<S5B.S4=S5C.S6<S5D.S6=S58、一个等差数列前3项和为34,后3项和为146,所有项和为390,则这个数列的项数为()A.13B.12C.11D.109、已知某数列前n项之和n,且前n个偶数项的和为n(4n+3),则前n个奇数项的和为()A.-3n(n+1)B.n(4n-3)C.-3nD.2n/310、若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边比为()A.6B.8C.10D.12二、填空题1、等差数列{an}中,若a6=a3+a8,则S9=.2、等差数列{an}中,若Sn=3n+2n,则公差d=.3、在小于100的正整数中,被3除余2的数的和是.4、已知等差数列{an}的公差是正整数,且a3⋅a7=-12,a4+a6=-4,则前10项的和S10=.5、一个等差数列共有10项,其中奇数项的和为项是.6、两个等差数列{an}和{bn}的前n项和分别为Sn和Tn,则XXX=.一、选择题1、已知等差数列{an}中,S10=120,则a1+a10=()A.12B.24C.36D.482、已知等差数列{an},an=2n-19,则这个数列的前n项和Sn()A.有最小值且是整数B.有最小值且是分数C.有最大值且是整数 D.有最大值且是分数3、已知等差数列{an}的公差d=1/80,a2+a4+⋯+a100=80,那么S100=()A.135B.160C.120D.1954、已知等差数列{an}中,a2+a5+a9+a12=60,则S13=()A.390B.195C.180D.1205、从前180个正偶数的和中减去前180个正奇数的和,其差为()A.90B.180C.3606、等差数列{an}的前m项的和为30,前2m项的和为100,则它的前3m项的和为()A.130B.170C.210D.2607、在等差数列{an}中,a2=-6,a8=6,若数列{an}的前n 项和为Sn,则()A.S4<S5B.S4=S5C.S6<S5D.S6=S58、一个等差数列前3项和为34,后3项和为146,所有项和为390,则这个数列的项数为()A.13B.12C.11D.109、已知某数列前n项之和n,且前n个偶数项的和为n(4n+3),则前n个奇数项的和为()A.-3n(n+1)B.n(4n-3)C.-3nD.2n/310、若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边比为()A.6B.8C.10D.12二、填空题1、等差数列{an}中,若a6=a3+a8,则S9=.2、等差数列{an}中,若Sn=3n+2n,则公差d=.3、在小于100的正整数中,被3除余2的数的和是.4、已知等差数列{an}的公差是正整数,且a3⋅a7=-12,a4+a6=-4,则前10项的和S10=.5、一个等差数列共有10项,其中奇数项的和为项是.6、两个等差数列{an}和{bn}的前n项和分别为Sn和Tn,则XXX=.1.在等差数列{an}中,已知a4=0.8,a11=2.2,求a51+a52的值。
等差数列专项练习题(精较版)

等差数列、等比数列同步练习题等差数列一、选择题1、等差数列-6,-1,4,9,……中的第20项为()A、89B、-101C、101D、-892、等差数列{a n}中,a15 = 33,a45 = 153,则217是这个数列的()A、第60项B、第61项C、第62项D、不在这个数列中3、在-9与3之间插入n个数,使这n+2个数组成和为-21的等差数列,则n为A、4B、5C、6D、不存在4、等差数列{a n}中,a1 + a7 = 42,a10 - a3 = 21,则前10项的S10等于()A、720B、257C、255D、不确定5、等差数列中连续四项为a,x,b,2x,那么a:b等于()A、14B、13C、13或1 D、126、已知数列{a n}的前n项和S n = 2n2 - 3n,而a1,a3,a5,a7,……组成一新数列{ C n },其通项公式为()A、C n= 4n - 3B、C n= 8n - 1C、C n= 4n - 5D、C n= 8n - 97、一个项数为偶数的等差数列,它的奇数项的和与偶数项的和分别是24与30,若此数列的最后一项比第1项大10,则这个数列共有()A、6项B、8项C、10项D、12项8、设数列{a n}和{b n}都是等差数列,其中a1 = 25,b1 = 75,且a100 + b100 = 100,则数列{a n + b n}的前100项和为()A、0B、100C、10000D、505000二、填空题9、在等差数列{a n}中,a n = m,a n+m= 0,则a m= ______。
10、在等差数列{a n}中,a4 +a7 + a10 + a13 = 20,则S16 = ______ 。
11、在等差数列{a n}中,a1 + a2 + a3 +a4 = 68,a6 + a7 +a8 + a9 + a10 = 30,则从a15到a30的和是______ 。
等差数列练习题(有答案)百度文库

一、等差数列选择题1.记n S 为等差数列{}n a 的前n 项和.若5620a a +=,11132S =,则{}n a 的公差为( ) A .2B .43C .4D .4-2.为了参加学校的长跑比赛,省锡中高二年级小李同学制定了一个为期15天的训练计划.已知后一天的跑步距离都是在前一天的基础上增加相同距离.若小李同学前三天共跑了3600米,最后三天共跑了10800米,则这15天小李同学总共跑的路程为( ) A .34000米 B .36000米 C .38000米 D .40000米 3.在等差数列{a n }中,a 3+a 7=4,则必有( ) A .a 5=4 B .a 6=4 C .a 5=2 D .a 6=24.数列{}n a 为等差数列,11a =,34a =,则通项公式是( ) A .32n -B .322n - C .3122n - D .3122n + 5.等差数列{}n a 中,12318192024,78a a a a a a ++=-++=,则此数列的前20项和等于( ) A .160B .180C .200D .2206.等差数列{}n a 的前n 项和为n S ,若12a =,315S =,则8a =( ) A .11B .12C .23D .247.设a ,0b ≠,数列{}n a 的前n 项和(21)[(2)22]n nn S a b n =---⨯+,*n N ∈,则存在数列{}n b 和{}n c 使得( )A .n n n a b c =+,其中{}n b 和{}n c 都为等比数列B .n n n a b c =+,其中{}n b 为等差数列,{}n c 为等比数列C .·n n n a b c =,其中{}n b 和{}n c 都为等比数列 D .·n n n a b c =,其中{}n b 为等差数列,{}n c 为等比数列 8.已知等差数列{}n a 的前n 项和为n S ,若936S S =,则612SS =( ) A .177B .83 C .143D .1039.题目文件丢失!10.已知等差数列{}n a 满足48a =,6711a a +=,则2a =( ) A .10B .9C .8D .711.设等差数列{}n a 的前n 项和为n S ,若7916+=a a ,则15S =( )A .60B .120C .160D .24012.《周碑算经》有一题这样叙述:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影长之和为八丈五尺五寸,则后五个节气日影长之和为( )(注:一丈=十尺,一尺=十寸) A .一丈七尺五寸 B .一丈八尺五寸 C .二丈一尺五寸D .二丈二尺五寸13.《张丘建算经》是我国北魏时期大数学家张丘建所著,约成书于公元466-485年间.其中记载着这么一道“女子织布”问题:某女子善于织布,一天比一天织得快,且每日增加的数量相同.已知第一日织布4尺,20日共织布232尺,则该女子织布每日增加( )尺 A .47B .1629C .815D .4514.等差数列{}n a 的前n 项和为n S ,已知58a =,36S =,则107S S -的值是( ) A .48B .60C .72D .2415.设等差数列{}n a 的前n 项之和为n S ,已知10100S =,则47a a +=( ) A .12B .20C .40D .10016.在等差数列{}n a 中,已知前21项和2163S =,则25820a a a a ++++的值为( )A .7B .9C .21D .4217.设等差数列{}n a 的前n 和为n S ,若()*111,m m a a a m m N +-<<->∈,则必有( )A .0m S <且10m S +>B .0m S >且10m S +>C .0m S <且10m S +<D .0m S >且10m S +<18.已知数列{}n a 是公差不为零且各项均为正数的无穷等差数列,其前n 项和为n S .若p m n q <<<且()*,,,p q m n p q m n N +=+∈,则下列判断正确的是( )A .22p p S p a =⋅B .p q m n a a a a >C .1111p q m n a a a a +<+D .1111p q m nS S S S +>+ 19.已知等差数列{}n a 的前n 项和为n S ,且310179a a a ++=,则19S =( ) A .51B .57C .54D .7220.若两个等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且3221n n S n T n +=+,则1215a b =( ) A .32B .7059C .7159D .85二、多选题21.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,….,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a =B .733S =C .135********a a a a a +++⋅⋅⋅+=D .22212201920202019a a a a a ++⋅⋅⋅⋅⋅⋅+= 22.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,若612S S =,则下列结论中正确的有( ) A .1:17:2a d =-B .180S =C .当0d >时,6140a a +>D .当0d <时,614a a >23.题目文件丢失!24.设等差数列{}n a 的前n 项和为n S .若30S =,46a =,则( ) A .23n S n n =- B .2392-=n n nSC .36n a n =-D .2n a n =25.已知等差数列{}n a 的前n 项和为,n S 且15110,20,a a a 则( )A .80a <B .当且仅当n = 7时,n S 取得最大值C .49S S =D .满足0n S >的n 的最大值为1226.(多选题)在数列{}n a 中,若221n n a a p --=,(2n ≥,*n N ∈,p 为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( )A .若{}n a 是等差数列,则{}2n a 是等方差数列B .(){}1n-是等方差数列C .若{}n a 是等方差数列,则{}kn a (*k N ∈,k 为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 27.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,且3201911111a a e e +≤++,则( ) A .当数列{}n a 为等差数列时,20210S ≥ B .当数列{}n a 为等差数列时,20210S ≤ C .当数列{}n a 为等比数列时,20210T > D .当数列{}n a 为等比数列时,20210T <28.已知数列{}n a 的前n 项和为,n S 25,n S n n =-则下列说法正确的是( )A .{}n a 为等差数列B .0n a >C .n S 最小值为214-D .{}n a 为单调递增数列29.已知等差数列{}n a 的前n 项和为n S ()*n N ∈,公差0d ≠,690S=,7a 是3a 与9a 的等比中项,则下列选项正确的是( ) A .2d =-B .120a =-C .当且仅当10n =时,n S 取最大值D .当0nS <时,n 的最小值为2230.(多选题)等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则下列命题正确的是( )A .若59S S =,则必有14S =0B .若59S S =,则必有7S 是n S 中最大的项C .若67S S >,则必有78S S >D .若67S S >,则必有56S S >【参考答案】***试卷处理标记,请不要删除一、等差数列选择题 1.C 【分析】由等差数列前n 项和公式以及等差数列的性质可求得6a ,再由等差数列的公式即可求得公差. 【详解】 解:()11111611111322a a S a+⨯===,612a ∴=,又5620a a +=,58a ∴=,654d a a ∴=-=.故选:C . 2.B 【分析】利用等差数列性质得到21200a =,143600a =,再利用等差数列求和公式得到答案. 【详解】根据题意:小李同学每天跑步距离为等差数列,设为n a ,则123233600a a a a ++==,故21200a =,13141514310800a a a a ++==,故143600a =,则()()11521411151********n S a a a a =+⨯=+⨯=. 故选:B. 3.C 【分析】利用等差数列的性质直接计算求解 【详解】因为a 3+a 7=2a 5=4,所以a 5=2. 故选:C 4.C 【分析】根据题中条件,求出等差数列的公差,进而可得其通项公式. 【详解】因为数列{}n a 为等差数列,11a =,34a =, 则公差为31322a a d -==, 因此通项公式为()33111222n a n n =+-=-. 故选:C. 5.B 【分析】把已知的两式相加得到12018a a +=,再求20S 得解. 【详解】由题得120219318()()()247854a a a a a a +++++=-+=, 所以1201203()54,18a a a a +=∴+=. 所以2012020()10181802S a a =+=⨯=. 故选:B 6.C 【分析】由题设求得等差数列{}n a 的公差d ,即可求得结果. 【详解】32153S a ==,25a ∴=, 12a =,∴公差213d a a =-=, 81727323a a d ∴=+=+⨯=,故选:C. 7.D 【分析】由题设求出数列{}n a 的通项公式,再根据等差数列与等比数列的通项公式的特征,逐项判断,即可得出正确选项. 【详解】 解:(21)[(2)22](2)2(2)n n n n S a b n a b bn a b =---⨯+=+-⋅-+,∴当1n =时,有110S a a ==≠;当2n ≥时,有11()2n n n n a S S a bn b --=-=-+⋅, 又当1n =时,01()2a a b b a =-+⋅=也适合上式,1()2n n a a bn b -∴=-+⋅,令n b a b bn =+-,12n n c -=,则数列{}n b 为等差数列,{}n c 为等比数列,故n n n a b c =,其中数列{}n b 为等差数列,{}n c 为等比数列;故C 错,D 正确;因为11()22n n n a a b bn --+=-⋅⋅,0b ≠,所以{}12n bn -⋅即不是等差数列,也不是等比数列,故AB 错. 故选:D. 【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解,考查学生的计算能力. 8.D 【分析】由等差数列前n 项和性质得3S ,63S S -,96S S -,129S S -构成等差数列,结合已知条件得633S S =和31210S S =计算得结果. 【详解】已知等差数列{}n a 的前项和为n S ,∴3S ,63S S -,96S S -,129S S -构成等差数列, 所以()()633962S S S S S ⋅-=+-,且936S S =,化简解得633S S =.又()()()96631292S S S S S S ⋅-=-+-,∴31210S S =,从而126103S S =.故选:D 【点睛】 思路点睛:(1)利用等差数列前n 项和性质得3S ,63S S -,96S S -,129S S -构成等差数列, (2)()()633962S S S S S ⋅-=+-,且936S S =,化简解得633S S =, (3)()()()96631292S S S S S S ⋅-=-+-,化简解得31210S S =.9.无10.A 【分析】利用等差数列的性质结合已知解得d ,进一步求得2a . 【详解】在等差数列{}n a 中,设公差为d ,由467811a a a =⎧⇒⎨+=⎩444812311a d a d a d =⎧⇒=-⎨+++=⎩,24210a a d ∴=-=. 故选:A 11.B 【分析】利用等差数列的性质,由7916+=a a ,得到88a =,然后由15815S a =求解. 【详解】因为7916+=a a ,所以由等差数列的性质得978216a a a +==, 解得88a =, 所以()11515815151581202a a S a +===⨯=. 故选:B 12.D 【分析】由题知各节气日影长依次成等差数列,设为{}n a ,n S 是其前n 项和,已知条件为985.5S =,14731.5a a a ++=,由等差数列性质即得5a ,4a ,由此可解得d ,再由等差数列性质求得后5项和. 【详解】由题知各节气日影长依次成等差数列,设为{}n a ,n S 是其前n 项和,则()19959985.52a a S a +===(尺),所以59.5a =(尺),由题知1474331.5a a a a ++==(尺),所以410.5a =(尺),所以公差541d a a =-=-, 则()8910111210555522.5a a a a a a a d ++++==+=(尺). 故选:D . 13.D 【分析】设该妇子织布每天增加d 尺,由等差数列的前n 项和公式即可求出结果 【详解】设该妇子织布每天增加d 尺, 由题意知2020192042322S d ⨯=⨯+=, 解得45d =. 故该女子织布每天增加45尺. 故选:D 14.A 【分析】根据条件列方程组,求首项和公差,再根据107891093S S a a a a -=++=,代入求值. 【详解】由条件可知114832362a d a d +=⎧⎪⎨⨯+=⎪⎩,解得:102a d =⎧⎨=⎩, ()10789109133848S S a a a a a d -=++==+=.故选:A 15.B 【分析】由等差数列的通项公式可得47129a a a d +=+,再由1011045100S a d =+=,从而可得结果. 【详解】 解:1011045100S a d =+=,12920a d ∴+=, 4712920a a a d ∴+=+=.故选:B. 16.C【分析】利用等差数列的前n 项和公式可得1216a a +=,即可得113a =,再利用等差数列的性质即可求解. 【详解】设等差数列{}n a 的公差为d ,则()1212121632a a S +==, 所以1216a a +=,即1126a =,所以113a =, 所以()()()2582022051781411a a a a a a a a a a a ++++=++++++111111111122277321a a a a a =+++==⨯=,故选:C 【点睛】关键点点睛:本题的关键点是求出1216a a +=,进而得出113a =,()()()2582022051781411117a a a a a a a a a a a a ++++=++++++=即可求解.17.D 【分析】由等差数列前n 项和公式即可得解. 【详解】由题意,1110,0m m a a a a ++>+<, 所以1()02m m m a a S +=>,111(1)()02m m m a a S ++++=<. 故选:D. 18.D 【分析】利用等差数列的求和公式可判断A 选项的正误;利用作差法结合等差数列的通项公式可判断B 选项的正误;利用p q m n a a a a <结合不等式的基本性质可判断C 选项的正误;利用等差数列的求和公式结合不等式的基本性质可判断D 选项的正误. 【详解】对于A 选项,由于()()1221222p pp p p p a a Sp a a pa ++==+≠,故选项A 错误;对于B 选项,由于m p q n -=-,则()()p q m n m n m n a a a a a p m d a q n d a a ⋅-⋅=+-⋅+--⋅⎡⎤⎡⎤⎣⎦⎣⎦()()()()()22m n m n m n a q n d a q n d a a q n a a d q n d =--⋅+--=----⎡⎤⎡⎤⎣⎦⎣⎦()()()2220q n n m d q n d =-----<,故选项B 错误;对于C 选项,由于1111p q m n m n p q p q p q m n m na a a a a a a a a a a a a a a a ++++==>=+⋅⋅⋅,故选项C 错误;对于D 选项,设0x q n m p =-=->,则()()()20pq mn m x n x mn x n m x -=-+-=---<,从而pq mn <,由于222222p q m n p q pq m n mn +=+⇔++=++,故2222p q m n +>+.()()()()()()111111p q pq p q mn m n m n --=-++<-++=--,故()()22221122p q m n p q p q m n m nS S p q a d m n a d S S +--+--+=++>++=+.()()()()()221111112112224p q p p q q pq p q pq p q S S pa d qa d pqa a d d--+---⎡⎤⎡⎤⋅=+⋅+=++⎢⎥⎢⎥⎣⎦⎣⎦()()()221121124mn m n mn p q mna a d d+---<++()()()221121124m n mn m n mn m n mna a d d S S +---<++=,由此1111p q m n p q p q m n m nS S S S S S S S S S S S +++=>=+,故选项D 正确. 故选:D. 【点睛】关键点点睛:本题考查等差数列中不等式关系的判断,在解题过程中充分利用基本量来表示n a 、n S ,并结合作差法、不等式的基本性质来进行判断. 19.B 【分析】根据等差数列的性质求出103a =,再由求和公式得出答案. 【详解】317102a a a += 1039a ∴=,即103a =()1191019191921935722a a a S +⨯∴===⨯= 故选:B 20.C 【分析】可设(32)n S kn n =+,(21)n T kn n =+,进而求得n a 与n b 的关系式,即可求得结果. 【详解】因为{}n a ,{}n b 是等差数列,且3221n n S n T n +=+, 所以可设(32)n S kn n =+,(21)n T kn n =+,又当2n 时,有1(61)n n n a S S k n -=-=-,1(41)n n n b T T k n -=-=-,∴1215(6121)71(4151)59a kb k ⨯-==⨯-, 故选:C .二、多选题21.ABCD 【分析】由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,对照四个选项可得正确答案. 【详解】对A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对B ,71123581333S =++++++=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-, 可得:135********a a a a a +++⋅⋅⋅+=.故1352019a a a a +++⋅⋅⋅+是斐波那契数列中的第2020项.对D ,斐波那契数列总有21n n n a a a ++=+,则2121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018a a a a a =-2222123201920192020a a a a a a +++⋅⋅⋅⋅⋅⋅+=,故D 正确;故选:ABCD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换. 22.ABC 【分析】因为{}n a 是等差数列,由612S S =可得9100a a +=,利用通项转化为1a 和d 即可判断选项A ;利用前n 项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质961014a d a a d a =++=+即可判断选项C ;由0d <可得6140a a d +=<且60a >,140a <即可判断选项D ,进而得出正确选项.【详解】因为{}n a 是等差数列,前n 项和为n S ,由612S S =得:1267891011120S S a a a a a a -=+++++=,即()91030a a +=,即9100a a +=,对于选项A :由9100a a +=得12170a d +=,可得1:17:2a d =-,故选项A 正确;对于选项B :()()118910181818022a a a a S ++===,故选项B 正确;对于选项C :911691014a a a a a a d d =+=++=+,若0d >,则6140a a d +=>,故选项C 正确;对于选项D :当0d <时,6140a a d +=<,则614a a <-,因为0d <,所以60a >,140a <,所以614a a <,故选项D 不正确, 故选:ABC 【点睛】关键点点睛:本题的关键点是由612S S =得出9100a a +=,熟记等差数列的前n 项和公式和通项公式,灵活运用等差数列的性质即可.23.无24.BC 【分析】由已知条件列方程组,求出公差和首项,从而可求出通项公式和前n 项和公式 【详解】解:设等差数列{}n a 的公差为d , 因为30S =,46a =,所以113230236a d a d ⨯⎧+=⎪⎨⎪+=⎩,解得133a d =-⎧⎨=⎩, 所以1(1)33(1)36n a a n d n n =+-=-+-=-,21(1)3(1)393222n n n n n n nS na d n ---=+=-+=, 故选:BC 25.ACD 【分析】由题可得16a d =-,0d <,21322n d d S n n =-,求出80a d =<可判断A ;利用二次函数的性质可判断B ;求出49,S S 可判断C ;令213022n d dS n n =->,解出即可判断D. 【详解】设等差数列{}n a 的公差为d ,则()5111122+4++100a a a d a d +==,解得16a d =-,10a >,0d ∴<,且()21113+222n n n d d S na d n n -==-,对于A ,81+7670a a d d d d ==-+=<,故A 正确;对于B ,21322n d d S n n =-的对称轴为132n =,开口向下,故6n =或7时,n S 取得最大值,故B 错误;对于C ,4131648261822d d S d d d =⨯-⨯=-=-,9138191822d d S d =⨯-⨯=-,故49S S =,故C 正确;对于D ,令213022n d dS n n =->,解得013n <<,故n 的最大值为12,故D 正确. 故选:ACD. 【点睛】方法点睛:由于等差数列()2111+222n n n d d S na d n a n -⎛⎫==+- ⎪⎝⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值. 26.BCD 【分析】根据定义以及举特殊数列来判断各选项中结论的正误. 【详解】对于A 选项,取n a n =,则()()()422444221111n n a a n n n n n n +⎡⎤⎡⎤-=+-=+-⋅++⎣⎦⎣⎦()()221221n n n =+++不是常数,则{}2n a 不是等方差数列,A 选项中的结论错误; 对于B 选项,()()22111110n n +⎡⎤⎡⎤---=-=⎣⎦⎣⎦为常数,则(){}1n-是等方差数列,B 选项中的结论正确;对于C 选项,若{}n a 是等方差数列,则存在常数p R ∈,使得221n n a a p +-=,则数列{}2na 为等差数列,所以()221kn k n a a kp +-=,则数列{}kn a (*k N ∈,k 为常数)也是等方差数列,C 选项中的结论正确;对于D 选项,若数列{}n a 为等差数列,设其公差为d ,则存在m R ∈,使得n a dn m =+,则()()()()2221112222n n n n n n a a a a a a d dn m d d n m d d +++-=-+=++=++,由于数列{}n a 也为等方差数列,所以,存在实数p ,使得221n n a a p +-=,则()222d n m d d p ++=对任意的n *∈N 恒成立,则()2202d m d d p ⎧=⎪⎨+=⎪⎩,得0p d ==,此时,数列{}n a 为常数列,D 选项正确.故选BCD. 【点睛】本题考查数列中的新定义,解题时要充分利用题中的定义进行判断,也可以结合特殊数列来判断命题不成立,考查逻辑推理能力,属于中等题. 27.AC 【分析】 将3201911111a a e e +≤++变形为32019111101212a a e e -+-≤++,构造函数()1112x f x e =-+,利用函数单调性可得320190a a +≥,再结合等差数列与等比数列性质即可判断正确选项 【详解】 由3201911111a a e e +≤++,可得32019111101212a a e e -+-≤++,令()1112x f x e =-+, ()()1111101111x x x x x e f x f x e e e e --+=+-=+-=++++,所以()1112xf x e =-+是奇函数,且在R 上单调递减,所以320190a a +≥, 所以当数列{}n a 为等差数列时,()320192*********a a S +=≥;当数列{}n a 为等比数列时,且3a ,1011a ,2019a 同号,所以3a ,1011a ,2019a 均大于零, 故()2021202110110T a =>.故选:AC 【点睛】本题考查等差数列与等比数列,考查逻辑推理能力,转化与化归的数学思想,属于中档题 28.AD 【分析】利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列的通项公式,可对A ,B ,D 进行判断,对25,n S n n =-进行配方可对C 进行判断【详解】解:当1n =时,11154a S ==-=-,当2n ≥时,2215[(1)5(1)]26n n n a S S n n n n n -=-=-----=-,当1n =时,14a =-满足上式, 所以26n a n =-,由于()122n n a a n --=≥,所以数列{}n a 为首项为4-,公差为2的等差数列,因为公差大于零,所以{}n a 为单调递增数列,所以A ,D 正确,B 错误, 由于225255()24n S n n n =-=--,而n ∈+N ,所以当2n =或3n =时,n S 取最小值,且最小值为6-,所以C 错误, 故选:AD 【点睛】此题考查,n n a S 的关系,考查由递推式求通项并判断等差数列,考查等差数列的单调性和前n 项和的最值问题,属于基础题 29.AD 【分析】运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由0n S <解不等式可判断D .【详解】等差数列{}n a 的前n 项和为n S ,公差0d ≠,由690S =,可得161590a d +=,即12530a d +=,①由7a 是3a 与9a 的等比中项,得2739a a a =,即()()()2111628a d a d a d +=++,化为1100a d +=,②由①②解得120a =,2d =-,则202(1)222n a n n =--=-,21(20222)212n S n n n n =+-=-,由22144124n S n ⎛⎫=--+ ⎪⎝⎭,可得10n =或11时,n S 取得最大值110; 由2102n S n n -<=,解得21n >,则n 的最小值为22.故选:AD 【点睛】本题考查等差数列的通项公式和求和公式,以及等比中项的性质,二次函数的最值求法,考查方程思想和运算能力,属于中档题. 30.ABC 【分析】根据等差数列性质依次分析即可得答案. 【详解】解:对于A.,若59S S =,则67890a a a a +++=,所以781140a a a a +=+=,所以()114141402a a S +==,故A 选项正确;对于B 选项,若59S S =,则780+=a a ,由于10a >,公差0d ≠,故0d <,故780,0a a ><,所以7S 是n S 中最大的项;故B 选项正确;C. 若67S S >,则70a <,由于10a >,公差0d ≠,故0d <,故80a <,6a 的符号不定,故必有78S S >,56S S >无法确定;故C 正确,D 错误. 故选:ABC . 【点睛】本题考查数列的前n 项和的最值问题与等差数列的性质,是中档题.。
等差数列练习题及答案

等差数列练习题及答案等差数列练习题及答案数学作为一门基础学科,无论在学校还是在社会生活中都扮演着重要的角色。
其中,等差数列是数学中的一个重要概念,也是我们常见的数学问题之一。
本文将为大家提供一些等差数列的练习题及答案,以帮助大家更好地理解和掌握这个概念。
练习题一:已知等差数列的首项为3,公差为5,求第10项的值。
解答一:根据等差数列的性质,第n项的值可以通过公式an = a1 + (n-1)d来计算。
其中,an表示第n项的值,a1表示首项的值,d表示公差。
代入已知条件,可得第10项的值为a10 = 3 + (10-1)5 = 3 + 45 = 48。
练习题二:已知等差数列的前n项和为Sn = 2n^2 + n,求该等差数列的公差。
解答二:根据等差数列的性质,前n项和可以通过公式Sn = n/2(a1 + an)来计算。
代入已知条件,可得2n^2 + n = n/2(a1 + a1 + (n-1)d)。
化简后得到2n^2 + n = n/2(2a1 + (n-1)d)。
进一步化简可得4n^2 + 2n = n(2a1 + (n-1)d)。
由于等差数列的前n项和是一个关于n的二次函数,所以4n^2 + 2n = n(2a1 + (n-1)d)也是一个关于n的二次函数。
两个二次函数相等,意味着它们的系数相等。
根据系数相等的条件,可得4 = 2a1 + (n-1)d,即2a1 + (n-1)d = 4。
由此可得公差d = (4 - 2a1)/(n-1)。
练习题三:已知等差数列的前n项和为Sn = 3n^2 + 2n,求该等差数列的首项。
解答三:根据等差数列的性质,前n项和可以通过公式Sn = n/2(a1 + an)来计算。
代入已知条件,可得3n^2 + 2n = n/2(a1 + a1 + (n-1)d)。
化简后得到3n^2 + 2n = n/2(2a1 + (n-1)d)。
进一步化简可得6n^2 + 4n =n(2a1 + (n-1)d)。
等差数列的练习题

等差数列的练习题等差数列的练习题等差数列是初中数学中的重要概念之一,也是数学学习中的基础知识。
它在数学问题的解决中起着重要的作用,不仅能够培养我们的逻辑思维能力,还能够帮助我们建立起数学思维的框架。
下面,我将给大家提供一些等差数列的练习题,希望能够帮助大家更好地掌握这一概念。
1. 某等差数列的首项是3,公差是4,求这个数列的前10项。
解析:根据等差数列的通项公式an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。
代入题目中的数据,得到an = 3 + (n-1)4。
将n分别取1到10,即可求得这个等差数列的前10项。
2. 某等差数列的首项是7,公差是-2,求这个数列的前8项的和。
解析:根据等差数列的求和公式Sn = (a1 + an) * n / 2,其中Sn表示前n项的和。
代入题目中的数据,得到Sn = (7 + (7 + (8-1)(-2))) * 8 / 2。
计算得到Sn = 28。
3. 某等差数列的前5项的和是20,首项是3,求公差。
解析:根据等差数列的求和公式Sn = (a1 + an) * n / 2,代入题目中的数据,得到20 = (3 + (3 + (5-1)d)) * 5 / 2。
解方程得到d = 2。
4. 某等差数列的前n项的和是3n² + 5n,公差是多少?解析:根据等差数列的求和公式Sn = (a1 + an) * n / 2,代入题目中的数据,得到3n² + 5n = (a1 + (a1 + (n-1)d)) * n / 2。
整理方程得到3n² + 5n = (2a1 + (n-1)d) * n。
将n取任意正整数,得到2a1 + (n-1)d = 3n + 5。
由于等差数列的首项是a1,公差是d,所以2a1 + (n-1)d是等差数列的第n项。
因此,公差为3。
5. 某等差数列的前n项的和是n² + 3n,求这个数列的首项。
(完整版)四年级奥数等差数列练习题

等差数列例1:已知数列5,8,11,14,17……求(1)这个数列的第201项是多少?(2)176是这个数列的第几项?练1:已知数列3,9,15,21,27……求:(1)这个数列第100项是多少?(2) 147是数列的第几项?525是数列的第几项?练2:已知数列14,23,32,41 (455)求(1)这个数列共有多少项?(2)这个数列第25项是多少?第33项是多少?练3:医院为病床编号依次为8,14,20,26……,问编号为284的病床是第几张?例2:已知等差数列的末项是162,公差是7,项数是22求(1)这个等差数列的首项是几?(2)这个数列的第15项是多少?第18项呢?练1:已知等差数的公差hi5,末项是165,数列共30项(1):这个数列首项是多少?(2):这个数列第11项,第17项各是多少?练2:一个数列首项为12,第8项为96,求它的第10项?练3:被4除余1的两位数共有多少个?例3:如果一个等差数列第4项为21,第6项为33,求它的第8项?练1:如果一个等差数列第5项是19,第8项是61,求它的第11项?练2:如果一个等差数列第3项是10,第7项是26,求它的第12项?练3:如果一个等差数列第2项是10,第6项是18,求它的第110项?例4:36个学生排除一排玩报数游戏,后一个同学总比前一个多数8,已知最后一个同学报256,第一个同学是几?练1:仓库里有一叠被编上号的数,共40本,已知每个下面一本书都比上面一本书的编号多5,最后一本编号为225,问第一本编号是几?练2:学校举办运动会,共54人参加,每个人都有参赛号码,已知前一人号码比后一人的号码少4,最后一个人的号码是215,第一人的号码是多少?练3:地上将粗细均匀的圆木,堆成一堆,最上面一层有6跟圆木,每向下一层增加一根,共堆28层。
最下面一层有多少跟圆木?例5:一个九层书架最上面一层放39本书,最下面一层放15本书,已知相邻两层书相差本书相等,问第5层放了多少本书?练1:有一排用等差数列编码的彩色小旗,第1面上的号码为37,第8面小旗的编号为387,你知道第7面小旗的编码吗?练2:在124和245之间插入10个数后,使它成为等差数列,这10个数中,最小是几?最大是几?练3:游乐园的智慧梯,最高一层宽60cm,最低一级宽160cm,中间还有9级,求第5级的宽度?课后练习(1):有一个数列,2,6,10,14……104,这个数列共有多少项?(2):有一个数列,2,7,12,17……,这个数列的第100项是多少?(3):有一个数列,1,4,7,10……,求这个等差数列的第50项是多少?(4)有一个等差数列,3,7,11,15…… 359是这个数列的第几项?(5):3,9,15,21……中,381是第几项?(6):在一个等差数列中,首项=1,末项=57,公差=2,这个数列共有多少项?(7):有一列数是这样排列的,3,11,19,27,35,43,51……,求第12个数是多少?(8):在4和25中间添上6个数,变成一个等差数列,公差是多少?写出这个数列?(9):糖果生产商为机器编号,依次为1,7,13,19,25……,问第19个的编号是多少?(10):一个等差数列第5项是19,第8项是61,求它的第11项?(11):有一串数,第一个数是5,以后每个数都比前一个大5,最后一个数是90,你能算出这一串数有几个数吗?(12):有20个数,第一个数是9,以后每个数都比前一个大2,你能算出第20个数是多少吗?(13):被4除余1的两位数有多少个?(14):如果一个等差数列第20项是46,第22项是54,求第25项是多少?(15):梯子的最高一级宽30cm,最低一级宽100cm,中间还有11级,各级的宽度成等差数列,正中一级的宽度是多少?。
等差数列练习题

等差数列练习题等差数列练习题(一):一、选择题1.在等差数列{an}中,a2=5,a6=17,则a14=()A.45 B.41C.39 D.372.在等差数列{an}中,a1=21,a7=18,则公差d=()A。
12 B。
13C.-12 D.-13解析:选C。
∵a7=a1+(7-1)d=21+6d=18,∴d=-12。
解析:选B。
a6=a2+(6-2)d=5+4d=17,解得d=3。
所以a14=a2+(14-2)d=5+12×3=41。
3.已知数列{an}对任意的n∈N*,点Pn(n,an)都在直线y =2x+1上,则{an}为()A.公差为2的等差数列 B.公差为1的等差数列C.公差为-2的等差数列 D.非等差数列解析:选A。
an=2n+1,∴an+1-an=2,应选A。
4.数列{an}是首项为2,公差为3的等差数列,数列{bn}是首项为-2,公差为4的等差数列.若an=bn,则n的值为()A.4 B.5C.6 D.7解析:选B。
an=2+(n-1)×3=3n-1,bn=-2+(n-1)×4=4n-6,令an=bn得3n-1=4n-6,∴n=5。
5.下方数列中,是等差数列的有()①4,5,6,7,8,…②3,0,-3,0,-6,…③0,0,0,0,…④110,210,310,410,…A.1个 B.2个C.3个 D.4个解析:选C。
利用等差数列的定义验证可知①、③、④是等差数列.6.已知m和2n的等差中项是4,2m和n的等差中项是5,则m 和n的等差中项是()A.2 B.3C.6 D.9解析:选B。
由题意得m+2n=82m+n=10,∴m+n=6, ∴m、n的等差中项为3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列数列练习题(5篇)第一篇:等差数列数列练习题一、选择题35241.已知为等差数列,1A.-1B.1C.3D.7 a+a+a=105,a+a+a6=99,则a20等于()2.设Sn是等差数列{an}的前n项和,已知a2=3,a6=11,则S7等于()A.13B.35C.49D. 633.等差数列{an}的前n项和为Sn,且S3 =6,a1=4,则公差d等于5C.-2D 3 34.已知{an}为等差数列,且a7-2a4=-1, a3=0,则公差d=A.1B11C.D.2 225.若等差数列{an}的前5项和S5=25,且a2=3,则a7=()A.-2B.-A.12B.13C.14D.156.在等差数列{an}中,a2+a8=4,则其前9项的和S9等于()A.18B 27C36D 97.已知{an}是等差数列,a1+a2=4,a7+a8=28,则该数列前10项和S10等于()A.64B.100C.110D.1208.记等差数列{an}的前n项和为Sn,若a1=1,S4=20,则S6=()2A.16B.24C.36D.489.等差数列{an}的前n项和为Sx若a2=1,a3=3,则S4=()A.12B.10C.8D.610.设等差数列{an}的前n项和为Sn,若S3=9,S6=36,则a7+a8+a9=()A.63B.45C.36D.2711.已知等差数列{an}中,a7+a9=16,a4=1,则a12的值是()A.15二、填空题 B.30 C.31 D.6412.已知等差数列{an}的前n项和为Sn,若S12=21,则a2+a5+a8+a11=13.设等差数列{an}的前n项和为Sn,若S9=72,则a2+a4+a9=14.设等差数列{an}的前n项和为Sn,若a5=5a3则S9=S515.等差数列{an}的前n项和为Sn,且6S5-5S3=5,则a4=已知等差数列{an}的公差是正整数,且a3⋅a7=-12,a4+a6=-4,则前10项的和S10 16.三、解答题17.在等差数列{an}中,a4=0.8,a11=2.2,求a51+a52+Λ+a80.18、设等差数列{an}的前n项和为Sn,已知a3=12,S12>0,S13<0,①求公差d的取值范围;②S1,S2,Λ,S12中哪一个值最大?并说明理由.19、设等差数列{an}的前n项的和为S n ,且S 4 =-62, S 6 =-75,求:(1){an}的通项公式a n 及前n项的和S n ;(2)|a 1 |+|a 2 |+|a 3 |+……+|a 14 |.20.已知等差数列{an}中,a3a7=-16,a4+a6=0求{an}前n项和sn.1第二篇:数列四等差数列1、(2009湖北卷文)已知{an}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16.(Ⅰ)求数列{an}的通项公式:(Ⅱ)若数列{an}和数列{bn}满足等式:an=={bn}的前n项和Sn2、(重庆市重庆八中2011届高三第四次月考理)设数列{an}的前n项和为Sn,a1=1,an=(1)求数列{an}的通项公式an;s11s22Snn+2(n-1),(n∈N).*b12+b22+b32+...bn2n(n为正整数),求数列snn(2)是否存在正整数n使得++....+求出n值;-(n-1)=2011?若存在,若不存在,说明理由.3、(北京龙门育才学校2011届高三上学期第三次月考)在数列{an}中,a1=bn=1an(n∈N).*13,并且对任意n∈N*,n≥2都有an⋅an-1=an-1-an成立,令(Ⅰ)求数列{bn}的通项公式;ann(Ⅱ)求数列{}的前n项和Tn.4、(江苏泰兴市重点中学2011届)已知数列{an}是等差数列,cn=an-an+1(n∈N*)(1)判断数列{cn}是否是等差数列,并说明理由;(2)如果a1+a3+Λ+a25=130,a2+a4+Λ+a26=143-13k(k为常数数列{cn}的通项公式;(3)在(2)的条件下,若数列{cn}得前n项和为Sn,问是否存在这样的实数k,使Sn当且仅当n=12时取得最大值。
若存在,求出k的取值范围;若不存在,说明理由。
),试写出数列四大题练习第三篇:等差数列练习题等差数列练习题班级:__姓名:____1.已知等差数列{an}中,a5+a9-a7=10,记Sn=a1+a2+…+an,则S13的值为()A.130B.260C.156D.1682.等差数列{an}的前n项和为Sn,且S3=6,a3=4,则公差d 等于()A.1B.5C.2D.33.设Sa55S9n是等差数列{an}的前n项和,若a=9,则S()A.1B.-1C.2D.14.设{an}为等差数列,公差d=-2,Sn为其前n项和,若S10=S11,则a1等于()A.18B.20C.22D.245.已知{an}是等差数列,a1=-9,S3=S7,那么使其前n项和Sn最小的n是()A.4B.5C.6D.76.在等差数列{aaa1n}中,若4+a6+a8+10+a12=120,则a9-311的值为()A.14B.15C.16D.177.等差数列{an}的前n项和满足S20=S40,下列结论中正确的是()A.S30是Sn中的最大值B.S30是Sn中的最小值C.S30=0D.S60=08.已知两个等差数列{aAn7n+45ann}和{bn}的前n项和分别为An和Bn,且B=+3,则使得bnnn 整数的正整数n的个数是()A.2B.3C.4D.5 9.已知等差数列{an}中,a2=6,a5=15,若bn=a3n,则数列{bn}的前9项和等于________. 10.设Sn为等差数列{an}的前n项和,若S3=3,S6=24,则a9=__15______.11.等差数列{an}的通项公式是an=2n+1,其前n 项和为S⎧⎪Sn⎫⎪n,则数列⎨⎪⎩n⎭⎪的前10项和为________.12.若一个等差数列的前5项之和为34,最后5项之和为146,且所有项的和为360,求这个数列的项数为________.13.已知数列{an}是等差数列.(1)若Sn=20,S2n=38,求S3n;(2)若项数为奇数,且奇数项和为44,偶数项和为33,求数列的中间项和项数.14.已知数列{a的前n项和为S⎛S⎫n}n,点 ⎝n,nn-1⎪⎭(n∈N+)均在函数y=3x-2的图像上,求数列{an}的通项公式。
15.(1)在等差数列{an}中,已知a1=20,前n项和为Sn,且S10=S15,求当n取何值时,Sn取得最大值,并求出它的最大值;(2)已知数列{an}的通项公式是an=4n-25,求数列{|an|}的前n项和。
16.在数列{an}中,a1=1,3anan-1+an-an-1=0(n≥2).(1)证明数列{1a是等差数列;(2)求数列{an}的通项。
n第四篇:数列专题一等差数列知识点数列专题一等差数列知识点——等差、等比数列是重要的、基本的数列,许多其它数列要转化成这种数列来处理,要站好这块地盘一、建构知识网络1.定义:an+1-an=d(常数)(n∈N*)2.通项公式:an=a1+(n-1)d,推广:an=am+(n-m)dd=an-a1a-am,d=n是点列(n,an)所在直线的斜率.n-1n-mddn(a1+an)n(n-1)=na1+d=n2+(a1-)n 2222变式:由于“m+n=p+q,则am+an=ap+aq”,所以只要有p+q=n+1,3.前n项的和:Sn=则 nan+1 2224.等差中项:若a、b、c等差数列,则b为a与c的等差中项:2b=a+cSn=n(ap+aq),特别的,当n为奇数时,Sn=5.性质:设{an}是等差数列,公差为d,则(1)m+n=p+q,则am+an=ap+aq(2)an,an+m,an+2m,Λ组成公差为md的等差数列.(3)Sn,S2n-Sn,S3n-S2n,Λ组成公差为n2d的等差数列.6.等差数列的判定方法(n∈N*)(1)定义法: an+1-an=d是常数(2)等差中项法:2an+1=an+an+2(3)通项法:an=a1+(n-1)d(4)前n项和法:Sn=An2+Bn7.a1,d,n,an,Sn知三求二, 可考虑统一转化为两个基本量;或利用数列性质,三数:a-d,a,a+d;四数:a-3d,a-d,a+d,a-3d8.会从函数角度理解和处理数列问题,等差数列性质:单调性① 当d>0时,数列an=a1+(n-1)d单调递增,前n项的和Sn有最小值;② 当d<0时,数列an=a1+(n-1)d单调递减,前n项的和Sn有最大值;③ 当d=0时,数列{an}为常数列;④ |an|的性质。
第五篇:数列简单练习题等差数列一、填空题1.等差数列2,5,8,…的第20项为___________.2.在等差数列中已知a1=12, a6=27,则d=___________3.在等差数列中已知d=-,a7=8,则a1=_______________4.(a+b)2与(a-b)2的等差中项是_______________5.等差数列-10,-6,-2,2,…前___项的和是546.正整数前n个数的和是___________7.数列{an}的前n项和Sn=3n-n2,则an=___________ 8.已知数列{an}的通项公式an=3n-50,则当n=___时,Sn的值最小,Sn的最小值是_______。
13二、选择题1.在等差数列{an}中a3+a11=40,则a4-a5+a6+a7+a8-a9+a10的值为()A.84B.72C.60D.48 2.在等差数列{an}中,前15项的和S15=90,a8为()A.6B.3C.12D.43.等差数列{an}中, a1+a2+a3=-24,a18+a19+a20=78,则此数列前20项的和等于()A.160B.180C.200D.220 4.在等差数列{an}中,若a3+a4+a5+a6+a7=450,则a2+a8的值等于()A.45B.75C.180D.300 5.若lg2,lg(2x-1),lg(2x+3)成等差数列,则x的值等于()A.0B.log2C.32D.0或326.数列3,7,13,21,31,…的通项公式是()A.an=4n-B.an=n3-n2+n+2C.an=n2+n+1D.不存在7.等差数列中连续四项为a,x,b,2x,那么a :b 等于()A、B、C、或 1D、8.等差数列{an}中,a15=33,a45=153,则217是这个数列的()A、第60项B、第61项C、第62项D、不在这个数列中三、计算题1.根据下列各题中的条件,求相应的等差数列{an}的有关未知数:51a1=,d=-,Sn=-5,求n 及an;(2)d=2,n=15,an=-10,求a1及Sn(1)662.设等差数列{an}的前n项和公式是Sn=5n2+3n,求它的前3项,并求它的通项公式3.如果等差数列{an}的前4项的和gg是2,前9项的和是-6,求其前n项和的公式。