电力系统仿真实习实验报告

合集下载

电厂仿真运行实训报告(精选5篇)

电厂仿真运行实训报告(精选5篇)

电厂仿真运行实训报告(精选5篇)第一篇:电厂仿真运行实训报告本次,我们实训的内容是“电气仿真运行实训”,为时两周。

在这两周的实训中,我们掌握了“倒闸操作”和“设备巡视”的基本操作。

本次实训的项目均通过计算机上进行仿真软件进行模拟操作,目的在于让我们能够对主控室、线路的运行、状态及各种需要巡视的电气设备作进一步的了解,体验在主控室中通过远方操作、监控,更好地实现线路运行以及各电气设备巡视的自动化、智能化。

第一周,我们实训的项目是“倒闸操作”。

主要任务是完成对“电院仿真变”110kV开发区一线111开关,开发区二线112开关、开发区三线113开关、开发区四线114开关、开发区五线115开关和开发区六线116开关六个开关由运行转检修和检修转运行的倒闸操作。

在操作过程中,需要监护人和操作人相互配合,按步骤执行,带好必要的工具,监护人、操作人应明确自己的职责,做好唱票、复诵的工作。

在倒闸操作仿真中,我们应注意以下问题:(1)111开关、113开关和115开关是一段母线的开关,因此靠近母线测的刀闸编号分别为1111、1131和1151,112开关、114开关和116开关是二段母线的开关,因此靠近母线侧的刀闸编号分别是1122、1142和1162;(2)开发区线路保护投入问题,只有开发区三线113线路保护和开发区四线114线路保护可见,其余线路保护均不可见,通过查主控室保护屏上,发现其余的线路保护并非没有设置,只是在“下一页”可见;(3)控制屏上同期开关TK问题,开发区一线和四线无设置TK,即无需检同期即可合上相应的线路开关;(4)开发区一线至五线母差压板为Lp15至Lp19,开发区六线则为Lp21;(5)开发区六线116开关无跳闸压板;(6)由于是远方控制,在操作中就地/远方开关位置应置于“远方”位置,部分开关本体机械位置检查正确。

第二周,我们实训的项目是“设备巡视”。

主要任务是完成九个设备,包括避雷器、电流互感器、母线设备、电压互感器、隔离开关、变压器、电力电容器、断路器、电抗器的巡视,在操作过程中,严格遵守安全规程,带好必要的安全工器具,按照巡视要求,逐相检查、巡视。

电力仿真算法实验报告

电力仿真算法实验报告

一、实验目的本次实验旨在通过电力系统仿真软件对电力系统进行仿真分析,验证电力系统仿真算法的有效性,并进一步了解电力系统在不同运行条件下的稳定性和性能。

实验内容包括电力系统潮流计算、暂态稳定分析、短路电流计算等。

二、实验内容1. 电力系统潮流计算(1)实验背景:以某地区110kV电网为例,分析该电网在不同运行方式下的潮流分布。

(2)实验步骤:① 利用电力系统仿真软件建立110kV电网模型;② 设置电网参数,包括各节点电压、线路参数等;③ 运行潮流计算程序,得到潮流分布结果;④ 分析潮流分布结果,判断电网的稳定性。

2. 电力系统暂态稳定分析(1)实验背景:以某地区110kV电网为例,分析该电网在发生单相接地故障时的暂态稳定性。

(2)实验步骤:① 利用电力系统仿真软件建立110kV电网模型;② 设置电网参数,包括各节点电压、线路参数等;③ 设置故障参数,包括故障类型、故障位置等;④ 运行暂态稳定分析程序,得到暂态稳定结果;⑤ 分析暂态稳定结果,判断电网的稳定性。

3. 电力系统短路电流计算(1)实验背景:以某地区110kV电网为例,计算电网在发生短路故障时的短路电流。

(2)实验步骤:① 利用电力系统仿真软件建立110kV电网模型;② 设置电网参数,包括各节点电压、线路参数等;③ 设置故障参数,包括故障类型、故障位置等;④ 运行短路电流计算程序,得到短路电流结果;⑤ 分析短路电流结果,判断电网的短路容量。

三、实验结果与分析1. 电力系统潮流计算结果通过潮流计算,得到110kV电网在不同运行方式下的潮流分布。

结果表明,在正常运行方式下,电网的潮流分布合理,节点电压满足要求。

在故障运行方式下,电网的潮流分布发生较大变化,部分节点电压超出了允许范围。

2. 电力系统暂态稳定分析结果通过暂态稳定分析,得到110kV电网在发生单相接地故障时的暂态稳定结果。

结果表明,在故障发生初期,电网暂态稳定,但故障持续一段时间后,电网发生暂态失稳。

电力系统仿真实习报告

电力系统仿真实习报告

电力系统仿真实习报告一、前言随着现代电力系统的发展和规模的扩大,对电力系统的稳定性和可靠性要求越来越高。

电力系统仿真作为一种有效的研究方法,可以在不影响实际运行的情况下,对电力系统进行全面的分析和评估。

本次实习主要通过使用MATLAB软件进行电力系统仿真,以验证电力系统的稳定性和其他特性。

二、电力系统建模1. 构建电力系统的拓扑图,包括发电机、变压器、线路、开关等基本单元。

2. 根据拓扑图,建立适当的电气参数,如电机转矩曲线、线路参数等。

3. 使用MATLAB Simulink下Power System Blockset建立系统的暂态模型和稳态模型。

4. 设置适当的仿真时长和采样频率满足分析需求。

三、电力系统稳态分析1. 设置不同的负荷点分布和拓扑,对比电力系统在各状态下的稳定性。

2. 通过输出压降、电流、转速以及电压相位差等,分析电力系统在各状态下的表现。

3. 对不同拓扑下的电力系统失效特征和限制进行分析。

四、电力系统暂态分析1. 模拟多种故障情况,如短路故障、电源故障、线路断路等。

2. 分析电力系统在故障过程中的响应和恢复情况。

3. 研究故障对电力系统稳定性和可靠性的影响。

五、仿真结果与分析1. 稳态仿真结果表明,电力系统在不同负荷和拓扑下的稳定性较好,各电气参数符合预期。

2. 暂态仿真结果表明,电力系统在故障发生后能够迅速响应并恢复稳定,但部分情况下仍存在一定的电压和频率波动。

3. 故障分析结果显示,短路故障对电力系统的影响最为显著,需采取相应的保护措施。

六、总结与展望通过本次电力系统仿真实习,我对电力系统的稳定性和可靠性有了更深入的了解。

仿真结果表明,电力系统在正常运行和故障情况下均具有一定的稳定性和恢复能力,但仍有改进空间。

未来研究可以进一步探讨电力系统的优化设计和故障预防策略,以提高电力系统的运行效率和可靠性。

七、谢辞感谢我的指导老师,在实习过程中给予我耐心的指导和帮助。

同时,感谢实验室的同学们,在仿真过程中给予我支持和鼓励。

电力系统仿真实习报告

电力系统仿真实习报告

一、前言随着电力系统规模的不断扩大和复杂性的增加,对电力系统的运行和维护提出了更高的要求。

为了更好地理解电力系统的运行原理,提高对电力系统故障的快速响应能力,我们选择了电力系统仿真软件进行实习,通过模拟电力系统的运行状态,分析电力系统的稳定性、故障特性以及运行效率。

以下是我在这段仿真实习过程中的总结和心得。

二、实习目的与内容1. 实习目的(1)掌握电力系统仿真软件的基本操作和功能;(2)了解电力系统运行的基本原理和故障特性;(3)提高对电力系统故障的快速响应能力;(4)培养团队协作和问题解决能力。

2. 实习内容(1)电力系统仿真软件的学习和使用;(2)电力系统稳态和暂态仿真的操作和结果分析;(3)电力系统故障仿真及故障分析;(4)电力系统优化运行策略的研究。

三、实习过程1. 电力系统仿真软件的学习和使用在实习初期,我们首先学习了电力系统仿真软件的基本操作和功能。

通过阅读相关资料和实际操作,掌握了软件的界面布局、参数设置、仿真运行以及结果分析等功能。

2. 电力系统稳态和暂态仿真的操作和结果分析在掌握了仿真软件的基本操作后,我们进行了电力系统稳态和暂态仿真。

首先,建立了电力系统的基本模型,包括发电机、变压器、线路、负载等元件。

然后,通过设置不同的运行参数,如负荷、电压、频率等,分析了电力系统的稳态运行特性。

在暂态仿真方面,我们模拟了电力系统发生故障的情况,如短路故障、断路器故障等,分析了故障发生时电力系统的响应和恢复过程。

通过仿真结果,我们了解了电力系统故障对系统稳定性的影响,以及故障恢复过程中需要采取的措施。

3. 电力系统故障仿真及故障分析为了提高对电力系统故障的快速响应能力,我们进行了电力系统故障仿真。

通过设置不同的故障类型和故障位置,模拟了电力系统发生故障时的运行状态,并分析了故障原因和影响。

在故障分析过程中,我们重点关注了以下内容:(1)故障对系统稳定性的影响;(2)故障对负荷供电的影响;(3)故障恢复过程中需要采取的措施。

电力系统分析仿真实验报告

电力系统分析仿真实验报告

电力系统分析仿真实验报告****名目实验一电力系统分析综合程序PSASP概述一、实验目的了解用PSASP进行电力系统各种计算的方法。

二、PSASP简介1.PSASP是一套功能强大,使用方便的电力系统分析综合程序,是具有我国自主知识产权的大型软件包。

2.PSASP的体系结构:第一层是:公用数据和模型资源库,第二层是应用程序包,第三层是计算结果和分析工具。

3.PSASP的使用方法:〔以短路计算为例〕1).输进电网数据,形成电网根底数据库及元件公用参数数据库,〔后者含励磁调节器,调速器,PSS等的固定模型〕,也可使用用户自定义模型UD。

在此,可将数据合理组织成假设干数据组,以便下一步形成不同的计算方案。

✧文本支持环境:点击“数据〞菜单项,执行“根底数据〞和“公用参数〞命令,可依次输进各电网元件的参数。

✧图形支持环境:在“编辑模式下〞,利用工具箱,输进电网接线图。

作图时,假设元件参数尚未输进,会自动弹出相关数据录进窗口,如今输进数据即可。

注重:两种环境下,均应先输进母线数据,再处理其他元件!!!2).方案定义:从根底数据库中抽取数据组,组合成不同方案,以确定电网的规模,结构和运行方式。

✧文本支持环境:点击“计算〞菜单项,执行“方案定义〞命令。

✧图形支持环境:“运行模式〞下,点击“作业〞菜单项,执行“方案定义〞命令。

3〕数据检查:对确定的电网结构进行检查,检查网架结构的合理性,计算规模是否超出范围。

✧文本支持环境:点击“计算〞菜单项,执行“数据检查〞命令。

✧图形支持环境:“运行模式〞下,点击“作业〞菜单项,执行“数据检查〞命令。

4〕作业定义:给出计算操纵信息,明确具体的计算任务。

✧文本支持环境:点击“计算〞菜单项,执行“短路〞命令。

✧图形支持环境:“运行模式〞下,点击“作业〞菜单项,执行“短路〞命令。

5〕执行计算:✧文本支持环境:在上述“短路计算信息〞窗口,完成作业定义之后,点击“计算〞按钮即可。

✧图形支持环境:“运行模式〞下,a.点击“视图〞菜单项,执行“短路〞命令,选择作业;b.点击“计算〞菜单项,执行“短路〞命令,执行计算;c.点击“格式〞菜单项,执行“短路结果〞命令,确定计算结果在图上的显示方式。

电力系统仿真实训报告电力系统仿真实训

电力系统仿真实训报告电力系统仿真实训

电力系统仿真实训报告1 前言电力系统潮流计算是研究电力系统稳态运行情况的一种计算,它根据给定的运行条件及系统接线情况确定整个电力系统各部分的运行状态。

在电力系统规划设计和现有电力系统运行方式的研究中,都需要利用潮流计算来定量分析、比较供电方案或运行方式的合理性、可靠性和经济性。

本次课程设计任务是闭环网络的潮流计算,用到的方法为PQ分解法潮流计算。

2 实训目的与要求2.1实训目的电力系统分析的潮流计算是电力系统分析的一个重要的部分。

通过对电力系统潮流分布的分析和计算,可进一步对系统运行的安全性,经济性进行分析、评估,提出改进措施。

电力系统潮流的计算和分析是电力系统运行和规划工作的基础。

潮流计算是指对电力系统正常运行状况的分析和计算。

通常需要已知系统参数和条件,给定一些初始条件,从而计算出系统运行的电压和功率等;潮流计算方法很多:高斯-塞德尔法、牛顿-拉夫逊法、P-Q分解法、直流潮流法,以及由高斯-塞德尔法、牛顿-拉夫逊法演变的各种潮流计算方法。

本实验采用P-Q分解法进行电力系统分析的潮流计算程序的编制与调试,获得电力系统中各节点电压,为进一步进行电力系统分析作准备。

通过实验教学加深学生对电力系统潮流计算原理的理解和计算,初步学会运用计算机知识解决电力系统的问题,掌握潮流计算的过程及其特点。

熟悉各种常用应用软件,熟悉硬件设备的使用方法,加强编制调试计算机程序的能力,提高工程计算的能力,学习如何将理论知识和实际工程问题结合起来。

2.2实训要求编制调试电力系统潮流计算的计算机程序。

程序要求根据已知的电力网的数学模型(节点导纳矩阵)及各节点参数,完成该电力系统的潮流计算,要求计算出节点电压、功率等参数。

3 实训内容1 基于PSASP的电力系统潮流计算仿真1.1 实验要求要求在掌握电力系统稳态分析知识的基础上,根据PSASP中电力系统潮流计算的步骤,利用该软件实现电力系统的潮流计算,并能根据潮流计算结果,对电力系统进行运行情况分析。

电力系统仿真实验报告

电力系统仿真实验报告

电力系统仿真实验报告电力系统仿真实验报告引言:电力系统是现代社会不可或缺的基础设施,它为我们的生活提供了稳定可靠的电力供应。

为了确保电力系统的安全运行,我们进行了一系列的仿真实验,以评估系统的性能、优化运行策略,并提出改进建议。

一、实验目的本次实验的主要目的是通过仿真模拟电力系统的运行情况,分析系统的稳定性、可靠性和经济性,并探索如何优化系统的运行策略。

二、实验方法我们使用了一款先进的电力系统仿真软件,该软件可以模拟电力系统的各个组成部分,包括发电机、输电线路、变电站等。

通过输入系统的参数和运行策略,我们可以获得系统在不同负荷情况下的运行状态和性能指标。

三、实验结果与分析1. 系统稳定性分析我们首先对系统的稳定性进行了仿真分析。

通过模拟系统在负荷突变和故障情况下的响应,我们评估了系统的稳定性。

实验结果显示,在负荷突变和故障发生时,系统能够迅速调整,保持稳定运行。

然而,我们也发现系统在某些情况下存在潜在的稳定性问题,需要进一步改进。

2. 系统可靠性评估为了评估系统的可靠性,我们对系统进行了故障模拟实验。

通过模拟不同部件的故障,我们分析了系统的可靠性指标,如可用性和平均故障间隔时间。

实验结果显示,系统在大部分故障情况下能够保持正常运行,但在某些故障情况下,系统的可靠性会受到一定影响。

我们建议在设计和运行中加强对系统的容错性和冗余性。

3. 系统经济性优化为了优化系统的经济性,我们进行了成本效益分析。

通过调整系统的运行策略和参数,我们评估了不同方案下的成本和效益。

实验结果显示,通过合理的调整发电机的输出功率和输电线路的容量,可以降低系统的运行成本,并提高系统的经济效益。

四、实验结论与建议通过本次仿真实验,我们得出了以下结论:1. 系统在大部分情况下表现出良好的稳定性和可靠性,但仍存在一些潜在的问题需要解决。

2. 加强系统的容错性和冗余性可以提高系统的可靠性。

3. 通过合理的调整运行策略和参数,可以降低系统的运行成本,并提高经济效益。

电力系统仿真实训报告

电力系统仿真实训报告

电力系统仿真实训报告一、引言电力系统是现代工业社会不可或缺的重要基础设施,其安全稳定运行对于保障国家经济发展和人民生活至关重要。

为了提高电力系统的运行效率和可靠性,电力系统仿真成为一种重要手段。

本报告旨在对电力系统仿真实训进行总结和分析,以期得到有关电力系统运行的有价值信息。

二、实训目标本次电力系统仿真实训的主要目标是通过搭建仿真模型,模拟电力系统运行过程,以便更深入地理解电力系统的运行规律,并通过实际操作来掌握解决电力系统问题的方法和技巧。

三、实训内容1. 电力系统仿真平台的搭建在实训的开始阶段,我们首先搭建了电力系统仿真平台。

通过选取适当的仿真软件和工具,我们成功建立了相应的仿真模型,包括发电机、输电线路、变电站等组成要素,并建立了合适的模型参数。

2. 电力系统运行状态的仿真在电力系统仿真平台搭建完成后,我们进行了电力系统运行状态的仿真。

通过输入实际运行数据,并运用仿真软件进行仿真计算,我们获得了电力系统的运行状态、电流、电压等相关指标。

这有助于我们对电力系统的运行情况进行全面的了解。

3. 电力系统故障仿真与分析在电力系统运行状态仿真的基础上,我们进行了电力系统故障的仿真与分析。

通过模拟不同类型的故障,如短路故障、过载故障等,我们可以分析故障对电力系统的影响,并采取相应的措施进行恢复和修复。

4. 电力系统稳定性仿真为了进一步研究电力系统的稳定性,我们进行了电力系统稳定性的仿真。

通过模拟各种外部干扰和内部故障,我们可以评估电力系统的稳定性,并分析故障发生时的应对措施,以确保系统的安全运行。

四、实训结果与总结通过本次电力系统仿真实训,我们取得了一系列积极成果。

首先,我们成功搭建了电力系统仿真平台,并对电力系统的运行状态有了全面的认识。

其次,我们通过模拟不同类型的故障和干扰,对系统的稳定性进行了评估与分析。

最后,我们总结了在仿真实训中遇到的问题,并提出了相应的解决方案,为今后电力系统实际运行提供了参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验1数据实验2数据实验3数据线LNAto1 LNAto2 LNBto1 LNBto3 LNCto2 LNCto3 路功率P(首端) 27.7 -27.7 -84.3 -7.3 -97.2 -4.2 Q(首端)17.4 4.5 -5.2 -9.3 -11.6 -15.4 P(末端)-27.7 27.8 84.9 7.4 98 4.2 Q(末端)-17.9 -5.6 7.4 7.5 17.3 14.4 R*(100) 1.6 1.6 0.87 2 0.85 0.6 X*(100) 8.1 8.1 4.6 8.5 7.2 5.08实验4数据GEN1PD-F50100150200250f 49.549.0148.5148.0247.5247.0346.5346.0445.54FP DGEN2PD-F50100150200250300f 49.5349.3148.9948.6648.334847.6747.3547.02FP DGEN3PD-F20406080100120140160f 48.984847.0246.0545.0944.1643.2542.3741.54FP D实验5数据实验8数据(1) a【仿真态】15:00:12:437 @-->----S9lnAto2在距离9-1号变电站0公里处(百分之50)发生A相B相C相短路故障,仿真保护动作逻辑----<--@【仿真态】15:00:12:453 (9-1号变电站)S9lnAto2故障,相间距离一段动作,S9lnAto2br三相跳闸【仿真态】15:00:12:453 (9-2号电厂)S9lnAto2故障,相间距离一段动作,S9ln2toAbr三相跳闸【仿真态】15:00:12:453 @-->----继电保护动作逻辑结束----<--@【仿真态】15:00:12:640 S9lnAto2br三相断开!【仿真态】15:00:12:656 S9ln2toAbr三相断开!b【仿真态】15:00:00:875 S9lnAto2br接地距离一段设置拒动。

【仿真态】15:00:00:922 S9lnAto2br零序电流一段设置拒动。

【仿真态】15:00:00:922 S9lnAto2br相间距离一段设置拒动。

【仿真态】15:00:06:828 @-->----S9lnAto2在距离9-1号变电站0公里处(百分之50)发生A相B相C 相短路故障,仿真保护动作逻辑----<--@【仿真态】15:00:06:828 (9-2号电厂)S9lnAto2故障,相间距离一段动作,S9ln2toAbr三相跳闸【仿真态】15:00:06:828 (9-1号变电站)S9lnAto2故障,保护:相间距离二段动作,S9lnAto2br三相跳闸【仿真态】15:00:06:828 @-->----继电保护动作逻辑结束----<--@【仿真态】15:00:06:953 S9ln2toAbr三相断开!【仿真态】15:00:07:266 S9lnAto2br三相断开!c【仿真态】15:00:04:766 S9lnAto2一端开关S9lnAto2br无保护动作【仿真态】15:00:04:766 (9-2号电厂)S9lnAto2故障,相间距离一段动作,S9ln2toAbr三相跳闸【仿真态】15:00:04:781 (9-1号电厂)S9lnAto1故障,保护:相间距离二段动作,S9ln1toAbr三相跳闸【仿真态】15:00:04:781 后备保护动作,S9BusAShuntCapbr跳闸【仿真态】15:00:04:781 ───────────────────────────────【仿真态】15:00:04:781 @-->----继电保护动作逻辑结束----<--@【仿真态】15:00:04:922 S9ln2toAbr三相断开!【仿真态】15:00:05:109 S9ln1toAbr三相断开!【仿真态】15:00:06:781 S9BusAShuntCapbr三相断开!(2) a【仿真态】15:01:50:641 自动完成一次段面快照!【仿真态】15:02:35:891 @-->----S9lnAto2在距离9-1号变电站0公里处(百分之0)发生A相B相C相短路故障,仿真保护动作逻辑----<--@【仿真态】15:02:35:891 (9-1号变电站)S9lnAto2故障,相间距离一段动作,S9lnAto2br三相跳闸【仿真态】15:02:35:906 (9-2号电厂)S9lnAto2故障,保护:相间距离二段动作,S9ln2toAbr三相跳闸【仿真态】15:02:35:906 @-->----继电保护动作逻辑结束----<--@【仿真态】15:02:36:047 S9lnAto2br三相断开!【仿真态】15:02:36:219 S9ln2toAbr三相断开!b【仿真态】14:59:08:672 (9-1号变电站)S9lnAto2故障,保护:相间距离二段动作,S9lnAto2br三相跳闸【仿真态】14:59:08:672 (9-2号电厂)S9lnAto2故障,保护:相间距离二段动作,S9ln2toAbr三相跳闸【仿真态】14:59:08:672 @-->----继电保护动作逻辑结束----<--@【仿真态】14:59:09:000 S9lnAto2br三相断开!【仿真态】14:59:09:015 S9ln2toAbr三相断开!c【仿真态】14:58:55:562 @-->----S9lnAto2在距离9-1号变电站0公里处(百分之90)发生A相B相C相短路故障,仿真保护动作逻辑----<--@【仿真态】14:58:55:562 (9-2号电厂)S9lnAto2故障,相间距离一段动作,S9ln2toAbr三相跳闸【仿真态】14:58:55:562 (9-1号变电站)S9lnAto2故障,保护:相间距离三段动作,S9lnAto2br三相跳闸【仿真态】14:58:55:562 @-->----继电保护动作逻辑结束----<--@【仿真态】14:58:55:640 S9ln2toAbr三相断开!【仿真态】14:58:55:906 S9lnAto2br三相断开!(3) a【仿真态】14:59:21:391 @-->----S9lnAto2在距离9-1号变电站0公里处(百分之50)发生A相B相C相短路故障,仿真保护动作逻辑----<--@【仿真态】14:59:21:391 (9-1号变电站)S9lnAto2故障,相间距离一段动作,S9lnAto2br三相跳闸【仿真态】14:59:21:391 (9-2号电厂)S9lnAto2故障,相间距离一段动作,S9ln2toAbr三相跳闸【仿真态】14:59:21:391 S9lnAto2br保护重合闸装置动作,三相合闸【仿真态】14:59:21:391 S9ln2toAbr保护重合闸装置动作,三相合闸【仿真态】14:59:21:391 @-->----继电保护动作逻辑结束----<--@【仿真态】14:59:21:563 S9lnAto2br三相断开!【仿真态】14:59:21:579 S9ln2toAbr三相断开!【仿真态】14:59:22:922 S9lnAto2br合上,三相电流平衡!【仿真态】14:59:22:938 S9ln2toAbr合上,三相电流平衡!b【仿真态】14:58:45:125 @-->----S9lnAto2在距离9-1号变电站0公里处(百分之50)发生A相B相C相短路故障,仿真保护动作逻辑----<--@【仿真态】14:58:45:125 (9-1号变电站)S9lnAto2故障,相间距离一段动作,S9lnAto2br三相跳闸【仿真态】14:58:45:141 (9-2号电厂)S9lnAto2故障,相间距离一段动作,S9ln2toAbr三相跳闸【仿真态】14:58:45:141 S9lnAto2br保护重合闸装置动作,三相合闸【仿真态】14:58:45:141 S9ln2toAbr保护重合闸装置动作,三相合闸【仿真态】14:58:45:141 S9lnAto2br重合闸动作不成功,相间距离二段(后加速) 动作,S9lnAto2br三相跳【仿真态】14:58:45:141 S9ln2toAbr重合闸动作不成功,相间距离二段(后加速) 动作,S9ln2toAbr三相跳【仿真态】14:58:45:141 @-->----继电保护动作逻辑结束----<--@【仿真态】14:58:45:313 S9lnAto2br三相断开!【仿真态】14:58:45:328 S9ln2toAbr三相断开!【仿真态】14:58:46:735 S9lnAto2br三相合上!【仿真态】14:58:46:750 S9ln2toAbr三相合上!【仿真态】14:58:46:766 S9lnAto2br三相断开!【仿真态】14:58:46:781 S9ln2toAbr三相断开!实验9数据【仿真态】16:58:41:582 S9lnCto2br相间距离一段动作!【仿真态】16:58:41:582 S9lnCto2br 三相跳开!【仿真态】16:58:41:632 S9lnCto2br:开关三相跳开!【仿真态】16:58:41:632 有开关变位,重新作拓扑分析!【仿真态】16:58:51:532 系统已稳定,返回动态潮流!1-3【仿真态】系统仿真重演!【仿真态】重演时刻:19日16时53分47秒!【仿真态】16:54:05:141 @-->----S9lnAto2在距离9-1号变电站0公里处(百分之50)发生A相B相短路故障,仿真保护动作逻辑----<--@【仿真态】16:54:05:141 (9-1号变电站)S9lnAto2故障,保护:相间距离一段动作,S9lnAto2br三相跳闸【仿真态】16:54:05:141 (9-2号电厂)S9lnAto2故障,保护:相间距离一段动作,S9ln2toAbr三相跳闸【仿真态】16:54:05:141 @-->----继电保护动作逻辑结束----<--@【仿真态】16:54:05:266 S9lnAto2br三相断开!【仿真态】16:54:05:313 S9ln2toAbr三相断2-2【仿真态】16:55:42:281 S9lnAto1br自动重合闸退运。

【仿真态】16:56:20:700 系统已稳定,返回动态潮流!2-3【仿真态】系统仿真重演!【仿真态】重演时刻:19日16时55分40秒!【仿真态】16:56:58:500 @-->----S9lnBto1在距离9-2号变电站50公里处(百分之50)发生A相B相短路故障,仿真保护动作逻辑----<--@3-2【仿真态】15:01:32:875 S9BusALoadbr自动重合闸退运。

相关文档
最新文档