经典等差数列性质练习题(含答案)

经典等差数列性质练习题(含答案)
经典等差数列性质练习题(含答案)

等差数列基础习题选(附有详细解答)

一.选择题(共26小题)

1.已知等差数列{a n}中,a3=9,a9=3,则公差d的值为()

A.B.1C.D.﹣1

2.已知数列{a n}的通项公式是a n=2n+5,则此数列是()

A.以7为首项,公差为2的等差数列B.以7为首项,公差为5的等差数列

C.以5为首项,公差为2的等差数列D.不是等差数列

3.在等差数列{a n}中,a1=13,a3=12,若a n=2,则n等于()

A.23 B.24 C.25 D.26

4.等差数列{a n}的前n项和为S n,已知S3=6,a4=8,则公差d=()

A.一1 B.2C.3D.一2

5.两个数1与5的等差中项是()

A.1B.3C.2D.

6.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A.﹣2 B.﹣3 C.﹣4 D.﹣

7.(2012?福建)等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()

A.1B.2C.3D.4

8.数列的首项为3,为等差数列且,若,,则=()A.0B.8C.3D.11

9.已知两个等差数列5,8,11,…和3,7,11,…都有100项,则它们的公共项的个数为()

A.25 B.24 C.20 D.19

10.设S n为等差数列{a n}的前n项和,若满足a n=a n﹣1+2(n≥2),且S3=9,则a1=()

A.5B.3C.﹣1 D.1

11.(2005?黑龙江)如果数列{a n}是等差数列,则()

A.a1+a8>a4+a5B.a1+a8=a4+a5C.a1+a8<a4+a5D.a1a8=a4a5 12.(2004?福建)设S n是等差数列{a n}的前n项和,若=()

A.1B.﹣1 C.2D.

A.﹣1 B.1C.3D.7

14.在等差数列{a n}中,a2=4,a6=12,,那么数列{}的前n项和等于()

A.B.C.D.

15.已知S n为等差数列{a n}的前n项的和,a2+a5=4,S7=21,则a7的值为()

A.6B.7C.8D.9

16.已知数列{a n}为等差数列,a1+a3+a5=15,a4=7,则s6的值为()

A.30 B.35 C.36 D.24 17.(2012?营口)等差数列{a n}的公差d<0,且,则数列{a n}的前n项和S n取得最大值时的项数n是

()

A.5B.6C.5或6 D.6或7

18.(2012?辽宁)在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=()

A.58 B.88 C.143 D.176

19.已知数列{a n}等差数列,且a1+a3+a5+a7+a9=10,a2+a4+a6+a8+a10=20,则a4=()

A.﹣1 B.0C.1D.2

20.(理)已知数列{a n}的前n项和S n=n2﹣8n,第k项满足4<a k<7,则k=()

A.6B.7C.8D.9

21.数列a n的前n项和为S n,若S n=2n2﹣17n,则当S n取得最小值时n的值为()

A.4或5 B.5或6 C.4D.5

22.等差数列{a n}中,a n=2n﹣4,则S4等于()

A.12 B.10 C.8D.4

23.若{a n}为等差数列,a3=4,a8=19,则数列{a n}的前10项和为()

A.230 B.140 C.115 D.95

24.等差数列{a n}中,a3+a8=5,则前10项和S10=()

A.5B.25 C.50 D.100

25.设S n是公差不为0的等差数列{a n}的前n项和,且S1,S2,S4成等比数列,则等于()

A.1B.2C.3D.4

26.设a n=﹣2n+21,则数列{a n}从首项到第几项的和最大()

A.第10项B.第11项C.第10项或11项D.第12项

二.填空题(共4小题)

27.如果数列{a n}满足:=_________.

28.如果f(n+1)=f(n)+1(n=1,2,3…),且f(1)=2,则f(100)=_________.

29.等差数列{a n}的前n项的和,则数列{|a n|}的前10项之和为_________.

30.已知{a n}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16.

(Ⅰ)求数列{a n}的通项公式:

(Ⅱ)若数列{a n}和数列{b n}满足等式:a n==(n为正整数),求数列{b n}的前n项和S n.

参考答案与试题解析

一.选择题(共26小题)

1.已知等差数列{a n}中,a3=9,a9=3,则公差d的值为()

A.B.1C.D.﹣1

考点:等差数列.

专题:计算题.

分析:

本题可由题意,构造方程组,解出该方程组即可得到答案.

解答:解:等差数列{a n}中,a3=9,a9=3,

由等差数列的通项公式,可得

解得,即等差数列的公差d=﹣1.

故选D

点评:本题为等差数列的基本运算,只需构造方程组即可解决,数基础题.

2.已知数列{a n}的通项公式是a n=2n+5,则此数列是()

A.以7为首项,公差为2的等差数列B.以7为首项,公差为5的等差数列

C.以5为首项,公差为2的等差数列D.不是等差数列

考点:等差数列.

专题:计算题.

分析:直接根据数列{a n}的通项公式是a n=2n+5求出首项,再把相邻两项作差求出公差即可得出结论.

解答:解:因为a n=2n+5,

所以a1=2×1+5=7;

a n+1﹣a n=2(n+1)+5﹣(2n+5)=2.

故此数列是以7为首项,公差为2的等差数列.

故选A.

点评:本题主要考查等差数列的通项公式的应用.如果已知数列的通项公式,可以求出数列中的任意一项.

3.在等差数列{a n}中,a1=13,a3=12,若a n=2,则n等于()

A.23 B.24 C.25 D.26

考点:等差数列.

专题:综合题.

分析:根据a1=13,a3=12,利用等差数列的通项公式求得d的值,然后根据首项和公差写出数列的通项公式,让其等于2得到关于n的方程,求出方程的解即可得到n的值.

解答:

解:由题意得a3=a1+2d=12,把a1=13代入求得d=﹣,

则a n=13﹣(n﹣1)=﹣n+=2,解得n=23

故选A

点评:此题考查学生灵活运用等差数列的通项公式化简求值,是一道基础题.

4.等差数列{a n}的前n项和为S n,已知S3=6,a4=8,则公差d=()

A.一1 B.2C.3D.一2

考点:等差数列.

专题:计算题.

分析:根据等差数列的前三项之和是6,得到这个数列的第二项是2,这样已知等差数列的;两项,根据等差数列的通项公式,得到数列的公差.

解答:解:∵等差数列{a n}的前n项和为S n,

S3=6,

∴a2=2

∵a4=8,

∴8=2+2d

∴d=3,

故选C.

点评:本题考查等差数列的通项,这是一个基础题,解题时注意应用数列的性质,即前三项的和等于第二项的三倍,这样可以简化题目的运算.

5.两个数1与5的等差中项是()

A.1B.3C.2D.

考点:等差数列.

分析:

由于a,b的等差中项为,由此可求出1与5的等差中项.

解答:

解:1与5的等差中项为:=3,

故选B.

点评:

本题考查两个数的等差中项,牢记公式a,b的等差中项为:是解题的关键,属基础题.

6.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A.﹣2 B.﹣3 C.﹣4 D.﹣

考点:等差数列.

专题:计算题.

分析:

设等差数列{a n}的公差为d,因为数列前六项均为正数,第七项起为负数,所以,结合公差为整数进而求出数列的公差.

解答:解:设等差数列{a n}的公差为d,

所以a6=23+5d,a7=23+6d,

又因为数列前六项均为正数,第七项起为负数,

所以,

因为数列是公差为整数的等差数列,

所以d=﹣4.

故选C.

点评:解决此类问题的关键是熟练掌握等差数列的通项公式,并且结合正确的运算.

7.(2012?福建)等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()

A.1B.2C.3D.4

考点:等差数列的通项公式.

专题:计算题.

分析:设数列{a n}的公差为d,则由题意可得2a1+4d=10,a1+3d=7,由此解得d的值.

解答:解:设数列{a n}的公差为d,则由a1+a5=10,a4=7,可得2a1+4d=10,a1+3d=7,解得d=2,故选B.

点评:本题主要考查等差数列的通项公式的应用,属于基础题.

8.数列的首项为3,为等差数列且,若,,则=()A.0B.8C.3D.11

考点:等差数列的通项公式.

专题:计算题.

分析:先确定等差数列的通项,再利用,我们可以求得的值.

解答:解:∵为等差数列,,,

∴b n=b3+(n﹣3)×2=2n﹣8

∴b8=a8﹣a1

∵数列的首项为3

∴2×8﹣8=a8﹣3,

∴a8=11.

故选D

点评:本题考查等差数列的通项公式的应用,由等差数列的任意两项,我们可以求出数列的通项,是基础题.

9.已知两个等差数列5,8,11,…和3,7,11,…都有100项,则它们的公共项的个数为()

A.25 B.24 C.20 D.19

考点:等差数列的通项公式.

专题:计算题.

分析:(法一):根据两个等差数列的相同的项按原来的先后次序组成一个等差数列,且公差为原来两个公差的最小公倍数求解,

(法二)由条件可知两个等差数列的通项公式,可用不定方程的求解方法来求解.

解答:解法一:设两个数列相同的项按原来的前后次序组成的新数列为{a n},则a1=11

∵数列5,8,11,…与3,7,11,…公差分别为3与4,

∴{a n}的公差d=3×4=12,

∴a n=11+12(n﹣1)=12n﹣1.

又∵5,8,11,…与3,7,11,…的第100项分别是302与399,

∴a n=12n﹣1≤302,即n≤25.5.

又∵n∈N*,

∴两个数列有25个相同的项.

故选A

解法二:设5,8,11,与3,7,11,分别为{a n}与{b n},则a n=3n+2,b n=4n﹣1.

设{a n}中的第n项与{b n}中的第m项相同,

即3n+2=4m﹣1,∴n=m﹣1.

又m、n∈N*,可设m=3r(r∈N*),得n=4r﹣1.

根据题意得1≤3r≤100 1≤4r﹣1≤100 解得≤r≤

∵r∈N*

从而有25个相同的项

故选A

点评:解法一利用了等差数列的性质,解法二利用了不定方程的求解方法,对学生的运算能力及逻辑思维能力的要求较高.

10.设S n为等差数列{a n}的前n项和,若满足a n=a n﹣1+2(n≥2),且S3=9,则a1=()

考点:等差数列的通项公式.

专题:计算题.

分析:根据递推公式求出公差为2,再由S3=9以及前n项和公式求出a1的值.

解答:解:∵a n=a n﹣1+2(n≥2),∴a n﹣a n﹣1=2(n≥2),

∴等差数列{a n}的公差是2,

由S3=3a1+=9解得,a1=1.

故选D.

点评:本题考查了等差数列的定义,以及前n项和公式的应用,即根据代入公式进行求解.

11.(2005?黑龙江)如果数列{a n}是等差数列,则()

A.a1+a8>a4+a5B.a1+a8=a4+a5C.a1+a8<a4+a5D.a1a8=a4a5

考点:等差数列的性质.

分析:用通项公式来寻求a1+a8与a4+a5的关系.

解答:解:∵a1+a8﹣(a4+a5)=2a1+7d﹣(2a1+7d)=0

∴a1+a8=a4+a5

∴故选B

点评:本题主要考查等差数列通项公式,来证明等差数列的性质.

12.(2004?福建)设S n是等差数列{a n}的前n项和,若=()

A.1B.﹣1 C.2D.

考点:等差数列的性质.

专题:计算题.

分析:充分利用等差数列前n项和与某些特殊项之间的关系解题.

解答:解:设等差数列{a n}的首项为a1,由等差数列的性质可得

a1+a9=2a5,a1+a5=2a3,

∴====1,

故选A.

点评:本题主要考查等差数列的性质、等差数列的前n项和公式以及等差中项的综合应用,已知等差数列{a n}的前n项和为S n,则有如下关系S2n﹣1=(2n﹣1)a n.

13.(2009?安徽)已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于()

A.﹣1 B.1C.3D.7

考点:等差数列的性质.

分析:根据已知条件和等差中项的性质可分别求得a3和a4的值,进而求得数列的公差,最后利用等差数列的通项公式求得答案.

解答:解:由已知得a1+a3+a5=3a3=105,

a2+a4+a6=3a4=99,

∴a3=35,a4=33,∴d=a4﹣a3=﹣2.

∴a20=a3+17d=35+(﹣2)×17=1.

故选B

点评:本题主要考查了等差数列的性质和等差数列的通项公式的应用.解题的关键是利用等差数列中等差中项的性质求得a3和a4.

14.在等差数列{a n}中,a2=4,a6=12,,那么数列{}的前n项和等于()

A.B.C.D.

考点:数列的求和;等差数列的性质.

专题:计算题.

分析:求出等差数列的通项,要求的和是一个等差数列与一个等比数列的积构成的数列,利用错位相减法求出数列的前n项的和.

解答:解:∵等差数列{a n}中,a2=4,a6=12;

∴公差d=;

∴a n=a2+(n﹣2)×2=2n;

∴;

∴的前n项和,

=

两式相减得

=

点评:求数列的前n项的和,先判断通项的特点,据通项的特点选择合适的求和方法.

15.已知S n为等差数列{a n}的前n项的和,a2+a5=4,S7=21,则a7的值为()

A.6B.7C.8D.9

考点:等差数列的性质.

专题:计算题.

分析:由a2+a5=4,S7=21根据等差数列的性质可得a3+a4=a1+a6=4①,根据等差数列的前n项和公式可得,

,联立可求d,a1,代入等差数列的通项公式可求

解答:解:等差数列{a n}中,a2+a5=4,S7=21

根据等差数列的性质可得a3+a4=a1+a6=4①

根据等差数列的前n项和公式可得,

所以a1+a7=6②

②﹣①可得d=2,a1=﹣3

所以a7=9

故选D

点评:本题主要考查了等差数列的前n项和公式及等差数列的性质的综合应用,属于基础试题.

16.已知数列{a n}为等差数列,a1+a3+a5=15,a4=7,则s6的值为()

A.30 B.35 C.36 D.24

考点:等差数列的性质.

专题:计算题.

分析:利用等差中项的性质求得a3的值,进而利用a1+a6=a3+a4求得a1+a6的值,代入等差数列的求和公式中求得答案.

解答:解:a1+a3+a5=3a3=15,

∴a3=5

∴a1+a6=a3+a4=12

∴s6=×6=36

故选C

点评:本题主要考查了等差数列的性质.特别是等差中项的性质.

17.(2012?营口)等差数列{a n}的公差d<0,且,则数列{a n}的前n项和S n取得最大值时的项数n是

()

A.5B.6C.5或6 D.6或7

考点:等差数列的前n项和;等差数列的通项公式.

专题:计算题.

分析:由,知a

1+a11=0.由此能求出数列{a n}的前n项和S n取得最大值时的项数n.

解答:解:由,

知a1+a11=0.

∴a6=0,

故选C.

点评:本题主要考查等差数列的性质,求和公式.要求学生能够运用性质简化计算.

18.(2012?辽宁)在等差数列{a n}中,已知a4+a8=16,则该数列前11项和S11=()

A.58 B.88 C.143 D.176

考点:等差数列的性质;等差数列的前n项和.

专题:计算题.

分析:

根据等差数列的定义和性质得a1+a11=a4+a8=16,再由S11=运算求得结果.

解答:

解:∵在等差数列{a n}中,已知a4+a8=16,∴a1+a11=a4+a8=16,∴S11==88,

故选B.

点评:本题主要考查等差数列的定义和性质,等差数列的前n项和公式的应用,属于中档题.

19.已知数列{a n}等差数列,且a1+a3+a5+a7+a9=10,a2+a4+a6+a8+a10=20,则a4=()

A.﹣1 B.0C.1D.2

考点:等差数列的通项公式;等差数列的前n项和.

专题:计算题.

分析:由等差数列得性质可得:5a5=10,即a5=2.同理可得5a6=20,a6=4,再由等差中项可知:a4=2a5﹣a6=0 解答:解:由等差数列得性质可得:a1+a9=a3+a7=2a5,又a1+a3+a5+a7+a9=10,

故5a5=10,即a5=2.同理可得5a6=20,a6=4.

再由等差中项可知:a4=2a5﹣a6=0

故选B

点评:本题考查等差数列的性质及等差中项,熟练利用性质是解决问题的关键,属基础题.

20.(理)已知数列{a n}的前n项和S n=n2﹣8n,第k项满足4<a k<7,则k=()

A.6B.7C.8D.9

考点:等差数列的通项公式;等差数列的前n项和.

专题:计算题.

分析:

先利用公式a n=求出a n,再由第k项满足4<a k<7,建立不等式,求出k的值.

解答:

解:a n=

=

∵n=1时适合a n=2n﹣9,∴a n=2n﹣9.

∵4<a k<7,∴4<2k﹣9<7,

∴<k<8,又∵k∈N+,∴k=7,

故选B.

点评:

本题考查数列的通项公式的求法,解题时要注意公式a n=的合理运用,属于基础题.

21.数列a n的前n项和为S n,若S n=2n2﹣17n,则当S n取得最小值时n的值为()

A.4或5 B.5或6 C.4D.5

考点:等差数列的前n项和.

专题:计算题.

分析:把数列的前n项的和S n看作是关于n的二次函数,把关系式配方后,又根据n为正整数,即可得到S n取得最小值时n的值.

解答:

解:因为S n=2n2﹣17n=2﹣,

又n为正整数,

所以当n=4时,S n取得最小值.

故选C

点评:此题考查学生利用函数思想解决实际问题的能力,是一道基础题.

22.等差数列{a n}中,a n=2n﹣4,则S4等于()

A.12 B.10 C.8D.4

考点:等差数列的前n项和.

专题:计算题.

分析:利用等差数列{a n}中,a n=2n﹣4,先求出a1,d,再由等差数列的前n项和公式求S4.

解答:解:∵等差数列{a n}中,a n=2n﹣4,

∴a1=2﹣4=﹣2,

a2=4﹣4=0,

d=0﹣(﹣2)=2,

∴S4=4a1+

=4×(﹣2)+4×3

=4.

故选D.

点评:本题考查等差数列的前n项和公式的应用,是基础题.解题时要认真审题,注意先由通项公式求出首项和公差,再求前四项和.

23.若{a n}为等差数列,a3=4,a8=19,则数列{a n}的前10项和为()

考点:等差数列的前n项和.

专题:综合题.

分析:分别利用等差数列的通项公式化简已知的两个等式,得到①和②,联立即可求出首项和公差,然后利用求出的首项和公差,根据公差数列的前n项和的公式即可求出数列前10项的和.

解答:解:a3=a1+2d=4①,a8=a1+7d=19②,

②﹣①得5d=15,

解得d=3,

把d=3代入①求得a1=﹣2,

所以S10=10×(﹣2)+×3=115

故选C.

点评:此题考查学生灵活运用等差数列的通项公式及前n项和的公式化简求值,是一道基础题.

24.等差数列{a n}中,a3+a8=5,则前10项和S10=()

A.5B.25 C.50 D.100

考点:等差数列的前n项和;等差数列的性质.

专题:计算题.

分析:

根据条件并利用等差数列的定义和性质可得a1+a10=5,代入前10项和S10 =运算求得结

果.

解答:解:等差数列{a n}中,a3+a8=5,∴a1+a10=5,

∴前10项和S10 ==25,

故选B.

点评:本题主要考查等差数列的定义和性质,以及前n项和公式的应用,求得a1+a10=5,是解题的关键,属于基础题.

25.设S n是公差不为0的等差数列{a n}的前n项和,且S1,S2,S4成等比数列,则等于()

A.1B.2C.3D.4

考点:等差数列的前n项和.

专题:计算题.

分析:由S1,S2,S4成等比数列,根据等比数列的性质得到S22=S1S4,然后利用等差数列的前n项和的公式分别表示出各项后,代入即可得到首项和公差的关系式,根据公差不为0,即可求出公差与首项的关系并解出公差d,然后把所求的式子利用等差数列的通项公式化简后,把公差d的关系式代入即可求出比值.

解答:解:由S1,S2,S4成等比数列,

∴(2a1+d)2=a1(4a1+6d).

∵d≠0,∴d=2a1.

∴===3.

故选C

点评:此题考查学生掌握等比数列的性质,灵活运用等差数列的通项公式及前n项和的公式化简求值,是一道综合题.

26.设a n=﹣2n+21,则数列{a n}从首项到第几项的和最大()

A.第10项B.第11项C.第10项或11项D.第12项

考点:等差数列的前n项和;二次函数的性质.

专题:转化思想.

分析:方法一:由a n,令n=1求出数列的首项,利用a n﹣a n﹣1等于一个常数,得到此数列为等差数列,然后根据求出的首项和公差写出等差数列的前n项和的公式,得到前n项的和与n成二次函数关系,其图象为开口

向下的抛物线,当n=﹣时,前n项的和有最大值,即可得到正确答案;

方法二:令a n大于等于0,列出关于n的不等式,求出不等式的解集即可得到n的范围,在n的范围中找出最大的正整数解,从这项以后的各项都为负数,即可得到正确答案.

解答:解:方法一:由a n=﹣2n+21,得到首项a1=﹣2+21=19,a n﹣1=﹣2(n﹣1)+21=﹣2n+23,则a n﹣a n﹣1=(﹣2n+21)﹣(﹣2n+23)=﹣2,(n>1,n∈N+),

所以此数列是首项为19,公差为﹣2的等差数列,

则S n=19n+?(﹣2)=﹣n2+20n,为开口向下的抛物线,

当n=﹣=10时,S n最大.

所以数列{a n}从首项到第10项和最大.

方法二:令a n=﹣2n+21≥0,

解得n≤,因为n取正整数,所以n的最大值为10,

所以此数列从首项到第10项的和都为正数,从第11项开始为负数,

则数列{a n}从首项到第10项的和最大.

故选A

点评:此题的思路可以先确定此数列为等差数列,根据等差数列的前n项和的公式及二次函数求最值的方法得到n 的值;也可以直接令a n≥0,求出解集中的最大正整数解,要求学生一题多解.

二.填空题(共4小题)

27.如果数列{a n}满足:=.

考点:数列递推式;等差数列的通项公式.

专题:计算题.

分析:根据所给的数列的递推式,看出数列是一个等差数列,根据所给的原来数列的首项看出等差数列的首项,根据等差数列的通项公式写出数列,进一步得到结果.

解答:解:∵根据所给的数列的递推式

∴数列{}是一个公差是5的等差数列,

∵a1=3,

∴=,

∴数列的通项是

故答案为:

点评:本题看出数列的递推式和数列的通项公式,本题解题的关键是确定数列是一个等差数列,利用等差数列的通项公式写出通项,本题是一个中档题目.

28.如果f(n+1)=f(n)+1(n=1,2,3…),且f(1)=2,则f(100)=101.

考点:数列递推式;等差数列的通项公式.

专题:计算题.

分析:由f(n+1)=f(n)+1,x∈N+,f(1)=2,依次令n=1,2,3,…,总结规律得到f(n)=n+1,由此能够求出f(100).

解答:解:∵f(n+1)=f(n)+1,x∈N+,

f(1)=2,

∴f(2)=f(1)+1=2+1=3,

f(3)=f(2)+1=3+1=4,

f(4)=f(3)+1=4+1=5,

∴f(n)=n+1,

∴f(100)=100+1=101.

故答案为:101.

点评:本题考查数列的递推公式的应用,是基础题.解题时要认真审题,仔细解答.

29.等差数列{a n}的前n项的和,则数列{|a n|}的前10项之和为58.

考点:数列的求和;等差数列的通项公式.

专题:计算题.

分析:先求出等差数列的前两项,可得通项公式为a n=7﹣2n,从而得到n≤3时,|a n|=7﹣2n,当n>3时,|a n|= 2n﹣7.分别求出前3项的和、第4项到第10项的和,相加即得所求.

解答:解:由于等差数列{a

n}的前n项的和,故a1=s1=5,

∴a2=s2﹣s1=8﹣5=3,故公差d=﹣2,故a n=5+(n﹣1)(﹣2)=7﹣2n.

当n≤3时,|a n|=7﹣2n,当n>3时,|a n|=2n﹣7.

故前10项之和为a1+a2+a3﹣a4﹣a5﹣…﹣a10=+=9+49=58,

故答案为58.

30.已知{a n}是一个公差大于0的等差数列,且满足a3a6=55,a2+a7=16.

(Ⅰ)求数列{a n}的通项公式:

(Ⅱ)若数列{a n}和数列{b n}满足等式:a n==(n为正整数),求数列{b n}的前n项和S n.

考点:数列的求和;等差数列的通项公式.

专题:计算题.

分析:(1)将已知条件a3a6=55,a2+a7=16,利用等差数列的通项公式用首项与公差表示,列出方程组,求出首项与公差,进一步求出数列{a n}的通项公式

(2)将已知等式仿写出一个新等式,两个式子相减求出数列{b n}的通项,利用等比数列的前n项和公式求出数列{b n}的前n项和S n.

解答:解(1)解:设等差数列{a n} 的公差为d,则依题设d>0

由a2+a7=16.得2a1+7d=16

①由a3?a6=55,得(a1+2d)(a1+5d)=55 ②

由①得2a1=16﹣7d 将其代入②得(16﹣3d)(16+3d)=220.

即256﹣9d2=220∴d2=4,又d>0,

∴d=2,代入①得a1=1

∴a n=1+(n﹣1)?2=2n﹣1

所以a n=2n﹣1

(2)令c n=,则有a n=c1+c2+…+c n,a n+1=c1+c2+…+c n﹣1

两式相减得a n+1﹣a n=c n+1,

由(1)得a1=1,a n+1﹣a n=2

∴c n+1=2,c n=2(n≥2),

即当n≥2时,b n=2n+1又当n=1时,b1=2a1=2

∴b n=<BR>

于是S n=b1+b2+b3…+b n=2+23+24+…+2n+1=2+22+23+24+…+2n+1﹣4=﹣6,

即S n=2n+2﹣6

点评:求一个数列的前n项和应该先求出数列的通项,利用通项的特点,然后选择合适的求和的方法.

等差数列常用性质

合作探究: 问题1:如果在a 与b 中间插入一个数A ,使a ,A ,b 成等差数列,那么A 应满足什么条件? 由定义得A-a =b -A ,即: 2b a A += 反之,若2 b a A += ,则A-a =b -A 由此可可得:,,2b a b a A ?+=成等差数列 也就是说,A =2 b a +是a ,A ,b 成等差数列地充要条件 问题2:在直角坐标系中,画出通项公式为53-=n a n 地数列地图象,这个图象有什么特点? (2)在同一直角坐标系中,画出函数y=3x-5地图象,你发现了什么?据此说说等差数列q pn a n +=地图象与一次函数y=px+q 地图象之间有什么关系?定义:若a ,A ,b 成等差数列,那么A 叫做a 与b 地等差中项 性质1:在等差数列{}n a 中,若m+n=p+q ,则,q p n m a a a a +=+ 即 m+n=p+q ?q p n m a a a a +=+ (m, n, p, q ∈N ) 例1在等差数列{n a }中,若1a +6a =9, 4a =7, 求3a , 9a . 分析:要求一个数列地某项,通常情况下是先求其通项公式,而要求通项公式,必须知道这个数列中地至少一项和公差,或者知道这个数列地任意两项(知道任意两项就知道公差),本题中,只已知一项,和另一个双项关系式,想到从这双项关系式入手……例2 等差数列{n a }中,1a +3a +5a =-12, 且 1a ·3a ·5a =80. 求通项 n a 分析:要求通项,仍然是先求公差和其中至少一项地问题而已知两个条件均是三项复合关系式,欲求某项必须消元(项)或再弄一个等式出来精品文档收集整理汇总例3已知数列{n a }地通项公式为q pn a n +=,其中p,q 为常数,那么这个数列一定是等差数列吗? 分析:判定{n a }是不是等差数列,可以利用等差数列地定义,也就是看)1(1>--n a a n n 是不是一个与n 无关地常数. 等差数列地常用性质: 1.若数列{a n }是公差为d 地等差数列: (1)d>0时,{a n }是 ;d<0时,{a n }是 ;d=0时,{a n }是 ; (2)d= = = (m ,n ∈N +) (3)通项公式地推广:a n =a m + d (m ,n ∈N +). 精讲点评: 111111(1)(1)2()2, (1)(1)2()2, .m n p q m n p q a a a m d a n d a n m d d a a a p d a q d a p q d d a a a a +=+-++-=++-+=+-++-=++-∴+=+证明:

等差数列及其性质典型例题及练习(学生)

等差数列及其性质 典型例题: 热点考向一:等差数列的基本量 例1. 在等差数列{n a }中, (1) 已知81248,168S S ==,求1,a 和d (2) 已知6510,5a S ==,求8a 和8S 变式训练: 等差数列{}n a 的前n 项和记为n S ,已知 102030,50a a ==. (1)求通项公式{}n a ; (2)若242n S =,求n . 热点考向二:等差数列的判定与证明. 例2:在数列{}n a 中,11a =,1114n n a a +=- ,221 n n b a = -,其中* .n N ∈ (1)求证:数列{}n b 是等差数列; (2)求证:在数列{}n a 中对于任意的* n N ∈,都有 1n n a a +>. (3 )设n b n c =,试问数列{n c }中是否存在三项,使它们可以构成等差数列?如果存在,求出这三项;如果不存在,请说明理由. 跟踪训练:已知数列{n a }中,13 5 a = ,数列11 2,(2,)n n a n n N a *-=-≥∈,数列{n b }满足 1()1 n n b n N a *=∈- (1)求证数列{n b }是等差数列; (2)求数列{n a }中的最大项与最小项. 热点考向三:等差数列前n 项和 例3 在等差数列{}n a 的前n 项和为n S . (1)若120a =,并且1015S S =,求当n 取何值时,n S 最大,并求出最大值; (2)若10a <,912S S =,则该数列前多少项的和最小? 跟踪训练3:设等差数列}{n a 的前n 项和为n S ,已知 .0,0,1213123<>=S S a (I )求公差d 的取值范围; (II )指出12321,,,,S S S S 中哪一个最大,并说明理由。 热点考向四:等差数列的综合应用 例4.已知二次函数y =f (x )的图象经过坐标原点,其导函数为f ′(x )=6x -2,数列{a n }的前n 项和为S n ,点列(n ,S n )(n ∈N *)均在函数y =f (x )的图象上. (1)求数列{a n }的通项公式; (2)设b n =3 a n a n +1,T n 是数列{b n }的前n 项和,求使得 T n +都成立。求证:c 的最大值为 2 9。

(完整版)数列经典试题(含答案)

强力推荐人教版数学高中必修5习题 第二章 数列 1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667 B .668 C .669 D .670 2.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33 B .72 C .84 D .189 3.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8<a 4+a 5 D .a 1a 8=a 4a 5 4.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为 41的等差数列,则 |m -n |等于( ). A .1 B .43 C .21 D . 8 3 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .192 6.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ). A .4 005 B .4 006 C .4 007 D .4 008 7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4 B .-6 C .-8 D . -10 8.设S n 是等差数列{a n }的前n 项和,若 35a a =95,则59S S =( ). A .1 B .-1 C .2 D .2 1 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则 212b a a 的值是( ). A .21 B .-21 C .-21或21 D .4 1 10.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ).

小学奥数等差数列经典练习题

小学奥数等差数列经典练习题 精品文档 小学奥数等差数列经典练习题 一、判断下面的数列中哪些是等差数列,在等差数列的括号后面打?。 0,2,6,12,20,30,36…… 6,12,18,24,30,36,42…… 700,693,686,679,673…… 90,79,68,57,46,35,24,13…… 1,3,5,7,10,13,16……5,8,11,14,17,20…… 1,5,9,13,17,21,23…90,80,70,60,50,……20,10 二、求等差数列3,8,13,18,……的第30项是多少, 三、求等差数列8,14,20,26,……302的末项是第几项, 四、一个剧院的剧场有,,排座位,第一排有,,个座位,往后每排比前一排多,个座位,这个剧院一共有多少个座位, 五、计算 11+12+13……+998+999+10002+6+3+12+4+18+5+24+6+30 3、求等差数列6,9,12,15,……中第99项是几, 4、求等差数列46,52,58……172共有多少项, 5、求等差数列245,238,231,224,……中,105是第几项, 1 / 9 精品文档 6、求等差数列0,4,8,12,……中,第31项是几,在这个数列中,2000是第几项, 7、从35开始往后面数18个奇数,最后一个奇数是多少,

、已知一个等差数列的第二项是8,第3项是13,这1个等差数列的第10项是多少, 1、计算: 100+200+300+……21001+79+……+17+15+13 2、有20个同学参加聚会,见面的时候如果每人都和其他同学握手一次,那么参加聚会的同学一共要握手多少次, 3、请用被4除余数是1的所有两位数组成一个等差数列。并求出这个等差数列的和。 4、在13和29之间插三个数,使这个五个数构成一个等差数列,那么插入的三个数分别是多少, 5、如果要在30和70之间插入若干个数,使他们组成一个公差是5的等差数列,那么一共要插入多少个数, 6、学校举行乒乓球赛,每个参赛选手要和其他选手进行一场比赛,一共进行了78场,计算出一共有多少个参赛选手, 7、一把钥匙和一把锁配着,现在有10把钥匙和10把锁混着了,最多要打多少次才能把钥匙和锁都配好, 2 / 9 精品文档 8、40个连续奇数的和是1920,其中最大的一个是多少, 9、小明读一本600页的书,他每天比前一天多读1页。16天读完,那么他最后一天读了多少页, 2 等差数列 1、有一个数列:2,6,10,14,…,106,这个数列共有多 少项?。

等差数列的基本性质

等差数列 一、等差数列的定义以及证明方法: 1、定义:若数列{a n }中,对于任意两项a n ,a n -1均有:a n -a n -1=d (d 为常数),则数列{a n }为等差数列. 注意一些等差数列的变形形式,如: 111n n d a a +-=(d 为常数,此时,数列{1 n a }为等差数列) d =(d 为常数,此时,数列??为等差数列) …… 2、证明方法: (1)定义法:若数列{a n }中,对于任意两项a n ,a n -1均有:a n -a n -1=d (d 为常数),则数列{a n }为等差数列. (2)等差中项法:2a n+1=a n +a n+2 (3)通项公式法:若数列{a n }的通项公式为a n =pn+q 的一次函数,则数列{a n }为等差数列. (4)若数列{a n }的前n 项和为S n =An 2+Bn ,则数列{a n }为等差数列. 【例题1】【2013年,北京高考(文)】给定数列a 1,a 2,a 3,……,a n ,……,对i =1,2,……,n-1,该数列的前i 项的最大值记为A i ,后n –i 项a i+1,a i +2,……,a n 的最小值记为B i ,d i =A i –B i . (I)设数列{a n }为3,4,7,1,求d 1,d 2,d 3的值. (II)设d 1,d 2,……,d n -1是公差大于0的等差数列,且d 1>0,证明:a 1,a 2,a 3,……,a n -1是等差数列.

3、等差数列的通项公式: (1)等差数列的通项公式:a n =a 1+(n-1)d 累加法和逐项法:对于形如() 1n n a a f n --=的形式,我们一般情况下,可以考虑使用逐项法或者累加法,从而达到求a n 的目的. 变形形式: a n =a m +(n-m )d 由以上公式可以得到:n m a a d n m -= - (2)等差数列通项公式的一些性质: ①若实数m,n,p,q 满足:m+n=p+q ,则:n m p q a a a a +=+;特别的,若m+n=2p ,则: 2n m p a a a +=; ②若数列{a n }为等差数列,则下标成等差数列的新数列仍然成等差数列; ③若数列{a n }为等差数列,数列{b n }为等差数列,则数列{pa n +qb n }还是等差数列; ④当d >0时,{a n }为递增数列;当d =0时,数列{a n }为常数列;当d <0时,数列{a n }为递减数列; 【例题1】【2015届黑龙江省双鸭山一中高三上学期期末考试,3】在等差数列{}n a 中,首项 01=a ,公差,0≠d 若7321a a a a a k ++++=Λ,则k =( ) A . 22 B . 23 C . 24 D. 25 【变式训练】【2015届吉林省东北师大附中高三上学期第三次摸底考试,3】设等差数列{}n a 的前n 项和为n S ,若151,15a S ==,则6a 等于 ( ) A .8 B .7 C .6 D .5 4、等差数列的求和问题:——方法:倒序相加 ()()()111111222 n n n n n n S a a a a n d na d -= +=++-=+???? (1)在等差数列{a n }中,k S ,2k k S S -,32k k S S -成等差数列;或者:()233k k k S S S -=; (2)奇偶项问题: 在等差数列中,若项数为偶数项,即:当n=2m (n,m ∈N*)时,有:S 偶-S 奇=md , 1 = m m S a S a +奇偶;

高二数学 等差数列的定义及性质

等差数列的定义及性质 ?等差数列的定义: 一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做公差,用符号语言表示为a n+1-a n=d。 ?等差数列的性质: (1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列; (2)有穷等差数列中,与首末两端“等距离”的两项和相等,并且等于首末两项之和; (3)m,n∈N*,则a m=a n+(m-n)d; (4)若s,t,p,q∈N*,且s+t=p+q,则a s+a t=a p+a q,其中a s,a t,a p,a q是数列中的项,特别地,当s+t=2p时,有a s+a t=2a p; (5)若数列{a n},{b n}均是等差数列,则数列{ma n+kb n}仍为等差数列,其中m,k均为常数。 (6) (7)从第二项开始起,每一项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即 (8)仍为等差数列,公差为

?对等差数列定义的理解: ①如果一个数列不是从第2项起,而是从第3项或某一项起,每一项与它前一项的差是同 一个常数,那么此数列不是等差数列,但可以说从第2项或某项开始是等差数列. ②求公差d时,因为d是这个数列的后一项与前一项的差,故有 还有 ③公差d∈R,当d=0时,数列为常数列(也是等差数列);当d>0时,数列为递增数 列;当d<0时,数列为递减数列; ④是证明或判断一个数列是否为等差数列的依据; ⑤证明一个数列是等差数列,只需证明a n+1-a n是一个与n无关的常数即可。 等差数列求解与证明的基本方法: (1)学会运用函数与方程思想解题; (2)抓住首项与公差是解决等差数列问题的关键; (3)等差数列的通项公式、前n项和公式涉及五个量:a1,d,n,a n,S n,知道其中任意三 个就可以列方程组求出另外两个(俗称“知三求二’).

数列系列等差数列的性质

数列系列 等差数列的性质 一、思维导图 ????????????????????????????++++++++++--? ????=+=+=+=++=++=+????????? ??+=?? ? ??????=-=-+=+= -++成等差数列 成等差数列 成等差数列则是等差数列若片段和性质当心则时若则若下标和性质即的等差中项和是中等差数列或则成等差数列若等差中项等差数列的性质6425319638527412321212 2,,,,,}{:2,2,:2:}{2222 ,,a a a a a a a a a a a a a a a S S S S S ,a a a a a a a a p n m a a a a q p n m a a a ,a a ,a a a b A b a A b a A b a A , b A a n n n n n n n n p n m q p n m n m n m n m n m n

二、例题精析 1、(2018商洛模拟)等差数列}{n a 中,,12031581=++a a a 则1092a a -的值为__________ [解析]:已知,24,1202338881581=∴=+=++a a a a a a 242,281091089==-∴+=a a a a a a 2、(2018温州模拟)已知等差数列}{n a 的公差不为零,且242a a =,则3 21642a a a a a a ++++的值是__________ [解析]:2323332 224321642=?==++++a a a a a a a a a a ,下标和性质 3、(2017中原区校级月考)已知}{n a 为等差数列,,7,22683==+a a a 则=5a __________ [解析]:已知1572222,22655683=-=-=∴=+=+a a a a a a ,下标和性质 4、(2018南关区校级期末)在等差数列}{n a 中,102,a a 是方程0722=--x x 的两根,则=6a __________ [解析]:已知4 1)(21,21211026102=+=∴=-- =+a a a a a ,下标和性质 5、(2018塑州期末)在等差数列}{n a 中,若,39741=++a a a ,33852=++a a a 则=++963a a a _____ [解析]:设27,39332,963=∴+=?∴=++x x x a a a ,片段和性质 6、(2017商丘期末)等差数列}{n a 中,0>n a 且,301021=+++a a a 则=+65a a __________ [解析]:已知,6,30)(5101651011021=+=+∴=+=+++a a a a a a a a a 下标和性质 7、(2018太原期末)在等差数列}{n a 中,若,9531=++a a a ,21654=++a a a 则=7a __________ [解析]:已知,3,9333531=∴==++a a a a a ,7,21355654=∴==++a a a a a 92357=-=a a a

等差数列经典例题 百度文库

一、等差数列选择题 1.已知等差数列{}n a 中,161,11a a ==,则数列{}n a 的公差为( ) A . 53 B .2 C .8 D .13 2.等差数列{}n a 中,22a =,公差2d =,则10S =( ) A .200 B .100 C .90 D .80 3.中国古代数学著作《九章算术》中有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.问次一尺各重几何?” 意思是:“现有一根金锤,长五尺,一头粗一头细.在粗的一端截下一尺,重四斤;在细的一端截下一尺,重二斤.问依次每一尺各重几斤?”根据已知条件,若金箠由粗到细是均匀变化的,中间三尺的重量为( ) A .3斤 B .6斤 C .9斤 D .12斤 4.已知数列{}n a 的前n 项和为n S ,15a =,且满足 122527 n n a a n n +-=--,若p ,*q ∈N ,p q >,则p q S S -的最小值为( ) A .6- B .2- C .1- D .0 5.已知数列{}n a 是等差数列,其前n 项和为n S ,若454a a +=,则8S =( ) A .16 B .-16 C .4 D .-4 6.设等差数列{}n a 的前n 项和为n S ,且3944a a a +=+,则15S =( ) A .45 B .50 C .60 D .80 7.为了参加学校的长跑比赛,省锡中高二年级小李同学制定了一个为期15天的训练计划.已知后一天的跑步距离都是在前一天的基础上增加相同距离.若小李同学前三天共跑了 3600米,最后三天共跑了10800米,则这15天小李同学总共跑的路程为( ) A .34000米 B .36000米 C .38000米 D .40000米 8.等差数列{},{}n n a b 的前n 项和分别为,n n S T ,若231 n n a n b n =+,则2121S T 的值为( ) A . 13 15 B . 2335 C . 1117 D . 49 9.南宋数学家杨辉《详解九张算法》和《算法通变本末》中,提出垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差不相等,但是逐项差数之差或者高次成等差数列.在杨辉之后一般称为“块积术”.现有高阶等差数列,其前7项分别1,7,15,27,45,71,107,则该数列的第8项为( ) A .161 B .155 C .141 D .139 10.在等差数列{}n a 中,若n S 为其前n 项和,65a =,则11S 的值是( ) A .60 B .11 C .50 D .55

等差数列经典题型

等差数列 第三课时 前N 项和 1、在等差数列{a n }中,已知d =2,a n =11, S n =35,求a 1和n . 2、设{a n }为等差数列, S n 为数列{a n }的前n 项和,已知S 7=7, S 15=75, T n 为数列? ??? ? ? S n n 的前n 项和,求T n . (1)等差数列{a n }的前m 项和为30,前2m 项和为100,求数列{a n }的前3m 项的和S 3m ; (2)两个等差数列{a n },{b n }的前n 项和分别为S n 和T n ,已知S n T n =7n +2n +3,求a 5 b 5 的 值. 3、已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45 n +3,则使 得a n b n 为整数的正整数n 的个数是( ) A.2 B.3 C.4 D.5 4、现有200根相同的钢管,把它们堆成正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为( ) A.9 B.10 C.19 D.29 5、等差数列{a n }中, S 10=4S 5,则a 1 d 等于( ) A.12 B.2 C.1 4 D.4

6、已知等差数列{a n}中,a23+a28+2a3a8=9,且a n<0,则S10为() A.-9 B.-11 C.-13 D.-15 7、设等差数列{a n}的前n项和为S n,若S3=9, S6=36.则a7+a8+a9等于() A.63 B.45 C.36 D.27 8、在小于100的自然数中,所有被7除余2的数之和为() A.765 B.665 C.763 D.663 9、一个等差数列的项数为2n,若a1+a3+…+a2n-1=90,a2+a4+…+a2n=72,且a1-a2n=33,则该数列的公差是() A.3 B.-3 C.-2 D.-1 10、设{a n}是公差为-2的等差数列,如果a1+a4+…+a97=50,那么a3+a6+…+a99=______. 11、在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n的值为______.

等差数列的性质总结

等差数列性质总结 1.等差数列的定义式:d a a n n =--1(d 为常数)(2≥n ); 2.等差数列通项公式: *11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a 推广: d m n a a m n )(-+=. 从而m n a a d m n --=; 3.等差中项 (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A +=或 b a A +=2 (2)等差中项:数列{}n a 是等差数列+-112(2,n N )n n n a a a n +?=+≥∈212+++=?n n n a a a 4.等差数列的前n 项和公式: 1()2n n n a a S += 1(1)2n n na d -=+211 ()22 d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项 ()()()12121121212 n n n n a a S n a +++++= = +(项数为奇数的等差数列的各项和等于项数乘 以中间项) 5.等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a . ⑶数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4)数列{}n a 是等差数列?2n S An Bn =+,(其中A 、B 是常数)。 6.等差数列的证明方法 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列 等差中项性质法:-112(2n )n n n a a a n N ++=+≥∈,.

等差数列综合练习题

一、等差数列选择题 1.在等差数列{}n a 中,10a >,81335a a =,则n S 中最大的是( ) A .21S B .20S C .19S D .18S 2.中国古代数学著作《九章算术》中有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.问次一尺各重几何?” 意思是:“现有一根金锤,长五尺,一头粗一头细.在粗的一端截下一尺,重四斤;在细的一端截下一尺,重二斤.问依次每一尺各重几斤?”根据已知条件,若金箠由粗到细是均匀变化的,中间三尺的重量为( ) A .3斤 B .6斤 C .9斤 D .12斤 3.设等差数列{}n a 的前n 项和为n S ,公差1d =,且62 10S S ,则34a a +=( ) A .2 B .3 C .4 D .5 4.设等差数列{}n a 的前n 项和为n S ,且3944a a a +=+,则15S =( ) A .45 B .50 C .60 D .80 5.已知数列{}n a 的前n 项和n S 满足() 12n n n S +=,则数列11n n a a +?????? 的前10项的和为 ( ) A . 89 B . 910 C .1011 D .11 12 6.已知等差数列{}n a 的前n 项和为n S ,31567a a a +=+,则23S =( ) A .121 B .161 C .141 D .151 7.已知数列{}n a 中,132a = ,且满足()* 1112,22 n n n a a n n N -=+≥∈,若对于任意*n N ∈,都有 n a n λ ≥成立,则实数λ的最小值是( ) A .2 B .4 C .8 D .16 8.设n S 是等差数列{}n a (*n N ∈)的前n 项和,且141,16a S ==,则7a =( ) A .7 B .10 C .13 D .16 9.等差数列{}n a 中,已知14739a a a ++=,则4a =( ) A .13 B .14 C .15 D .16 10.设等差数列{}n a 的前n 项和为n S ,且71124a a -=,则5S =( ) A .15 B .20 C .25 D .30 11.已知数列{}n a 中,11a =,22a =,对*n N ?∈都有333 122n n n a a a ++=+,则10a 等于 ( ) A .10 B C .64 D .4 12.在等差数列{a n }中,已知a 5=3,a 9=6,则a 13=( )

等差数列经典试题(含答案) 百度文库

一、等差数列选择题 1.“中国剩余定理”又称“孙子定理”,1852年英国来华传教伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将正整数中能被3除余2且被7除余2的数按由小到大的顺序排成一列,构成数列{} n a ,则5a =( ) A .103 B .107 C .109 D .105 2.数列{}n a 是项数为偶数的等差数列,它的奇数项的和是24,偶数项的和为30,若它的末项比首项大21 2 ,则该数列的项数是( ) A .8 B .4 C .12 D .16 3.设n S 是等差数列{}n a 的前n 项和.若1476a a a ++=,则7S =( ) A .10- B .8 C .12 D .14 4.设等差数列{}n a 的前n 项和为n S ,且3944a a a +=+,则15S =( ) A .45 B .50 C .60 D .80 5.已知n S 为等差数列{}n a 的前n 项和,3518a S +=,633a a =+,则n a =( ) A .1n - B .n C .21n - D .2n 6.为了参加学校的长跑比赛,省锡中高二年级小李同学制定了一个为期15天的训练计划.已知后一天的跑步距离都是在前一天的基础上增加相同距离.若小李同学前三天共跑了 3600米,最后三天共跑了10800米,则这15天小李同学总共跑的路程为( ) A .34000米 B .36000米 C .38000米 D .40000米 7.已知等差数列{}n a 满足48a =,6711a a +=,则2a =( ) A .10 B .9 C .8 D .7 8.《张丘建算经》是我国北魏时期大数学家张丘建所著,约成书于公元466-485年间.其中记载着这么一道“女子织布”问题:某女子善于织布,一天比一天织得快,且每日增加的数量相同.已知第一日织布4尺,20日共织布232尺,则该女子织布每日增加( )尺 A . 4 7 B . 1629 C . 815 D . 45 9.已知各项不为0的等差数列{}n a 满足2 6780a a a -+=,数列{}n b 是等比数列,且 77b a =,则3810b b b =( ) A .1 B .8 C .4 D .2 10.在等差数列{a n }中,已知a 5=3,a 9=6,则a 13=( ) A .9 B .12 C .15 D .18 11.已知数列{}n a 中,11a =,22a =,对*n N ?∈都有333 122n n n a a a ++=+,则10a 等于

2.2等差数列的概念、通项公式、性质练习含答案

2.2 等差数列概念、通项公式、性质 第1课时 等差数列的概念及通项公式 题型一 等差数列的概念 例1 判断下列数列是不是等差数列? (1)9,7,5,3,…,-2n +11,…; (2)-1,11,23,35,…,12n -13,…; (3)1,2,1,2,…; (4)1,2,4,6,8,10,…; (5)a ,a ,a ,a ,a ,…. 跟踪训练1 数列{a n }的通项公式a n =2n +5(n ∈N +),则此数列( ) A .是公差为2的等差数列 B .是公差为5的等差数列 C .是首项为5的等差数列 D .是公差为n 的等差数列 题型二 等差中项 例2 在-1与7之间顺次插入三个数a ,b ,c ,使这五个数成等差数列,求此数列. 跟踪训练2 若m 和2n 的等差中项为4,2m 和n 的等差中项为5,求m 和n 的等差中项. 题型三 等差数列通项公式的求法及应用 例3 在等差数列{a n }中, (1)若a 5=15,a 17=39,试判断91是否为此数列中的项. (2)若a 2=11,a 8=5,求a 10. 跟踪训练3 (1)求等差数列8,5,2,…的第20项; (2)判断-401是不是等差数列-5,-9,-13,…的项,如果是,是第几项? 等差数列的判定与证明 典例1 已知数列{a n }满足a n +1=3a n +3n ,且a 1=1. (1)证明:数列???? ??a n 3n 是等差数列;

(2)求数列{a n }的通项公式. 典例2 已知数列{a n }:a 1=a 2=1,a n =a n -1+2(n ≥3). (1)判断数列{a n }是否为等差数列?说明理由; (2)求{a n }的通项公式. 【课堂练习】 1.下列数列不是等差数列的是( ) A .1,1,1,1,1 B .4,7,10,13,16 C.13,23,1,43,53 D .-3,-2,-1,1,2 2.已知等差数列{a n }的通项公式a n =3-2n (n ∈N +),则它的公差d 为( ) A .2 B .3 C .-2 D .-3 3.已知在△ABC 中,三个内角A ,B ,C 成等差数列,则角B 等于( ) A .30° B .60° C .90° D .120° 4.若数列{a n }满足3a n +1=3a n +1,则数列{a n }是( ) A .公差为1的等差数列 B .公差为13 的等差数列 C .公差为-13 的等差数列 D .不是等差数列 5.已知等差数列1,-1,-3,-5,…,-89,则它的项数是( ) A .92 B .47 C .46 D .45 1.判断一个数列是否为等差数列的常用方法 (1)a n +1-a n =d (d 为常数,n ∈N +)?{a n }是等差数列; (2)2a n +1=a n +a n +2(n ∈N +)?{a n }是等差数列; (3)a n =kn +b (k ,b 为常数,n ∈N +)?{a n }是等差数列. 但若要说明一个数列不是等差数列,则只需举出一个反例即可. 2.由等差数列的通项公式a n =a 1+(n -1)d 可以看出,只要知道首项a 1和公差d ,就可以求出通项公式,反过来,在a 1,d ,n ,a n 四个量中,只要知道其中任意三个量,就可以求出另一个量. 【巩固提升】 一、选择题 1.设数列{a n }(n ∈N +)是公差为d 的等差数列,若a 2=4,a 4=6,则d 等于( ) A .4 B .3 C .2 D .1 2.已知等差数列-5,-2,1,…,则该数列的第20项为( ) A .52 B .62 C .-62 D .-52 3.在数列{a n }中,a 1=2,2a n +1-2a n =1,则a 101的值为( )

等差数列及等比数列的性质总结

等差数列与等比数列总结 一、等差数列: 一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差常用小写字母d 表示; 等差中项,如果2 b a A += ,那么A 叫做a 与b 的等差中项;如果三个数成等差数列,那么等差中项等于另两项的算术平均数; 等差数列}{a n 的通项公式:)N n (d )1-n (a a 1n *∈+=; 等差数列}{a n 的递推公式:)2n (d a a 1n n ≥+=-; 等差数列}{a n 的前n 项和公式:n S =2n )a a (n 1?+=d 2)1-n (n na 1?+ = 中12na n )2d -a (n )2d (=?+?; 【等差数列的性质】 1、d )1-n (a a m n += 【说明】n 11m a d )1-n (a d )m -n (d )1-m (a d )m -n (a =+=++=+ 2、若m 、n 、p 、q *∈N ,且m+n=p+q ,则有q p n m a a a a +=+ 【说明】q p 11n m a a )2-q p (a 2d )2-n m (a 2a a +=++=++=+ 3、md 成等差数列,公差为、a 、a 、a m 2k m k k ??++ 【说明】md a -a a -a m k m 2k k m k =??==+++ 4、k )1-n (nk k 2k 3k k 2k S -S S -S ,S -S ,S ??成等差数列,公差为d n 2 【说明】d n )a a a (-)a a a (S -)S -S (2n 21n 22n 1n n n n 2=+??+++??++=++, ) a a a (-)a a a ()S -S (-)S -S (n 22n 1n n 32n 21n 2n 2n n 2n 3+??+++??++=++++??=,d n 2 5、数列}{a n 成等差数列Bn An S ,a a a 2,q pn a 2n 1n 1-n n n +=+=+=?+

经典等差数列性质练习题(含答案)(汇编)

等差数列基础习题选(附有详细解答) 一.选择题(共26小题) 1.已知等差数列{a n}中,a3=9,a9=3,则公差d的值为() A.B.1C.D.﹣1 2.已知数列{a n}的通项公式是a n=2n+5,则此数列是() A.以7为首项,公差为2的等差数列B.以7为首项,公差为5的等差数列 C.以5为首项,公差为2的等差数列D.不是等差数列 3.在等差数列{a n}中,a1=13,a3=12,若a n=2,则n等于() A.23 B.24 C.25 D.26 4.等差数列{a n}的前n项和为S n,已知S3=6,a4=8,则公差d=() A.一1 B.2C.3D.一2 5.两个数1与5的等差中项是() A.1B.3C.2D. 6.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A.﹣2 B.﹣3 C.﹣4 D.﹣ 7.(2012?福建)等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为() A.1B.2C.3D.4 8.数列的首项为3,为等差数列且,若,,则=()A.0B.8C.3D.11 9.已知两个等差数列5,8,11,…和3,7,11,…都有100项,则它们的公共项的个数为() A.25 B.24 C.20 D.19 10.设S n为等差数列{a n}的前n项和,若满足a n=a n﹣1+2(n≥2),且S3=9,则a1=() A.5B.3C.﹣1 D.1 11.(2005?黑龙江)如果数列{a n}是等差数列,则() A.a1+a8>a4+a5B.a1+a8=a4+a5C.a1+a8<a4+a5D.a1a8=a4a5 12.(2004?福建)设S n是等差数列{a n}的前n项和,若=() A.1B.﹣1 C.2D.

经典等差数列性质练习题(含答案)

创作编号:BG7531400019813488897SX 创作者:别如克* 等差数列基础习题选(附有详细解答) 一.选择题(共26小题) 1.已知等差数列{a n}中,a3=9,a9=3,则公差d的值为() A.B.1C.D.﹣1 2.已知数列{a n}的通项公式是a n=2n+5,则此数列是() A.以7为首项,公差为2的等差数列B.以7为首项,公差为5的等差数列 C.以5为首项,公差为2的等差数列D.不是等差数列 3.在等差数列{a n}中,a1=13,a3=12,若a n=2,则n等于() A.23 B.24 C.25 D.26 4.等差数列{a n}的前n项和为S n,已知S3=6,a4=8,则公差d=() A.一1 B.2C.3D.一2 5.两个数1与5的等差中项是() A.1B.3C.2D. 作编号: BG753140001981348889 作者:别如克* 6.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数, 则它的公差是() A.﹣2 B.﹣3 C.﹣4 D.﹣5 7.(2012?福建)等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()

A.1B.2C.3D.4 8.数列的首项为3,为等差数列且,若 ,,则=() A.0B.8C.3D.11 9.已知两个等差数列5,8,11,…和3,7,11,…都有100项,则它们的公共项的 个数为() A.25 B.24 C.20 D.19 10.设S n为等差数列{a n}的前n项和,若满足a n=a n﹣1+2(n≥2),且S3=9,则a1=() A.5B.3C.﹣1 D.1 创作编号:BG7531400019813488897SX 创作者:别如克* 11.(2005?黑龙江)如果数列{a n}是等差数列,则() A.a1+a8>a4+a5B.a1+a8=a4+a5C.a1+a8<a4+a5D.a1a8=a4a5 12.(2004?福建)设S n是等差数列{a n}的前n项和,若=() A.1B.﹣1 C.2D. 13.(2009?安徽)已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于() A.﹣1 B.1C.3D.7 14.在等差数列{a n}中,a2=4,a6=12,,那么数列{}的前n项和等于()A.B.C.D. 15.已知S n为等差数列{a n}的前n项的和,a2+a5=4,S7=21,则a7的值为() A.6B.7C.8D.9

等差数列的性质以及常见题型

等差数列的性质以及常见题型 上课时间: 上课教师: 上课重点:掌握等差数列的常见题型,准确的运用等差数列的性质 上课规划:掌握等差数列的解题技巧和方法 一 等差数列的定义及应用 1.已知数列{}n a 的通项公式为23+-=n a n ,试问该数列是否为等差数列。 2.已知:z y x 1 ,1,1成等差数列,求证:z y x y x z x z y +++,,也成等差数列。 思考题型;已知数列{}n a 的通项公式为qn pn a n +=2(,,R q p ∈且p,q 为常数)。 (1)当p 和q 满足什么条件时,数列{}n a 是等差数列 (2)求证:对于任意实数p 和q ,数列{}n n a a -+1是等差数列。

二 等差数列的性质考察 (一)熟用d m n a d n a a m n )()1(1-+=-+=,m n a a d m n --= 问题 (注意:知道等差数列中的任意项和公差就可以求通项公式) 1、等差数列{}n a 中,350a =,530a =,则=9a . 2、等差数列{}n a 中,3524a a +=,23a =,则6a = . 3、已知等差数列{}n a 中, 26a a 与的等差中项为5,37a a 与的等差中项为7,则n a = . 4、一个等差数列中15a = 33,25a = 66,则35a =________________. 5、已知等差数列{}n a 中,q a p =,p a q =,则____=+q p a . (二)公差d 的巧用 (注意:等差数列的项数) 1、已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差等于_____ 2、等差数列123,,, ,n a a a a 的公差为d ,则数列1235,5,5, ,5n a a a a 是( ) A .公差为d 的等差数列 B .公差为5d 的等差数列 C .非等差数列 D .以上都不对 3、等差数列{}n a 中,已知公差12 d =,且139960a a a ++ +=,则12100a a a ++ += A .170 B .150 C .145 D .120 4.已知y x ≠,且两个数列y a a a x m ,,,,21???与y b b b x n ,,,,21???各自都成等差数列, 则 121 2b b a a --等于 ( ) A n m B 11++n m C m n D 1 1++m n 5.一个首项为23,公差为整数的等差数列中,前6项均为正数,从第7项起为负数,则公差d 为( ) A -2 B -3 C -4 D -5

相关文档
最新文档