等差数列填空题训练及答案word版本
等差数列练习题(打印版)

等差数列练习题(打印版)# 等差数列练习题## 一、选择题1. 已知等差数列的首项为5,公差为3,求第10项的值。
A. 32B. 35C. 38D. 412. 一个等差数列的前5项和为50,首项为2,求公差。
A. 10B. 8C. 6D. 43. 如果等差数列的第3项和第5项的和为26,且首项为a,公差为d,求第4项的值。
A. 13B. 14C. 15D. 16## 二、填空题1. 等差数列\[ a_n = a_1 + (n - 1)d \]中,如果\( a_1 = 10 \),\( d = 2 \),那么第6项\( a_6 \)的值为 \_\_\_\_\_\_。
2. 已知等差数列的前n项和公式为\[ S_n = \frac{n}{2}(2a_1 + (n - 1)d) \],如果\( S_6 = 90 \),\( a_1 = 5 \),求公差\( d \)。
3. 等差数列中,如果第1项和第4项的和为20,第2项和第3项的和为22,求首项\( a_1 \)和公差\( d \)。
## 三、解答题1. 一个等差数列的前10项和为220,首项为12,求公差和第10项的值。
2. 已知等差数列的前n项和公式,如果\( S_{15} = 1170 \),\( a_1 = 8 \),求\( S_{20} \)。
3. 一个等差数列的第1项为3,公差为2,求前20项的和。
## 四、证明题1. 证明:等差数列中,连续三项的和构成的数列也是等差数列。
2. 证明:等差数列的前n项和公式\[ S_n = \frac{n(a_1 + a_n)}{2} \]。
3. 证明:等差数列中,任意两项的等差中项等于它们的算术平均数。
注意:请同学们认真审题,仔细计算,确保答案的准确性。
练习题的目的是帮助大家更好地理解和掌握等差数列的相关知识,希望同学们能够通过练习提高解题能力。
(完整版)经典等差数列练习题(含答案),推荐文档

A.13 项 B.14 项 C.15 项 D.16 项
3.已知等差数列的通项公式为an 3n a, a为常数,则公差 d=( )
4.首项为24 的等差数列从第10 项起开始为正数,则公差d 的取值范围是( )
A. d 8 3
B. d 3
C. 8 d 3 3
D. 8 d 3 3
A.第 22 项 B.第 21 项 C.第 20 项 D.第 19 项 6. 已知数列a,-15,b,c,45 是等差数列,则 a+b+c 的值是( )
4.在等差数列{an}中,若 a4 a6 a8 a10 a12 120 ,则 2a10 a12
.
5.在首项为 31,公差为-4 的等差数列中,与零最接近的项是
6. 如果等差数列 an的第 5 项为 5 ,第 10 项为 5 ,则此数列的第 1个负数项
是第项.
7.已知{an }是等差数列,且 a4 a7 a10 57, a4 a5 a6 a14 77, 若ak 13, 则 k=
2 4 8 16
( 6) 1 1 1 ,,
1 ,
,
1
…….
3 8 15 24 35
2. 成等差数列的四个数的和为 26 ,第二数与第三数之积为 40 ,求这四个数。
3. 已知等差数列{ an }中, a3 a7 16, a4 a6 0, 求{ an }的 通项公式
4. 数列通项公式为 an=n2-5n+4,问(1)数列中有多少项是负数?(2)n 为何值时,an 有最小值?并求出最小值.
5.
在等差数列a
中,公差 d
n
1 ,前100 项的和 S 2
100
45Βιβλιοθήκη ,则 a1a3a
等差数列测试题含答案

等差数列测试题学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.等差数列1+x ,2x +2,5x +1,…的第四项等于( ) A .10B .6C .8D .122.在等差数列{}n a 中,若2810a a +=.,则()24652a a a +-=( ) A .100B .90C .95D .203.已知数列{}n a 是等差数列,数列{}n b 分别满足下列各式,其中数列{}n b 必为等差数列的是( ) A .||n n b a =B .2n n b a =C .1n nb a =D .2nn a b =-4.在等差数列{}n a 中,11a =,513a =,则数列{}n a 的前5项和为( ) A .13B .16C .32D .355.在等差数列{}n a 中,若39717,9a a a +==,则5a =( ) A .6B .7C .8D .96.在等差数列{}n a 中,124a a +=,7828a a +=,则数列的通项公式n a 为( ) A .2nB .21nC .21n -D .22n +7.已知数列{}n a 是等差数列,71320a a +=,则91011a a a ++= ( ) A .36B .30C .24D .18.已知数列{}n a 是首项为2,公差为4的等差数列,若2022n a =,则n = ( ) A .504B .505C .506D .5079.已知数列{}n a 满足13n n a a +=-,127a =,*n ∈N ,则5a 的值为( ) A .12B .15C .39D .4210.已知等差数列{}n a 满足3456790a a a a a ++++=,则28a a +等于( ) A .18B .30C .36D .4511.在等差数列{}n a 中,143,24a a ==,则7a = A .32B .45C .64D .9612.设数列{}n a 是公差为d 的等差数列,若244,6a a ==,则d = ( )A .4B .3C .2D .113.在等差数列{}n a 中,若3712a a +=,则5a =( ) A .4B .6C .8D .1014.在等差数列{}n a 中,若3691215120a a a a a ++++=,则12183a a -的值为( ) A .24B .36C .48D .6015.在等差数列{}n a 中,51340a a +=,则8910a a a ++=( ) A .72B .60C .48D .3616.已知数列{}n a 是等差数列,且66a =,108a =,则公差d =( ) A .12B .23C .1D .2二、填空题17.在数列{}n a 中,12a =,13n n a a +-=则数列{}n a 的通项公式为________________. 18.已知数列{}n a 中,12a =,25a =,212n n n a a a +++=,则100a =________ 19.在等差数列{}n a 中,47a =,2818a a +=,则公差d =__________.20.己知等差数列{}n a 满足:10a =,54a =,则公差d =______;24a a +=_______. 21.已知数列{}n a 对任意的,m n N +∈有mn m n a a a ++=,若12a =,则2019a =_______.参考答案1.C 【解析】 【分析】根据等差中项的性质求出x ,进而求出公差,得出答案. 【详解】解:由题意可得,(1+x )+(5x +1)=2(2x +2) 解得x =1∴这个数列为2,4,6,8,… 故选C. 【点睛】本题考查了等差数列及等差中项的性质. 2.B 【解析】 【分析】利用等差数列的性质,即下标和相等对应项的和相等,得到28465210a a a a a +=+==. 【详解】数列{}n a 为等差数列,28465210a a a a a +=+==,∴()24652a a a +-=2101090-=.【点睛】考查等差数列的性质、等差中项,考查基本量法求数列问题. 3.D 【解析】 【分析】对每一个选项逐一分析判断得解. 【详解】设数列{}n a 的公差为d ,选项A,B,C,都不满足1n n b b --=同一常数,所以三个选项都是错误的;对于选项D ,1112222n n n n n n a a a a d b b -----=-+==-, 所以数列{}n b 必为等差数列. 故选:D 【点睛】本题主要考查等差数列的判定和性质,意在考查学生对这些知识的理解掌握水平,属于基础题. 4.D 【解析】 【分析】直接利用等差数列的前n 项和公式求解. 【详解】数列{}n a 的前5项和为1555)(113)3522a a +=+=(. 故选:D 【点睛】本题主要考查等差数列的前n 项和的计算,意在考查学生对该知识的理解掌握水平,属于基础题. 5.C 【解析】 【分析】通过等差数列的性质可得答案. 【详解】因为3917a a +=,79a =,所以51798a =-=. 【点睛】本题主要考查等差数列的性质,难度不大. 6.C 【解析】 【分析】直接利用等差数列公式解方程组得到答案.【详解】121424a a a d +=⇒+= 7812821328a a a d +=⇒+= 1211,2n n a d a ==⇒-=故答案选C 【点睛】本题考查了等差数列的通项公式,属于基础题型. 7.B 【解析】 【分析】通过等差中项的性质即可得到答案. 【详解】由于71310220a a a +==,故9101110330a a a a ++==,故选B. 【点睛】本题主要考查等差数列的性质,难度较小. 8.C 【解析】 【分析】本题首先可根据首项为2以及公差为4求出数列{}n a 的通项公式,然后根据2022n a =以及数列{}n a 的通项公式即可求出答案。
等差数列前n项和及其应用(可编辑修改word版)

等差数列前n 项和及其应用一.选择题(共8 小题)1.已知数列{a n}的通项公式a n=26﹣2n,要使此数列的前n 项和S n 最大,则n 的值为()A.12 B.13 C.12 或13 D.142.等差数列{a n}的前n 项和为S n,已知a1=13,S3=S11,当S n 最大时,n 的值是()A.5 B.6 C.7 D.83.若{a n}是等差数列,首项公差d<0,a1>0,且a2013(a2012+a2013)<0,则使数列{a n} 的前n 项和S n>0 成立的最大自然数n 是()A.4027 B.4026 C.4025 D.40244.已知数列{a n}为等差数列,其前n 项和为S n,2a7﹣a8=5,则S11 为()A.110 B.55 C.50 D.不能确定5.在等差数列{a n}的前n 项和为S n,若a2+a4+a15 的值为常数,则下列为常数的是()A.S7 B.S8 C.S13 D.S156.设等差数列{a n}的前n 项和为S n,若S23>0,S24<0,则S n 取最大值时n 的值为()A.11 B.12 C.13 D.237.在等差数列{a n}中,,若它的前n 项和S n 有最大值,则当S n>0 时,n 的最大值为()A.11 B.12 C.13 D.148.等差数列{a n}中,a10<0,a11>0 且a11>|a10|,S n 为其前n 项和,则()A.S10<0,S11>0 B.S19<0,S20>0C.S5<0,S6>0 D.S20<0,S21>0二.填空题(共4 小题)9.已知等差数列{a n},{b n}前n 项和分别为S n 和T n,若=,则=.10.设等差数列{a n}的前n 项和为S n,若3a5﹣a1=10,则S13=.11.数列{a n}的前n 项和为S n,且S n=n2﹣n(n∈N*),则通项公式a n=.12.已知两个等差数列{a n}、{b n}的前n 项和分别为S n、T n.且,则=.三.解答题(共4 小题)13.等差数列{a n}的前n 项和为S n,且a3+a5=a4+7,S10=100.(1)求{a n}的通项公式;(2)求满足不等式S n<3a n﹣2 的n 的值.14.记S n 为等差数列{a n}的前n 项和,已知a1=10,S3=24.(1)求{a n}的通项公式;(2)求S n,并求S n 的最大值.15.在等差数列{a n}中,a10=18,前5 项的和S5=﹣15.(1)求数列{a n}的通项公式;(2)求数列{a n}的前n 项和的最小值,并指出何时取最小.16.已知等差数列{a n}中,a1=1,a3=﹣3.(1)求数列{a n}的通项公式;(2)若数列{a n}的前k 项和S k=﹣35,求k 的值.等差数列前n 项和及其应用参考答案与试题解析一.选择题(共8 小题)1.已知数列{a n}的通项公式a n=26﹣2n,要使此数列的前n 项和S n 最大,则n 的值为()A.12 B.13 C.12 或13 D.14【分析】数列{a n}是首项为24,公差为2 的等差数列,从而S n=24n+=﹣n2+25n=﹣(n﹣)2+.由此能求出要使此数列的前n 项和S n 最大,n 的值.【解答】解:∵数列{a n}的通项公式a n=26﹣2n,∴a1=26﹣2=24,d=a n﹣a n﹣1=(26﹣2n)﹣[26﹣2(n﹣1)]=﹣2,∴数列{a n}是首项为24,公差为2 的等差数列,∴S n=24n+=﹣n2+25n=﹣(n﹣)2+.∴要使此数列的前n 项和S n 最大,则n 的值为12 或13.故选:C.【点评】本题考查等差数列的前n 项和最大时项数n 的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.2.等差数列{a n}的前n 项和为S n,已知a1=13,S3=S11,当S n 最大时,n 的值是()A.5 B.6 C.7 D.8【分析】由等差数列的性质可得a7+a8=0,可得该数列的前7 项均为正数,从第8 项开始全为负数,故数列的前7 项和最大,进而可得答案.【解答】解:∵S3=S11,∴S11﹣S3=a4+a5+a6+…+a11=0,故可得(a4+a11)+(a5+a10)+…+(a7+a8)=4(a7+a8)=0,∴a7+a8=0,结合a1=13 可知,该数列的前7 项均为正数,从第8 项开始全为负数,故数列的前7 项和最大,故选:C.【点评】本题考查等差数列的前n 项和,涉及等差数列的性质,从数列自身的特点入手是解决问题的关键,属中档题.3.若{a n}是等差数列,首项公差d<0,a1>0,且a2013(a2012+a2013)<0,则使数列{a n}的前n 项和S n>0 成立的最大自然数n 是()A.4027 B.4026 C.4025 D.4024【分析】由题意可知数列是递减数列,由a2013(a2012+a2013)<0,知a2012>0,a2013<0,由此推得答案.【解答】解:由题意可得数列{a n}单调递减,由a2013(a2012+a2013)<0 可得:a2012>0,a2013<0,|a2012|>|a2013|.∴a2012+a2013>0.则S4025=4025a2013<0,故使数列{a n}的前n 项和S n>0 成立的最大自然数n 是4024.故选:D.【点评】本题考查了等差数列的前n 项和,考查了对递减数列的项的符号的判断,关键在于分清从那一项开始为负值,且判出正负相邻两项和的符号,是中档题.4.已知数列{a n}为等差数列,其前n 项和为S n,2a7﹣a8=5,则S11 为()A.110 B.55 C.50 D.不能确定【分析】利用等差数列的通项公式与性质及其求和公式即可得出.【解答】解:2a7﹣a8=2(a1+6d)﹣(a1+7d)=a1+5d=a6=5,∴.故选:B.【点评】本题考查了等差数列的通项公式与性质及其求和公式,考查了推理能力与计算能力,属于中档题.5.在等差数列{a n}的前n 项和为S n,若a2+a4+a15 的值为常数,则下列为常数的是()A.S7 B.S8 C.S13 D.S15【分析】利用等差数列的通项公式及其性质即可得出.【解答】解:设等差数列{a n}的公差为d,∵a2+a4+a15=3a1+18d=3a7 为常数,∴S13==13a7 为常数.故选:C.【点评】本题考查了等差数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.6.设等差数列{a n}的前n 项和为S n,若S23>0,S24<0,则S n 取最大值时n 的值为()A.11 B.12 C.13 D.23【分析】等差数列{a n}的前n 项和为S n,S23>0,S24<0,从而a12>0,a13<0,由此能求出S n 取最大值时n 的值.【解答】解:等差数列{a n}的前n 项和为S n,S23>0,S24<0,,a12>0,a13<0,∴S n 取最大值时n 的值为:12.故选:B.【点评】本题考查等差数列的前n 项和取最大值时n 的值的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想.7.在等差数列{a n}中,,若它的前n 项和S n 有最大值,则当S n>0 时,n 的最大值为()A.11 B.12 C.13 D.14【分析】公差d<0,首项a1>0,{a n}为递减数列,由等差数列的性质知:2a6=a1+a11>0,a6+a7=a1+a12<0,由此能求出结果.【解答】解:∵数列{a n}是等差数列,它的前n 项和S n 有最大值,∴公差d<0,首项a1>0,{a n}为递减数列,∵<0,∴a6•a7<0,a6+a7<0,由等差数列的性质知:2a6=a1+a11>0,a6+a7=a1+a12<0,∵S n=(a1+a n),∴S n>0 时,n 的最大值为11.故选:A.【点评】本题考查等差数列中满足前n 项和为正的n 的最大值的求法,考查等差数列的性质等基础知识,考查推运算求解能力,考查函数与方程思想,是基础题.8.等差数列{a n}中,a10<0,a11>0 且a11>|a10|,S n 为其前n 项和,则()A.S10<0,S11>0 B.S19<0,S20>0C.S5<0,S6>0 D.S20<0,S21>0【分析】由等差数列的性质可得:S20=>0,S19=19•a10<0.【解答】解:∵等差数列{a n}中,a10<0,a11>0 且a11>|a10|,S n 为其前n 项和,∴由等差数列的性质可得:S20=>0,S19=19•a10<0,故选:B.【点评】本题考查命题真假的判断,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.二.填空题(共4 小题)9.已知等差数列{a n},{b n}前n 项和分别为S n 和T n,若=,则=.【分析】由等差数列的求和公式和性质可得:=,问题得以解决.【解答】解:=======,故答案为:【点评】本题考查等差数列的求和公式和等差数列的性质,属基础题.10.设等差数列{a n}的前n 项和为S n,若3a5﹣a1=10,则S13=65 .【分析】利用等差数列通项公式求出2a7=10,由此能求出S13 的值.【解答】解:∵等差数列{a n}的前n 项和为S n,3a5﹣a1=10,∴3(a1+4d)﹣a1=2a1+12d=2a7=10,∴S13===.故答案为:65.【点评】本题考查等差数列的前13 项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.1.数列{a n}的前n 项和为S n,且S n=n2﹣n(n∈N*),则通项公式a n= 2n﹣2 .【分析】由已知条件利用能求出结果.【解答】解:∵S n=n2﹣n(n∈N*),∴a1=S1=1﹣1=0,n≥2 时,=(n2﹣n)﹣[(n﹣1)2﹣(n﹣1)]=2n﹣2.当n=1 时,2n﹣2=0=a1,∴a n=2n﹣2.故答案为:2n﹣2.【点评】本题考查数列的通项公式的求法,是基础题,解题时要认真审题,注意公式的灵活运用.12.已知两个等差数列{a n}、{b n}的前n 项和分别为S n、T n.且,则=.【分析】题目给出了两个等差数列的前n 项和的比值,求解两个数列的第11 项的比,可以借助等差数列的前n 项和在n 为奇数时的公式进行转化.【解答】解:因为数列{a n}、{b n}都是等差数列,根据等差中项的概念知数列中的第11 项为数列前21 项的等差中项,所以S21=21a11,T21=21b11,所以.故答案为.【点评】本题主要考查了等差数列的性质和数列的求和.解题的关键是利用了等差数列的前n 项和在n 为奇数时的公式,若n 为奇数,则.三.解答题(共4 小题)13.等差数列{a n}的前n 项和为S n,且a3+a5=a4+7,S10=100.(1)求{a n}的通项公式;(2)求满足不等式S n<3a n﹣2 的n 的值.【分析】(1)由a3+a5=a4+7,S10=100,列出方程组,求出首项和公差,由此能求出{a n} 的通项公式.(2)由a1=1,a n=2n﹣1,求出S n=n2,从而得到n2﹣6n+5<0,由此能求出n 的值.【解答】(本题10 分)解:(1)设数列{a n}的公差为d,由a3+a5=a4+7,得2a1+6d=a1+3d+7,①.…(1 分)由S10=100,得10a1+45d=100,②…(2 分)解得a1=1,d=2,…(4 分)所以a n=a1+(n﹣1)d=2n﹣1.…(5 分)(2)因为a1=1,a n=2n﹣1,所以=n2,…(7 分)由不等式S n<3a n﹣2,得n2<3(2n﹣1)﹣2,所以,n2﹣6n+5<0,解得1<n<5,…(9 分)因为n∈N*,所以n 的值为2,3,4.…(10 分)【点评】本题考查等差数列的通项公式、项数n 的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.14.记S n 为等差数列{a n}的前n 项和,已知a1=10,S3=24.(1)求{a n}的通项公式;(2)求S n,并求S n 的最大值.【分析】(1)设等差数列{a n}的公差为d,由a1=10,S3=24.利用求和公式解得d,即可得出a n.(2)利用求和公式、二次函数的单调性即可得出.【解答】解:(1)设等差数列{a n}的公差为d,∵a1=10,S3=24.∴3×10+d=24,解得d=﹣2.∴a n=10﹣2(n﹣1)=12﹣2n.(2)S n==﹣n2+11n=﹣+.∴当n=5 或 6 时,S n 最大,S n=﹣52+55=30.【点评】本题考查了等差数列的通项公式与求和公式、二次函数的单调性,考查了推理能力与计算能力,属于中档题.15.在等差数列{a n}中,a10=18,前5 项的和S5=﹣15.(1)求数列{a n}的通项公式;(2)求数列{a n}的前n 项和的最小值,并指出何时取最小.【分析】(1)由等差数列{a n}中,a10=18,前5 项的和S5=﹣15,,由此能求出数列{a n}的通项公式.(2)由a1=﹣9,d=3,a n=3n﹣12,知=﹣,由此能求出当n=3 或4 时,前n 项的和S n 取得最小值S3=S4=﹣18.【解答】解:(1)∵等差数列{a n}中,a10=18,前5 项的和S5=﹣15,∴,解得a1=﹣9,d=3,∴a n=3n﹣12.(2)∵a1=﹣9,d=3,a n=3n﹣12,∴==﹣,∴当n=3 或 4 时,前n 项的和S n 取得最小值S3=S4=﹣18.【点评】本题考查等差数列的通项公式和前n 项和公式的灵活运用,是基础题.解题时要认真审题,仔细解答,注意配方法的合理运用.16.已知等差数列{a n}中,a1=1,a3=﹣3.(1)求数列{a n}的通项公式;(2)若数列{a n}的前k 项和S k=﹣35,求k 的值.【分析】(1)根据等差数列的通项公式,先求出d,即可得到答案,(2)根据等差数列的前n 项和公式即可求出.【解答】解:(1)设等差数列{a n}的公差为d,由a1=1,a3=﹣3,得a3=a1+2d,解得d=﹣2,∴a n=a1+(n﹣1)d=1﹣2(n﹣1)=3﹣2n,(2)S k==﹣35,即k2﹣2k﹣35=0,解得k=7 或k=﹣5(舍去)故k=7.【点评】本题考查了等差数列的通项公式和前n 项和公式,属于基础题.。
等差数列性质基础练习题

等差数列性质基础练习题一、填空题1. 等差数列的通项公式为:an = a1 + (n 1)d,其中a1是首项,d是公差,n是项数。
若等差数列的首项为3,公差为2,则第五项的值为______。
2. 在等差数列{an}中,已知a3 = 7,a7 = 19,则公差d为______。
3. 已知等差数列的前三项分别为2,5,8,则第10项的值为______。
4. 等差数列的前n项和公式为:Sn = n(a1 + an)/2,若等差数列的前5项和为35,公差为3,则首项a1的值为______。
5. 在等差数列{an}中,若a4 = 16,a10 = 44,则第8项的值为______。
二、选择题A. an = a1 + (n 1)dB. an = a1 (n 1)dC. an = a1 / (n 1)dD. an = a1 (n 1)dA. 公差为4B. 公差为8C. 公差为12D. 公差为163. 在等差数列{an}中,若a1 = 3,d = 2,则第6项的值为()。
A. 9B. 11C. 13D. 15A. 首项为3B. 首项为5C. 首项为7D. 首项为95. 在等差数列{an}中,若a3 = 6,a7 = 18,则第5项的值为()。
A. 10B. 12C. 14D. 16三、解答题1. 已知等差数列的前4项分别为2,5,8,11,求第10项的值。
2. 在等差数列{an}中,已知a5 = 15,a10 = 35,求首项a1和公差d。
3. 已知等差数列的前7项和为49,公差为3,求第4项的值。
4. 在等差数列{an}中,若a1 = 4,d = 5,求前8项的和。
5. 已知等差数列的前5项和为55,公差为7,求第6项的值。
四、判断题1. 等差数列的任意两项之间的差都是相同的。
()2. 等差数列的通项公式中,n表示项数,而不是项的位置。
()3. 在等差数列中,如果首项为负数,公差为正数,那么数列中的项会逐渐减小。
等差数列与等比数列的类比练习题(带答案)(可编辑修改word版)

(b 1b n)nn + 1 ,则有2n3等差数列与等比数列的类比一、选择题(本大题共 1 小题,共 5.0 分){a } S S =n (a 1 + a n ) 1. 记等差数列 n 的前 n 项和为 n ,利用倒序求和的方法得 n 2 ;类似地,记等比数列{b n }的前 n 项积为T n ,且b n> 0(n ∈ N *),类比等差数列求和的方法,可将T n 表示成关于首项b 1,末项b n 与项数 n 的关系式 为 ( )1. Anb 1b nA. B. 2 C. nb 1b nnb 1b nD. 2 二、填空题(本大题共 9 小题,共 45.0 分)2. 在公差为 d 的等差数列{a n }中有:a n = a m + (n - m )d (m 、n ∈ N + ),类比到公比为 q 的等比数列{b n }中有: .2.b n = b m ⋅ q n - m (m ,n ∈ N * ){a} b = a 1 + 2a 2 + 3a 3 + … + n a n{b }3. 数列 n 是正项等差数列,若 n 1 + 2 + 3 + … + n ,则数列 n 也 为等差数列,类比上述结论,写出正项等比数列{c n },若d n = 则数列{d n }也为等比数列.1(c c 2c 3…c n )1 + 2 + 3 + … + n 3. 1 2 3 n4. 等差数列{a n }中,有a 1 + a 2 + … + a 2n + 1 = (2n + 1)a n + 1,类比以上性质,在等比数列{b n }中,有等式 成立.4.b 1b 2…b 2n + 1 = b 2n + 1T5. 若等比数列{a n }的前 n 项之积为T n T 3n = ( T n ) ;类比可得到以下正确结论:若等差数列的前 n 项之和为S n ,则有 .5. S 3n = 3(S 2n - S n ){a}a 11 + a 12 + … + a 20 = a 1 + a 2 + …a 306. 已知在等差数列 n 中, 10 30 ,则在等比数列{b n }中,类似的结论为10b 11 ⋅ b 12 ⋅ … ⋅ b 20 = 30b 1 ⋅ b 2 ⋅ b 3 ⋅ … ⋅ b 30q S nn7. 在等比数列{a n}中,若a9 = 1,则有a1⋅a2…a n = a1⋅a2…a17- n(n < 17,且n∈N* )成立,类比上述性质,在等差数列{b n}中,若b7 = 0,则有.b1 + b2 + … + b n= b1 + b2 + … + b13- n(n < 13,且n∈ N* )8.设S n是公差为d 的等差数列{a n}的前n 项和,则数列S6 - S3,S9 - S6,S12 - S9是等差数列,且其公差为9d.通过类比推理,可以得到结论:设T n是公比为2 的等比数列{b n}的前n 项积,则数列T6T9T12T3,T6,T9 是等比数列,且其公比的值是.5129.若等差数列{a n}的公差为d,前nS n{ }项的和为,则数列为等差数列,d. {b}公差为2 类似地,若各项均为正数的等比数列n的公比为q,前n 项的积为T n,则数列{nT n}为等比数列,公比为.10. 设等差数列{a n}的前n 项和为S n m,n(m < n),使得S m= S n,则S m + n= 0.类比上述结论,设正项等比数列{b n}的前n 项积为T n,若存在正整数m,n(m < n),使得T m= T n,则T m + n=.10. 1答案和解析【解析】{a} S= n(a1 + a n)1. 解:在等差数列n的前n 项和为n 2 ,因为等差数列中的求和类比等比数列中的乘积,所以各项均为正的等比数列{bn}的前n 项积T n= (b1b n)n,故选:A由等差和等比数列的通项和求和公式及类比推理思想可得结果,在运用类比推理时,通常等差数列中的求和类比等比数列中的乘积.本题考查类比推理、等差和等比数列的类比,搞清等差和等比数列的联系和区别是解决本题的关键.n + 1n + 12. 解:在等差数列{a n }中,我们有a n = a m + (n ‒ m )d ,类比等差数列,等比数列中也是如此,b n = b m ⋅ q n ‒ m(m ,n ∈ N ∗ ).故答案为b n = b m ⋅ q n ‒ m(m ,n ∈ N ∗ ).因为等差数列{a n }中,a n = a m + (n ‒ m )d (m ,n ∈ N + ),即等差数列中任意给出第 m项a m ,它的通项可以由该项与公差来表示,推测等比数列中也是如此,给出第 m 项 b m 和公比,求出首项,再把首项代入等比数列的通项公式中,即可得到结论.本题考查了类比推理,类比推理就是根据两个不同的对象在某些方面的相似之处,从而推出这两个对象在其他方面的也具有的相似之处,是基础题.3. 解: ∵ 根据等差数列构造的新的等差数列是由原来的等差数列的和下标一致的数字 倍的和,除以下标的和,∴ 根据新的等比数列构造新的等比数列, c c 2c 3…c n乘积变化为乘方 1 2 3 n ,1(c c 2c 3…c n ) 1 + 2 + 3 + … + n原来的除法变为开方 1 2 3 n1(c c 2c 3…c n ) 1 + 2 + 3 + … + n故答案为: 1 2 3 n根据等差数列构造的新的等差数列是由原来的等差数列的和下标一致的数字倍的和, 除以下标的和,等比数列要类比出一个结论,只有乘积变化为乘方,除法变为开方, 写出结论.本题考查类比推理,两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象的也具有这类特征,是一个有特殊到特殊的推理.4. 解:把等差数列的通项相加改成等比数列的通项相乘,把结论的相乘的系数改成等比数列的指数,∴ 在等比数列{b n }中有结论b 1b 2…b 2n + 1 = b 2n + 1(n ∈ N + ).故答案为:b 1b 2…b 2n + 1 = b 2n + 1(n ∈ N + ). 利用“类比推理”,把等差数列的通项相加改成等比数列的通项相乘,把结论的相乘的系数改成等比数列的指数,即可得出.本题考查了等比数列的通项公式、类比推理等基础知识与基本技能方法,属于中档题.5. 解:在等差数列中S 3n= S n + (S 2n ‒ S n ) + (S 3n ‒ S 2n ) = (a 1 + a 2 + … + a n ) ++ (S 2n ‒ S n ) + (a 2n + 1 + a 2n + … + a 3n )因为a 1 + a 3n = a 2 + a 3n ‒ 1 = … = a n + a 2n + 1 = a n + 1 + a 2n 所以S n + (S 3n ‒ S 2n ) = 2(S 2n ‒ S n ),所以S 3n = 3(S 2n ‒ S n ). 故答案为:S 3n = 3(S 2n ‒ S n ).本小题主要考查类比推理,由等差和等比数列的通项和求和公式及类比推理思想可得结果.本题考查类比推理、等差和等比数列的类比,搞清等差和等比数列的联系和区别是解决本题的关键.6. 解:等差数列与等比数列的对应关系有:等差数列中的加法对应等比数列中的乘法,等差数列中除法对应等比数列中的开方,故此我们可以类比得到结论:10b 11 ⋅ b 12 ⋅ … ⋅ b 20 = 30b 1 ⋅ b 2 ⋅ b 3 ⋅ … ⋅ b 30. 故答案为:10b 11 ⋅ b 12 ⋅ … ⋅ b 20 = 30b 1 ⋅ b 2 ⋅ b 3 ⋅ … ⋅ b 30.在等差数列中,等差数列的性质m + n = p + q ,则a m + a n = a p + a q ,那么对应的在等比数列中对应的性质是若m + n = p + q ,则b m b n = b p b q .本题考查类比推理,掌握类比推理的规则及类比对象的特征是解本题的关键,本题中由等差结论类比等比结论,其运算关系由加类比乘,解题的难点是找出两个对象特征的对应,作出合乎情理的类比.7. 解:在等比数列中,若a 9 = 1,则a 18 ‒ n ⋅⋅⋅ a 9 ⋅⋅⋅ a n = 1即a 1 ⋅ a 2…a n = a 1 ⋅ a 2…a 17 ‒ n (n < 17,且n ∈ N ∗)成立,利用的是等比性质,若 m + n = 18,则a 18 ‒ n ⋅ a n = a 9 ⋅ a 9 = 1,∴ 在等差数列{b n }中,若b 7 = 0,利用等差数列的性质可知,若m + n = 14,b 14 ‒ n + b n = b 7 + b 7 = 0,∴ b 1 + b 2 + … + b n = b 1 + b 2 + … + b 13 ‒ n (n < 13,且n ∈ N ∗ )故答案为:b 1 + b 2 + … + b n = b 1 + b 2 + … + b 13 ‒ n (n < 13,且n ∈ N ∗).据等差数列与等比数列通项的性质,结合类比的规则,和类比积,加类比乘,由类比规律得出结论即可.本题的考点是类比推理,考查类比推理,解题的关键是掌握好类比推理的定义及等差等比数列之间的共性,由此得出类比的结论即可.T 6 T 9 T 12 T 3,T , T 929 = 5128. 解:由题意,类比可得数列6是等比数列,且其公比的值是 ,故答案为 512.由等差数列的性质可类比等比数列的性质,因此可根据等比数列的定义求出公比即可.本题主要考查等比数列的性质、类比推理,属于基础题目.{a } SS n= a + (n ‒ 1) ⋅ d 9. 解:因为在等差数列 n 中前 n 项的和为 n 的通项,且写成了n1 2. 所以在等比数列{b n }中应研究前 n 项的积为T n 的开 n 方的形式.类比可得nT n = b 1( q )n ‒ 1.其公比为 故答案为 q .S nS nd{ n } n= a 1 + (n ‒ 1) ⋅ 2仔细分析数列 为等差数列,且通项为 的特点,类比可写出对应数 列{nT n }为等比数列的公比.本小题主要考查等差数列、等比数列以及类比推理的思想等基础知识.在运用类比推理时,通常等差数列中的求和类比等比数列中的乘积.10. 解:在由等差数列的运算性质类比推理到等比数列的运算性质时:加减运算类比推理为乘除运算,累加类比为累乘,故由“已知数列{a n }为等差数列,它的前 n 项和为S n ,若存在正整数m ,n (m ≠ n ),使得S m = S n ,则S m + n = 0”.类比推理可得:“已知正项数列{b n }为等比数列,它的前n .项积为T n ,若存在正整数 m ,n .(m ≠ n ),使得T m = T n ,则T m + n = 1.故答案为 1.在类比推理中,等差数列到等比数列的类比推理方法一般为:加减运算类比推理为乘除运算,累加类比为累乘,由“已知数列{a n }为等差数列,它的前 n 项和为S n ,若存q在正整数m ,n (m ≠ n ),使得S m = S n ,则S m + n = 0”.类比推理可得:“已知正项数列 {b n }为等比数列,它的前n .项积为T n ,若存在正整数m ,n .(m ≠ n ),使得T m = T n ,则 T m + n = 1.类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).。
等差数列专项训练(附答案) 2份

等差数列专项训练姓名 学号 班级 一、填空题(本大题共14小题,每小题5分,共70分)1、已知等差数列{}n a ,22a =-,64a =,则4a =2、}{n a 是首项1a =1,公差为d =3的等差数列,如果n a =2005,则序号n 等于3、设n S 是等差数列{}n a 的前n 项和,若735S =,则4a =4、已知等差数列{}n a 的公差为2,若34a =,则第12项是5、如果等差数列{}n a 中,34512a a a ++=,那么127...a a a +++=6、设}{n a 是等差数列,若273,13a a ==,则数列}{n a 前8项的和为7、数列{a n },{b n }为等差数列,前n 项和分别为,n n S T ,若322n n S n T n+=,则77a b =8、已知等差数列{}n a 的前n 项和为n S ,且1010S =,2030S =,则30S = 9、数列{}n a 的前n 项和为2=2n S n n +,则数列{}n a 的通项公式n a =10、设等差数列}{n a 的前n 项和为48,8,20n S S S ==若,则11121314a a a a +++= 11、设{}n a 递增等差数列,前三项的和为12,前三项的积为48,则它的首项是 12、等差数列{}1418161042,30,a a a a a a n -=++则中的值为 13、若数列{}n a 满足:119a =,13(*)n n a a n +=-∈N ,则数列{}n a 的前n 项和数值最大时n 的值是 14、已知数列{}n a 中,11a =,且1113()nn n N a a *+=+∈,则10a =二、解答题:15、已知{}n a 为等差数列,且36a =-,60a =。
(Ⅰ)求{}n a 的通项公式;(Ⅱ)若等差数列{}n b 满足18b =-,2123b a a a =++,求{}n b 的前n 项和公式16、已知等差数列{n a }前n 项和为n S ,且72,1063==S a (Ⅰ)求数列{n a }的通项公式 (Ⅱ)若3021-=n n a b ,求数列{}n b 的前n 项和n T17、已知{}n a 是等差数列,其中1425,16a a == (1)求{}n a 的通项; (2)数列{}n a 从哪一项开始小于0; (3)求13519a a a a ++++值。
等差数列及其前n项和Word版含答案

等差数列及其前n 项和【课前回顾】1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.这个常数叫做等差数列的公差,符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.4.与等差数列各项的和有关的性质(1)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也成等差数列,其首项与{a n }首项相同,公差是{a n }公差的12. (2)若{a n }是等差数列,S m ,S 2m ,S 3m 分别为{a n }的前m 项,前2m 项,前3m 项的和,则S m ,S 2m -S m ,S 3m -S 2m 成等差数列.(3)关于等差数列奇数项和与偶数项和的性质. ①若项数为2n ,则S 偶-S 奇=nd ,S 奇S 偶=a na n +1. ②若项数为2n -1,则S 偶=(n -1)a n ,S 奇=na n ,S 奇-S 偶=a n ,S 奇S 偶=n n -1. (4)两个等差数列{a n },{b n }的前n 项和S n ,T n 之间的关系为a n b n=S 2n -1T 2n -1.【课前快练】1.在等差数列{}a n 中,若a 2=4,a 4=2,则a 6=( ) A .-1 B .0 C .1D .6解析:选B ∵{}a n 为等差数列,∴2a 4=a 2+a 6,∴a 6=2a 4-a 2=2×2-4=0.2.(2017·全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8 解析:选A 设等差数列{a n }的公差为d , 因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23, 即(a 1+d )(a 1+5d )=(a 1+2d )2. 又a 1=1,所以d 2+2d =0. 又d ≠0,则d =-2,所以{a n }前6项的和S 6=6×1+6×52×(-2)=-24.3.已知数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,且a 1=1,a 4=4,则a 10=( )A .-45B .-54C.413D.134解析:选A 设等差数列⎩⎨⎧⎭⎬⎫1a n 的公差为d ,由题意可知,1a 4=1a 1+3d =14,解得d =-14,所以1a 10=1a 1+9d =-54,所以a 10=-45. 4.已知等差数列{a n }的公差d ≠0,且a 3+a 9=a 10-a 8,若a n =0,则n =________. 解析:因为a 3+a 9=a 10-a 8,所以a 1+2d +a 1+8d =a 1+9d -(a 1+7d ), 解得a 1=-4d ,所以a n =-4d +(n -1)d =(n -5)d , 令(n -5)d =0(d ≠0),可解得n =5. 答案:55.在等差数列{a n }中,a n >0,a 7=12a 4+4,S n 为数列{a n }的前n 项和,则S 19=________.解析:设等差数列{a n }的公差为d ,由a 7=12a 4+4,得a 1+6d =12(a 1+3d )+4,即a 1+9d =8,所以a 10=8,因此S 19=19(a 1+a 19)2=19×a 10=19×8=152. 答案:152考点一 等差数列的基本运算1.等差数列运算中方程思想的应用(1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.[易错提醒] 在求解数列基本量运算中,要注意公式使用时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意整体代换思想的运用,使运算更加便捷.2.等差数列前n 项和公式的应用方法根据不同的已知条件选用两个求和公式,若已知首项和公差,则使用公式S n =na 1+n (n -1)2d ;若已知通项公式,则使用公式S n =n (a 1+a n )2,同时注意与性质“a 1+a n =a 2+a n -1=a 3+a n -2=…”的结合使用.【典型例题】1.若等差数列{a n }的前5项和S 5=25,且a 2=3,则a 7=( ) A .12 B .13 C .14D .15解析:选B 设等差数列{a n }的公差为d , 由S 5=5(a 2+a 4)2,得5(3+a 4)2=25,解得a 4=7,所以7=3+2d ,解得d =2,所以a 7=a 4+3d =7+3×2=13.2.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:选C 设等差数列{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4.3.(2018·福州质检)设等差数列{a n }的公差d ≠0,且a 2=-d ,若a k 是a 6与a k +6的等比中项,则k =( )A .5B .6C .9D .11解析:选C 因为a k 是a 6与a k +6的等比中项, 所以a 2k =a 6a k +6.又等差数列{a n }的公差d ≠0,且a 2=-d , 所以[a 2+(k -2)d ]2=(a 2+4d )[a 2+(k +4)d ], 所以(k -3)2=3(k +3),解得k =9,或k =0(舍去),故选C.4.设S n 为等差数列{a n }的前n 项和,若a 12=-8,S 9=-9,则S 16=________. 解析:设等差数列{a n }的首项为a 1,公差为d , 由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9×82d =-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1. ∴S 16=16×3+16×152×(-1)=-72.答案:-72考点二 等差数列的判定与证明等差数列的判定与证明方法用定义证明等差数列时,容易漏掉对起始项的检验,从而产生错解.比如,对于满足a n -a n -1=1(n ≥3)的数列{a n }而言并不能判定其为等差数列,因为不能确定起始项a 2-a 1是否等于1.【典型例题】(2018·贵州适应性考试)已知数列{a n }满足a 1=1,且na n +1-(n +1)a n =2n 2+2n . (1)求a 2,a 3;(2)证明数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,并求{a n }的通项公式.[思维路径](1)要求数列的项,可根据已知首项和递推关系式,令n =1,2可解得.(2)证明⎩⎨⎧⎭⎬⎫a n n 是等差数列,其关键应推出a n +1n +1-a n n 为常数,对所给条件进行必要的变形即可.解:(1)由已知,得a 2-2a 1=4, 则a 2=2a 1+4,又a 1=1,所以a 2=6. 由2a 3-3a 2=12,得2a 3=12+3a 2,所以a 3=15.(2)证明:由已知na n +1-(n +1)a n =2n 2+2n , 得na n +1-(n +1)a n n (n +1)=2,即a n +1n +1-a nn=2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项a 11=1,公差d =2的等差数列.则a nn =1+2(n -1)=2n -1,所以a n =2n 2-n .【针对训练】1.(2018·陕西质检)已知数列{a n }的前n 项和S n =an 2+bn (a ,b ∈R)且a 2=3,a 6=11,则S 7等于( )A .13B .49C .35D .63解析:选B 由S n =an 2+bn (a ,b ∈R)可知数列{a n }是等差数列,所以S 7=7(a 1+a 7)2=7(a 2+a 6)2=49.2.已知数列{a n }中,a 1=2,a n =2-1a n -1(n ≥2,n ∈N *),设b n =1a n -1(n ∈N *).求证:数列{b n }是等差数列.证明:∵a n =2-1a n -1(n ≥2), ∴a n +1=2-1a n.∴b n +1-b n =1a n +1-1-1a n -1=12-1a n-1-1a n -1=a n -1a n -1=1, ∴{b n }是首项为b 1=12-1=1,公差为1的等差数列.考点三 等差数列的性质及前n 项和的最值1.应用等差数列的性质解题的2个注意点(1)如果{a n }为等差数列,m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).因此,若出现a m -n ,a m ,a m +n 等项时,可以利用此性质将已知条件转化为与a m (或其他项)有关的条件;若求a m 项,可由a m =12(a m -n +a m +n )转化为求a m -n ,a m +n 或a m +n +a m -n 的值.(2)要注意等差数列通项公式及前n 项和公式的灵活应用,如a n =a m +(n -m )d ,d =a n -a m n -m,S 2n -1=(2n -1)a n ,S n =n (a 1+a n )2=n (a 2+a n -1)2(n ,m ∈N *)等.2.求等差数列前n 项和S n 最值的2种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法:①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .3.理清等差数列的前n 项和与函数的关系 等差数列的前n 项和公式为S n =na 1+n (n -1)2d 可变形为S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,令A =d2,B =a 1-d2,则S n =An 2+Bn .当A ≠0,即d ≠0时,S n 是关于n 的二次函数,(n ,S n )在二次函数y =Ax 2+Bx 的图象上,即为抛物线y =Ax 2+Bx 上一群孤立的点.利用此性质可解决前n 项和S n 的最值问题.【典型例题】1.在等差数列{a n}中,a1=29,S10=S20,则数列{a n}的前n项和S n的最大值为() A.S15B.S16C.S15或S16D.S17解析:选A∵a1=29,S10=S20,∴10a1+10×92d=20a1+20×192d,解得d=-2,∴S n=29n+n(n-1)2×(-2)=-n2+30n=-(n-15)2+225.∴当n=15时,S n取得最大值.2.已知函数f(x)的图象关于直线x=-1对称,且f(x)在(-1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则数列{a n}的前100项的和为() A.-200 B.-100C.-50 D.0[学审题]①由函数的对称性及单调性知f(x)在(-∞,-1)上也单调;②结合函数的性质知a50+a51=-2.解析:选B因为函数f(x)的图象关于直线x=-1对称,又函数f(x)在(-1,+∞)上单调,所以f(x)在(-∞,-1)上也单调,且数列{a n}是公差不为0的等差数列.又f(a50)=f(a51),所以a50+a51=-2,所以S100=100(a1+a100)2=50(a50+a51)=-100.【针对训练】1.(2018·岳阳模拟)在等差数列{a n}中,如果a1+a2=40,a3+a4=60,那么a7+a8=() A.95B.100C.135 D.80解析:选B由等差数列的性质可知,a1+a2,a3+a4,a5+a6,a7+a8构成新的等差数列,于是a7+a8=(a1+a2)+(4-1)[(a3+a4)-(a1+a2)]=40+3×20=100.2.设等差数列{a n}的前n项和为S n,且a1>0,a3+a10>0,a6a7<0,则满足S n>0的最大自然数n的值为()A.6 B.7C.12 D.13解析:选C因为a1>0,a6a7<0,所以a6>0,a7<0,等差数列的公差小于零,又a3+a10=a1+a12>0,a1+a13=2a7<0,所以S12>0,S13<0,所以满足S n>0的最大自然数n的值为12.3.设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),则数列{a n }的项数为________.解析:由题意知a 1+a 2+…+a 6=36,① a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216, ∴a 1+a n =36, 又S n =n (a 1+a n )2=324, ∴18n =324,∴n =18. 答案:18【课后演练】1.已知等差数列{a n }的前n 项和为S n ,若a 1=2,a 8+a 10=28,则S 9=( ) A .36 B .72 C .144D .288解析:选B 法一:∵a 8+a 10=2a 1+16d =28,a 1=2, ∴d =32,∴S 9=9×2+9×82×32=72.法二:∵a 8+a 10=2a 9=28,∴a 9=14, ∴S 9=9(a 1+a 9)2=72. 2.若等差数列{a n }的前n 项和为S n ,且满足a 2+S 3=4,a 3+S 5=12,则a 4+S 7的值是( )A .20B .36C .24D .72解析:选C 由a 2+S 3=4及a 3+S 5=12,得⎩⎪⎨⎪⎧ 4a 1+4d =4,6a 1+12d =12,解得⎩⎪⎨⎪⎧a 1=0,d =1,∴a 4+S 7=8a 1+24d =24.3.已知数列{a n }满足a 1=15,且3a n +1=3a n -2.若a k ·a k +1<0,则正整数k =( ) A .21 B .22 C .23D .24解析:选C 由3a n +1=3a n -2⇒a n +1-a n =-23⇒{a n }是等差数列,则a n =473-23n .∵a k ·a k+1<0,∴⎝⎛⎭⎫473-23k ⎝⎛⎭⎫453-23k <0,∴452<k <472,又∵k ∈N *,∴k =23.4.已知数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 2=12,则a 8=( )A .0B .-109C .-181D .121解析:选B 设等差数列{b n }的公差为d ,则d =b 3-b 2=-14,因为a n +1-a n =b n ,所以a 8-a 1=b 1+b 2+…+b 7=7(b 1+b 7)2=7b 4=7×(-2-14)=-112,又a 1=3,所以a 8=-109.5.在数列{a n }中,a 1=3,a n +1=3a na n +3,则a 4=( ) A.34 B .1 C.43D.32解析:选A 依题意得1a n +1=a n +33a n =1a n +13,1a n +1-1a n =13,故数列⎩⎨⎧⎭⎬⎫1a n 是以1a 1=13为首项、13为公差的等差数列,则1a n =13+n -13=n 3,a n =3n ,a 4=34.6.已知数列{a n }满足a n +1-a n =2,a 1=-5,则|a 1|+|a 2|+…+|a 6|=( ) A .9 B .15 C .18D .30解析:选C 由a n +1-a n =2可得数列{a n }是等差数列,公差d =2,又a 1=-5,所以a n =2n -7,所以|a 1|+|a 2|+|a 3|+|a 4|+|a 5|+|a 6|=5+3+1+1+3+5=18.7.(2016·北京高考)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.解析:∵a 3+a 5=2a 4,∴a 4=0. ∵a 1=6,a 4=a 1+3d ,∴d =-2. ∴S 6=6a 1+6×(6-1)2d =6×6-30=6.答案:68.等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为________.解析:∵⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5. 答案:S 59.若等差数列{a n }的前17项和S 17=51,则a 5-a 7+a 9-a 11+a 13=________.解析:因为S 17=a 1+a 172×17=17a 9=51,所以a 9=3. 根据等差数列的性质知a 5+a 13=a 7+a 11, 所以a 5-a 7+a 9-a 11+a 13=a 9=3. 答案:310.在等差数列{a n }中,公差d =12,前100项的和S 100=45,则a 1+a 3+a 5+…+a 99=________.解析:因为S 100=1002(a 1+a 100)=45,所以a 1+a 100=910, a 1+a 99=a 1+a 100-d =25,则a 1+a 3+a 5+…+a 99=502(a 1+a 99)=502×25=10. 答案:1011.已知S n 是数列{a n }的前n 项和,且S n +1=S n +a n +3,a 4+a 5=23,则S 8=( ) A .72 B .88 C .92D .98解析:选C 法一:由S n +1=S n +a n +3,得a n +1-a n =3,故数列{a n }是公差为3的等差数列,又a 4+a 5=23=2a 1+7d =2a 1+21,∴a 1=1,S 8=8a 1+8×72d =92.法二:由S n +1=S n +a n +3,得a n +1-a n =3,故数列{a n }是公差为3的等差数列,S 8=8(a 1+a 8)2=8(a 4+a 5)2=92. 12.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增一十三里;驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,二马相逢,问:几日相逢( )A .8日B .9日C .12日D .16日解析:选B 设n 日相逢,则依题意得103n +n (n -1)2×13+97n +n (n -1)2×⎝⎛⎭⎫-12=1125×2,整理得n 2+31n -360=0, 解得n =9(负值舍去),故选B.13.等差数列{a n }的前n 项和为S n ,其中n ∈N *,则下列命题错误的是( ) A .若a n >0,则S n >0 B .若S n >0,则a n >0C .若a n >0,则{S n }是单调递增数列D .若{S n }是单调递增数列,则a n >0解析:选D 由等差数列的性质可得:∀n ∈N *,a n >0,则S n >0,反之也成立.a n >0,d >0,则{S n }是单调递增数列.因此A 、B 、C 正确.对于D ,{S n }是单调递增数列,则d >0,而a n >0不一定成立.14.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由题意,当且仅当n =8时S n 有最大值,可得⎩⎪⎨⎪⎧ d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧ d <0,7+7d >0,7+8d <0,解得-1<d <-78. 答案:⎝⎛⎭⎫-1,-78 15.设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m =________. 解析:因为等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3, 所以a m =S m -S m -1=2,a m +1=S m +1-S m =3,数列的公差d =1,a m +a m +1=S m +1-S m -1=5,即2a 1+2m -1=5,所以a 1=3-m .由S m =(3-m )m +m (m -1)2×1=0, 解得m =5.答案:516.已知数列{a n }的前n 项和为S n ,且S n =2n -1(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =log 4a n +1,求{b n }的前n 项和T n .解:(1)当n ≥2时,a n =S n -S n -1=2n -1, 当n =1时,a 1=2-1=1,满足a n =2n -1, ∴数列{a n }的通项公式为a n =2n -1(n ∈N *). (2)由(1)得,b n =log 4a n +1=n +12, 则b n +1-b n =n +22-n +12=12, ∴数列{b n }是首项为1,公差d =12的等差数列,∴T n =nb 1+n (n -1)2d =n 2+3n 4. 17.已知递增等差数列{a n }的前n 项和为S n ,且a 2a 3=15,S 4=16.(1)求数列{a n }的通项公式以及S n 的表达式;(2)若数列{b n }满足:b 1=1,b n +1-b n =1a n a n +1,求数列{b n }的通项公式. 解:(1)设数列{a n }的公差为d (d >0), 则⎩⎪⎨⎪⎧ a 2a 3=(a 1+d )(a 1+2d )=15,S 4=4a 1+6d =16, 解得⎩⎪⎨⎪⎧ a 1=1,d =2或⎩⎪⎨⎪⎧a 1=7,d =-2(舍去), ∴a n =1+2(n -1)=2n -1,S n =n (1+2n -1)2=n 2,n ∈N *. (2)由(1)知,b n +1-b n =1a n a n +1=1(2n -1)(2n +1)=12⎛⎭⎫12n -1-12n +1, b n -b 1=(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -3-12n -1=12⎝⎛⎭⎫1-12n -1=n -12n -1(n ≥2),∴b n =3n -22n -1. 当n =1时,b 1=1也符合上式, ∴b n =3n -22n -1(n ∈N *). 18.已知数列{a n }满足,a n +1+a n =4n -3(n ∈N *).(1)若数列{a n }是等差数列,求a 1的值;(2)当a 1=2时,求数列{a n }的前n 项和S n . 解:(1)法一:∵数列{a n }是等差数列, ∴a n =a 1+(n -1)d ,a n +1=a 1+nd . 由a n +1+a n =4n -3,得a 1+nd +a 1+(n -1)d =4n -3, ∴2dn +(2a 1-d )=4n -3,即2d =4,2a 1-d =-3,解得d =2,a 1=-12. 法二:在等差数列{a n }中,由a n +1+a n =4n -3, 得a n +2+a n +1=4(n +1)-3=4n +1,∴2d =a n +2-a n =4n +1-(4n -3)=4,∴d =2.又∵a 1+a 2=2a 1+d =2a 1+2=1,∴a 1=-12. (2)由题意知,①当n 为奇数时, S n =a 1+a 2+a 3+…+a n=a 1+(a 2+a 3)+(a 4+a 5)+…+(a n -1+a n )=2+4[2+4+…+(n -1)]-3×n -12=2n 2-3n +52. ②当n 为偶数时,S n =a 1+a 2+a 3+…+a n =(a 1+a 2)+(a 3+a 4)+…+(a n -1+a n ) =1+9+…+(4n -7)=2n 2-3n 2. 综上,S n =⎩⎨⎧2n 2-3n +52,n 为奇数,2n 2-3n 2,n 为偶数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列填空题训练作业一、填空题(本大题共20小题,共100.0分)1. 设数列{a n},{b n}都是等差数列,若a 1+b 1=7,a 3+b 3=21,则a 5+b 5= ______ .2. 在等差数列{a n}中,a 1+a 3+a 5=9,a 2+a 4+a 6=15,则数列{a n}的前10项的和等于______ .3. 等差数列{a n},{b n}的前n项和分别为S n、T n,若= ,则= ______ .4. 若2、a、b、c、9成等差数列,则c-a= ______ .5. 在等差数列{a n}中,a 1=7,公差为d,前n项和为S n,当且仅当n=8时S n取得最大值,则d的取值范围为______ .6. 若等差数列满足,则当▲时,的前项和最大.7. 已知等比数列{a n}中,各项都是正数,且成等差数列,则等于____________.8. 若等差数列{a n}的前5项和S 5=25,且a 2=3,则a 7=____________.9. 已知数列{a n}的前n项和S n=n 2-9n,则其通项a n=____________;若它的第k项满足5<a k<8,则k=____________.10. 设等差数列{a n}的前n项和为S n,若S 3=9,S 6=36,则a 7+a 8+a 9=____________.11. 等差数列{a n} 中a 1+a 9+a 2+a 8=20,则a 3+a 7=____________.12. 设等差数列{a n}的前n项和为S n,若S 8=32,则a 2+2a 5+a 6= ______ .13. 已知等差数列{a n}中,满足S 3=S 10,且a 1>0,S n是其前n项和,若S n取得最大值,则n= ______ .14. 已知函数221()1f xxx-=+,则111()()()(0)(1)(3)(7)(9)973f f f f f f f f+++++++= .15. 设S n是等差数列{a n}的前n项和,a 12=-8,S 9=-9,则S 16=____________.16. 已知等差数列的前项和为,若,则___________17. 设等差数列{a n}、{b n}的前n项和分别为S n、T n,若对任意自然数n都有= ,则+的值为____________.18. 设a 1,d为实数,首项为a 1,公差为d的等差数列{a n}的前n项和为S n,满足S 5S 6+15=0,则d的取值范围是____________.19. 等差数列{a n}的前n项和为S n,且a 4-a 2=8,a 3+a 5=26.记T n= ,如果存在正整数M,使得对一切正整数n,T n≤M都成立,则M的最小值是____________.20. 若{a n}是等差数列,首项a 1>0,a 2012+a 2013>0,a 2012•a 2013<0,则使前n项和S n>0成立的最大自然数n是____________.等差数列填空题训练参考答案【答案】1. 352. 803.4.5. (-1,- )6.87.8. 139. 2n-10;810. 4511. 1012. 1613. 6或714.115. -7216.717.18.19. 220. 2012【解析】1.解:∵数列{a n},{b n}都是等差数列,∴设数列{a n}的公差为d 1,设数列{b n}的公差为d 2,∴a 3+b 3=a 1+b 1+2(d 1+d 2)=21,而a 1+b 1=7,可得2(d 1+d 2)=21-7=14.∴a 5+b 5=a 3+b 3+2(d 1+d 2)=21+14=35故答案为:35根据等差数列的通项公式,可设数列{a n}的公差为d 1,数列{b n}的公差为d 2,根据a 1+b 1=7,a 3+b 3=21,可得2(d 1+d 2)=21-7=14.最后可得a 5+b 5=a 3+b 3+2(d 1+d 2)=2+14=35.本题给出两个等差数列首项之和与第三项之和,欲求它们的第五项之和,着重考查了等差数列的概念与通项公式和等差数列的性质,属于基础题.2.解:∵在等差数列{a n}中a 1+a 3+a 5=9,a 2+a 4+a 6=15,∴a 1+a 3+a 5=3a 3=9,a 2+a 4+a 6=3a 4=15,∴a 3=3,a 4=5,公差d=5-3=2,a 1=3-2×2=-1,∴前10项的和S 10=10×(-1)+ ×2=80,故答案为:80.由题意可求出数列的首项和公差,代入求和公式计算可得.本题考查等差数列的求和公式,求出数列的首项和公差是解决问题的关键,属基础题.3.解:∵在等差数列中S 2n-1=(2n-1)•a n,∴ ,,则= ,又∵ = ,∴ =即=故答案为:本题考查的知识点是等差数列的性质及等差数列的前n项和,由等差数列中S 2n-1=(2n-1)•a n,我们可得,,则= ,代入若= ,即可得到答案.在等差数列中,S 2n-1=(2n-1)•a n,即中间项的值,等于所有项值的平均数,这是等差数列常用性质之一,希望大家牢固掌握.4.解:由等差数列的性质可得2b=2+9,解得b= ,又可得2a=2+b=2+ = ,解之可得a= ,同理可得2c=9+ = ,解得c= ,故c-a= - = =故答案为:由等差数列的性质可得2b=2+9,解之可得b值,再由等差中项可得a,c的值,作差即可得答案.本题考查等差数列的性质和通项公式,属基础题.5.解:∵S n =7n+ ,当且仅当n=8时S n取得最大值,∴ ,即,解得:,综上:d的取值范围为(-1,- ).根据题意当且仅当n=8时S n取得最大值,得到S 7<S 8,S 9<S 8,联立得不等式方程组,求解得d的取值范围.本题主要考查等差数列的前n项和公式,解不等式方程组,属于中档题.6.由等差数列性质可得=3>0,所以>0,又因为,所以,所以等差数列前8项为正数,从第9项开始为负数.所以当8时,的前项和最大.故答案为8.7.解:成等差数列,∴a 3=a 1+2a 2,∴q 2-2q-1=0,∴q=1+ ,q=1- (舍去)∴ = = =q 2=3+2故答案为:3+28.解:依题意可得,d=2,a 1=1∴a 7=1+6×2=13故答案为:139.解:∵S n=n 2-9n,∴当n=1时,a 1=s 1=-8;当n≥2时,a n=s n-s n-1=n 2-9n-[(n-1) 2-9(n-1)]=2n-10,∵a 1也适合a n=2n-10,∴a n=2n-10;令5<2k-10<8,解得7.5<k<9,∵k∈N +,∴k=8,故答案为2n-10;8.10.解:a 4+a 5+a 6=S 6-S 3=36-9=27,a 4+a 5+a 6=(a 1+3d)+(a 2+3d)+(a 3+3d)=(a 1+a 2+a 3)+9d=S 3+9d=9+9d=27,所以d=2,则a 7+a 8+a 9=(a 1+6d)+(a 2+6d)+(a 3+6d)=S 3+18d=9+36=45.故答案为:4511.解:∵a 1+a 9+a 2+a 8=(a 1+a 9)+(a 2+a 8)=2(a 3+a 7)=20,∴a 3+a 7=10.故答案为:1012.解:∵S 8=32,∴ =32,可得a 4+a 5=a 1+a 8=8.则a 2+2a 5+a 6=2(a 4+a 5)=2×8=16,故答案为:16.S 8=32,可得=32,可得a 4+a 5=a 1+a 8.利用a 2+2a 5+a 6=2(a 4+a 5)即可得出.本题考查了等差数列的通项公式性质及其前n项和公式,考查了推理能力与计算能力,属于中档题.13.解:∵等差数列{a n}中,满足S 3=S 10,且a 1>0,∴S 10-S 3=7a 7=0,∴a 7=0,∴递减的等差数列{a n}中,前6项为正数,第7项为0,从第8项开始为负数,∴S n取得最大值,n=6或7故答案为:6或7由题意易得a 7=0,进而可得数列{a n}中,前6项为正数,第7项为0,从第8项开始为负数,易得结论.本题考查等差数列前n项和的最值,从数列项的正负入手是解决问题的关键,属基础题.14.试题分析:观察所求值的式子,先计算,因此原式=.考点:分组求和.15.解:S 9= (a 1+a 9)×9=-9,又有a 1+a 9=2a 5,可得,a 5=-1,由等差数列的性质可得,a 1+a 16=a 5+a 12,则S 16= (a 1+a 16)×16= (a 5+a 12)×16=-72.16.根据题意可得:,由等差数列的性质可得:,所以。
17.解:∵{a n},{b n}为等差数列,∴ + = + = = .∵ = = = = ,∴ + = .故答案为18.解:因为S 5S 6+15=0,所以(5a 1+10d)(6a 1+15d)+15=0,整理得2a 12+9a 1d+10d 2+1=0,此方程可看作关于a 1的一元二次方程,它一定有根,故有△=(9d) 2-4×2×(10d 2+1)=d 2-8≥0,整理得d 2≥8,解得d≥2 ,或d≤-2则d的取值范围是.故答案案为:.19.解:∵{a n}为等差数列,由a 4-a 2=8,a 3+a 5=26,可解得S n=2n 2-n,∴T n=2- ,若T n≤M对一切正整数n恒成立,则只需T n的最大值≤M即可.又T n=2- <2,∴只需2≤M,故M的最小值是2.故答案为220.解:∵等差数列{a n},首项a 1>0,a 2012+a 2013>0,a 2012•a 2013<0,∴a 2012>0,a 2013<0.∴S 4024= =2012(a 2012+a 2013)>0,S 4025= =4025a 2013<0,∴使前n项和S n>0成立的最大自然数n是4024.故答案为:4024.。