计算机组成原理中的流水线与并行处理
计算机组成原理知识点总结

计算机组成原理知识点总结第一章一、数字计算机的五大部件(硬件)及各自主要功能(P6)计算机硬件组成:存储器、运算器、控制器、输入设备、输出设备。
1、存储器(主存)主要功能:保存原始数据和解题步骤。
包括:内存储器(CPU 直接访问),外存储器。
2、运算器主要功能:进行算术、逻辑运算。
3、控制器主要功能:从内存中取出解题步骤(程序)分析,执行操作。
包括:计算程序和指令(指令由操作码和地址码组成)。
4、输入设备主要功能:把人们所熟悉的某种信息形式变换为机器内部所能接收和识别的二进制信息形式。
5、输出设备主要功能:把计算机处理的结果变换为人或其他机器所能接收和识别的信息形式。
注:1、冯诺依曼结构:存储程序并按地址顺序执行。
2、中央处理器(CPU):运算器和处理器的结合。
3、指令流:取指周期中从内存读出的信息流,流向控制器。
数据流:在执行器周期中从内存读出的信息流,由内存流向运算器。
二、数字计算机的软件及各自主要功能(P11)1、系统软件:包括服务性程序、语言程序、操作程序、数据库管理系统。
2、应用程序:用户利用计算机来解决某些问题而设计。
三、计算机的性能指标。
1、吞吐量:表征一台计算机在某一时间间隔内能够处理的信息量,用bps度量。
2、响应时间:表征从输入有效到系统产生响应之间的时间度量,用时间单位来度量。
3、利用率:在给定的时间间隔内,系统被实际使用的时间所在的比率,用百分比表示。
4、处理机字长:常称机器字长,指处理机运算中一次能够完成二进制运算的位数,如32位机、64位机。
5、总线宽度:一般指CPU从运算器与存储器之间进行互连的内部总线一次操作可传输的二进制位数。
6、存储器容量:存储器中所有存储单元(通常是字节)的总数目,通常用KB、MB、GB、TB来表示。
7、存储器带宽:单位时间内从存储器读出的二进制数信息量,一般用B/s(字节/秒)表示。
8、主频/时钟周期:CPU的工作节拍受主时钟控制,按照规定在某个时间段做什么(从什么时候开始、多长时间完成),主时钟不断产生固定频率的时钟信号。
计算机组成原理期末重点章节知识点

计算机组成原理第一章计算机系统概论(清楚一个概念)计算机的性能指标:吞吐量:表征一台计算机在某个时间间隔内能够处理的信息量。
响应时间:表征从输入有效到系统产生响应之间的时间度量,用时间单位来度量。
利用率:在给定的时间间隔内系统被实际使用的时间所占的比率,用百分比表示。
处理机字长:指处理机运算器中一次能够完成二进制数运算的位数。
总线宽度:一般指CPU中运算器与存储器之间进行互连的内部总线二进制位数。
存储器容量:存储器中所有存储单元的总数目,通常KB,MB,GB,TB来表示。
存储器带宽:单位时间内存储器读出的二进制数信息量,一般用字节数/秒表示。
主频/时钟周期:CPU的工作节拍受主时钟控制,主时钟不断产生固定频率的时钟,主时钟的频率叫CPU的主频。
度量单位MHZ(兆赫兹)、GHZ(吉赫兹)主频的倒数称为CPU时钟周期(T),T=1/f,度量单位us,nsCPU执行时间:表示CPU执行一般程序所占的CPU时间,公式:CPU执行时间=CPU时钟周期数xCPU时钟周期CPI:表示每条指令周期数,即执行一条指令所需的平均时钟周期数。
公式:CPI=执行某段程序所需的CPU时钟周期数/程序包含的指令条数MIPS:表示平均每秒执行多少百万条定点指令数,公式:MIPS=指令数/(程序执行时间x10^6)第二章运算方法和运算器原码定义:(1)整数(范围(-(2^n-1)~ 2^n-1)(2)小数(范围-(2^-n-1 ~ 1-2^-n)反码定义:(3)整数(范围(-(2^n-1)~ 2^n-1)(4)小数(范围-(2^-n-1 ~ 1-2^-n)补码定义:(5)整数(范围(-(2^n )~ 2^n-1)(6)小数(范围(-1 ~ 1-2^-n)移码表示法(用于大小比较与对阶操作)IEEE754标准格式:符号位(1位)+ 阶码(移码)+ 尾数正溢:两个正数相加,结果大于机器字长所能表示的最大正数负溢:两个负数相加,结果小于机器字长所能表示的最小负数检测方法:1、双符号位法2、单符号位法不带符号阵列乘法器:同行间并行不同行间串行浮点加减运算操作过程大体分四步:1、0操作数检查2、比较阶码大小完成对阶3、尾数进行加减运算4、结果规格化所进行舍入处理流水线原理:时间并行性线性流水线的加速比:C k=T L/T K =nk/k+(n-1)第三章存储系统程序局部性原理:在某一段时间内频繁访问某一局部的存储器地址空间,而对此范围以外的地址空间则很少访问的现象。
计算机组成原理第8章习题指导

第8章CPU的结构和功能例8.1假设指令流水线分取指(IF)、译码(ID)、执行(EX)、回写(WR)四个过程段,共有10条指令连续输入此流水线。
(1)画出指令周期流程。
(2)画出非流水线时空图。
(3)画出流水线时空图。
(4)假设时钟周期为100ns,求流水线的实际吞吐率。
(5)求该流水处理器的加速比。
解:(1)根据指令周期包括IF、ID、EX、WR四个子过程,图8.1(a)为指令周期流程图。
(2)非流水线时空图如图8.1(b)所示。
假设一个时间单位为一个时钟周期,则每隔4个时钟周期才有一个输出结果。
(3)流水线时空图如图8.1(c)所示。
由图可见,第一条指令出结果需要4个时钟周期。
当流水线满载时,以后每一个时钟周期可以出一个结果,即执行完一条指令。
(a)指令周期流程(b) 非流水线时空图(c) 标准流水线时空图图8.1 例8.1答图(4)由图8.1(c)所示的10条指令进入流水线的时空图可见,在13个时钟周期结束时,CPU执行完10条指令,故实际吞吐率为:10/(100ns×13) ≈ 0.77×107条指令/秒(5)在流水处理器中,当任务饱满时,指令不断输入流水线,不论是几级流水线,每隔一个时钟周期都输出一个结果。
对于本题四级流水线而言,处理10条指令所需的时钟周期数为T4 = 4 +(10 −1)= 13。
而非流水线处理10条指令需4×10 = 40个时钟周期。
故该流水处理器的加速比为40 ÷13 ≈ 3.08 例8.2设某机有四个中断源1、2、3、4,其硬件排队优先次序按1→2→3→4降序排列,各中断源的服务程序中所对应的屏蔽字如表8.1所示。
表8.1 例8.2各中断源对应的屏蔽字中断源 屏蔽字1 2 3 41 1 1 0 12 0 1 0 03 1 1 1 14 0 1 0 1(1)给出上述四个中断源的中断处理次序。
(2)若四个中断源同时有中断请求,画出CPU执行程序的轨迹。
计算机组成原理知识点

计算机组成原理知识点1. 冯·诺依曼体系结构:计算机由运算器、控制器、存储器、输入设备和输出设备五大部分组成。
2. 运算器:计算机的核心部分,负责执行各种算术运算和逻辑运算。
3. 控制器:负责控制指令的执行次序和操作,包括指令的获取、解码和执行。
4. 存储器:用于存储计算机程序和数据,包括主存储器(RAM)和辅助存储器(硬盘、固态硬盘等)。
5. 输入设备:用于将外部数据或指令输入到计算机,包括键盘、鼠标、扫描仪等。
6. 输出设备:用于将计算机处理后的结果输出到外部,包括显示屏、打印机、音响等。
7. 指令集:计算机能够执行的全部指令的集合。
8. 指令的执行过程:指令的获取、解码、操作和存储四个步骤。
9. 计算机的时钟:用于统一各个部件的工作节奏。
10. 运算器的设计:包括算术逻辑单元(ALU)和寄存器的设计。
11. 控制器的设计:包括指令寄存器、程序计数器和指令译码器的设计。
12. 存储器的分类:根据访问方式可以分为随机存储器(RAM)和只读存储器(ROM)。
13. 存储器的层级结构:由高速缓存、主存储器和辅助存储器组成,速度逐级递减,容量逐级递增。
14. 输入输出控制方式:包括程序控制方式、中断方式和直接存储器访问方式。
15. 总线的作用:用于数据和控制信息在计算机各个部件之间传输。
16. 总线的分类:根据传输数据的方式可以分为数据总线、地址总线和控制总线。
17. 中央处理器(CPU)的功能:包括指令的获取、解析、运算和存储。
18. 中央处理器的核心部分:由运算器和控制器组成。
19. 中央处理器的指令周期:包括取指周期、执行周期和存储周期。
20. 中央处理器的性能指标:包括时钟频率、主频和执行速度。
21. 程序和指令:程序是指一系列有序的指令集合,指令是计算机能够识别和执行的最小指令单元。
22. 计算机的存储方式:包括字节顺序、地址分配和寻址方式。
23. 输入输出设备的原理:包括数据传输、数据缓冲和数据控制。
计算机组成原理专升本试题解析指令流水线与并行处理

计算机组成原理专升本试题解析指令流水线与并行处理计算机组成原理是计算机专业学生必修的一门基础课程,对于理解计算机的组成和工作原理非常重要。
在计算机组成原理的学习中,指令流水线与并行处理是一个重要的概念和技术。
本文将对指令流水线与并行处理进行详细解析。
一、指令流水线指令流水线是一种通过将处理器的执行过程划分为多个子阶段,并行执行这些子阶段来提高处理器性能的技术。
在指令流水线中,每个指令在执行的过程中经过取指令、译码、执行、访存和写回等多个阶段,不同指令在不同阶段同时执行,从而在单位时间内处理更多的指令。
指令流水线的优势在于充分利用了处理器的硬件资源,提高了指令的执行效率。
但是在实际应用中,由于指令间有数据依赖关系等问题,可能会导致流水线的阻塞和冒险,进而影响性能。
为了解决这些问题,人们提出了一系列的技术和策略,比如数据旁路、预测执行和乱序执行等,来提高指令流水线的性能。
二、并行处理并行处理是指通过同时执行多个任务来提高系统的处理能力和性能的技术。
在计算机组成原理中,主要涉及到的并行处理包括指令级并行和线程级并行。
指令级并行是通过在一个指令的执行过程中同时执行多个子指令来提高处理器性能的技术。
一种实现指令级并行的方法是超标量处理器,它能够在一个时钟周期内同时发射多条指令,并行执行这些指令。
另一种实现指令级并行的方法是超流水线处理器,它将处理器的执行流程进一步细分为多个较短的子阶段,以便更多地重叠执行。
线程级并行是通过同时处理多个线程来提高系统性能的技术。
在多核处理器和多线程处理器中,可以同时执行多个线程,从而实现线程级并行。
通过合理的线程调度和资源分配,可以充分利用处理器的硬件资源,提高系统的吞吐量和响应速度。
指令流水线和并行处理是计算机组成原理中的两个重要概念和技术,它们可以相互结合,共同提高计算机系统的性能。
指令流水线通过划分指令执行过程为多个子阶段并行执行,提高了指令的执行效率;而并行处理通过同时处理多个任务或线程,提高了系统的处理能力和性能。
计算机组成原理基础知识流水线技术和超标量处理器

计算机组成原理基础知识流水线技术和超标量处理器计算机组成原理基础知识:流水线技术和超标量处理器计算机组成原理是指计算机硬件的基本组成和工作原理。
在计算机科学与技术领域,流水线技术和超标量处理器是两个重要的概念。
本文将介绍这两种技术的基本原理和应用。
一、流水线技术流水线技术是指将一个复杂的操作分解成多个简单的子操作,并将这些子操作连续地执行,以提高计算机的指令执行效率。
在传统的自顶向下的设计方法中,计算机硬件主要包括控制器、运算器等单一功能模块,而在流水线技术中,计算机硬件被划分成多个阶段,每个阶段执行一个特定的功能子模块。
经典的流水线包括取指、译码、执行、访存和写回等阶段。
在取指阶段,计算机从存储器中读取指令;在译码阶段,计算机对指令进行解码并读取相应的操作数;在执行阶段,计算机执行相应的操作;在访存阶段,计算机对数据进行读写操作;在写回阶段,计算机将执行结果写回到寄存器或存储器。
流水线技术的优点是可以充分利用计算机硬件资源,提高指令的并行执行程度。
但是,流水线技术也存在一些问题,例如数据的相关性和冒险问题,需要通过一些技术手段来解决。
二、超标量处理器超标量处理器是一种在流水线技术基础上的改进方案。
传统的流水线技术中,每个阶段只能执行一个指令,而超标量处理器允许在同一个时钟周期内执行多个指令,以进一步提高计算机的执行效率。
超标量处理器主要依靠两个关键技术来实现多指令并行执行:乱序执行和动态调度。
乱序执行是指根据指令之间的依赖关系,按照合理的顺序执行指令,而不是按照指令在程序中的顺序执行。
动态调度是指通过硬件对指令进行调度,在不改变程序语义的前提下,尽可能地重排指令的执行顺序,以提高指令的并行度。
超标量处理器的工作原理可以简单描述为:在取指阶段,计算机从存储器中读取多个指令;在译码阶段,计算机对这些指令进行解码;在执行阶段,计算机并行执行多个指令;在访存阶段,计算机同时进行多个数据的读写操作;在写回阶段,计算机将执行结果写回到寄存器或存储器。
计算机组成原理实验教程

计算机组成原理实验教程计算机组成原理实验是计算机科学与技术专业中非常重要的一门实践课程。
通过实验,学生可以深入了解计算机的基本构成和工作原理,并且培养实际操作的能力。
本教程旨在提供一系列详细的实验指导,帮助学生顺利完成计算机组成原理实验。
序言计算机组成原理是计算机科学与技术专业的一门核心课程,作为理论和实践相结合的实验教程,对于学生深入了解计算机的内部结构和工作原理至关重要。
本教程将介绍计算机组成原理实验的基本内容和实验报告的撰写要求,帮助学生更好地掌握实验技巧和理论知识。
实验一:数字逻辑电路设计与仿真本实验旨在让学生学会使用Verilog HDL设计数字逻辑电路,并通过仿真验证电路的正确性。
首先,学生需要了解Verilog HDL的基本语法和仿真工具的使用方法。
然后,根据实验要求,设计并仿真一个简单的数字逻辑电路,如全加器或比较器。
最后,学生需要撰写实验报告,详细介绍电路设计的过程、仿真结果和分析。
实验二:单周期CPU设计与实现本实验要求学生设计并实现一个单周期的CPU。
在实验过程中,学生需要了解指令的执行过程和控制信号的生成原理,设计CPU的数据通路和控制逻辑,并编写Verilog HDL代码进行实现。
实验完成后,学生需要进行功能仿真和时序仿真,验证CPU的正确性和性能。
实验报告应包括CPU设计的思路、关键问题的解决方法和仿真结果的分析。
实验三:多周期CPU设计与实现本实验要求学生进一步完善CPU的设计,实现一个多周期的CPU。
在实验过程中,学生需要改进单周期CPU的设计,引入时序控制信号和状态机,实现指令的多周期执行。
实验完成后,学生需要进行功能仿真和时序仿真,验证CPU的正确性和性能提升。
实验报告应包括多周期CPU设计的过程、关键问题的解决方法和仿真结果的分析。
实验四:流水线CPU设计与实现本实验要求学生设计并实现一个流水线CPU。
在实验过程中,学生需要了解流水线技术的基本原理和数据冒险的处理方法,设计流水线CPU的数据通路和控制逻辑。
计算机组成原理第12-浮点数的运算2

CK=TL/TK=(n·k)/(k+(n-1)) 当 n>>k 时, Ck->k 。这就是说,理论上k级线性流水线处理几乎 可以提高k倍速度。但实际上由于存储器冲突、数据相关,这个理想的加速比不一定能 达到。
[解:] (1)加法器的流水线时钟周期至少为 τ=90ns+10ns=100ns
如果采用同样的逻辑电路,但不是流水线方式,则浮点加法所需的时间为 τ1+τ2+τ3+τ4 =300ns
因此,4级流水线加法器的加速比为 Ck=300/100=3
(2) 当每个过程段的时间都是75ns时,加速比为 Ck=300/75=4
[例30] 已知计算一维向量x,y的求和表达式如下:
x
y
z
56
65
20.5
14.6
0
336
121 35.1 336
114.3 + 7.2 = 121.5
69.6
72.8
142.4
3.14
1.41
4.55
试用4段的浮点加法流水线来实现一维向量的求和运算,这4段流水线是阶码比较、 对阶操作、尾数相加、规格化。只要求画出向量加法计算流水时空图。
2.CPU之内的浮点运算器
奔腾CPU将浮点运算器包含在芯片内。浮点运算部件采用流水线设计。
指令执行过程分为8段流水线。前4 段为指令预取(DF)、指令译码(D1)、地址生 成(D2)、取操作数(EX),在U、V流水线中完成;后4段为执行1(X1)、执行2(X2) 、结果写回寄存器堆(WF)、错误报告(ER),在浮点运算器中完成。一般情况下 ,由U流水线完成一条浮点数操作指令。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机组成原理中的流水线与并行处理
计算机组成原理是指计算机的各个组成部分及其相互关系的原理。
其中,流水线与并行处理是计算机组成原理中的两个重要概念。
本文将从流水线和并行处理的定义、特点、应用以及优缺点等方面进行论述。
一、流水线的定义和特点
流水线技术是一种将复杂的任务分解为若干个互相依赖的子任务,并通过时序控制将其分别交给不同的处理单元进行执行的技术。
它可以提高计算机的执行效率和吞吐量。
与串行处理相比,流水线处理具有以下特点:
1.任务分解:将复杂的任务分解为多个子任务,每个子任务由不同的处理单元负责执行。
2.流水线寄存器:通过在流水线各个阶段之间插入流水线寄存器,实现了各个阶段之间的数据传递和暂存,确保了数据的正确性和稳定性。
3.并行操作:不同的处理单元可以并行执行不同的任务,提高了计算机的并行处理能力。
4.随机任务执行:由于流水线中的各个阶段是独立的,因此可以随机运行和停止任务,提高了计算机的灵活性。
二、并行处理的定义和特点
并行处理是指同时利用多个处理器或者多个处理单元并行执行多个
任务的处理方式。
它可以大幅提升计算机系统的运算速度和处理能力。
并行处理的特点如下:
1.任务分配:将大任务分解为多个小任务,并分配给多个处理单元
同时执行。
2.任务协调:通过合理的任务调度算法,协调各个处理单元之间的
任务执行顺序和数据传递,确保整个系统的稳定性和正确性。
3.资源共享:各个处理单元之间可以共享资源,如内存、缓存等,
提高资源利用率。
4.计算效率提高:通过多个处理单元同时执行任务,大幅提高了计
算效率和处理速度。
三、流水线与并行处理的应用
流水线和并行处理在计算机领域被广泛应用,以下是几个常见的应
用示例:
1.超级计算机:超级计算机通常采用并行处理的方式,利用多个处
理器同时进行计算,以提高计算能力。
2.图形处理器:图形处理器(GPU)采用流水线技术,将图像处理
任务分解为多个子任务,通过流水线处理实现高效的图形渲染和计算。
3.网络数据包处理:网络设备中的数据包处理通常采用流水线技术,将数据包的处理过程分解为多个阶段,并利用流水线的方式进行并行
处理,提高数据的传输速度和处理效率。
四、流水线与并行处理的优缺点
流水线和并行处理在提高计算机效率和处理能力方面具有明显的优势,但也存在一些缺点。
流水线的优点包括:
1.提高计算机的执行效率和吞吐量;
2.降低了任务的平均执行时间;
3.提高了计算机的灵活性和资源利用率。
流水线的缺点包括:
1.存在数据相关性问题,可能导致执行错误;
2.流水线执行过程中必须解决数据冲突和控制冲突问题,增加了设
计和实现的复杂度。
并行处理的优点包括:
1.大幅提高了计算机系统的运算速度和处理能力;
2.利用多个处理单元并行执行任务,可以充分发挥硬件资源的优势;
3.适用于处理大规模、复杂的任务。
并行处理的缺点包括:
1.设计和调度任务需要考虑并行性和协调性,增加了开发和维护的
难度;
2.对系统的硬件资源要求较高。
综上所述,流水线和并行处理是计算机组成原理中重要的概念。
通
过合理应用流水线和并行处理,可以提高计算机的执行效率和吞吐量,提升系统的计算能力和处理速度。
然而,需要充分考虑其特点和应用
场景,解决可能出现的问题和挑战。