指令流水线的原理

合集下载

计算机指令流水线回顾

计算机指令流水线回顾

计算机指令流水线回顾计算机指令流水线是一种高效的指令执行技术,旨在提高计算机的运行速度。

在本文中,我们将回顾计算机指令流水线的基本原理、优点和局限性,并提供相关题库类型的答案和解析。

一、引言计算机指令流水线是一种并行处理技术,它允许多个指令同时在不同的处理阶段执行,以提高指令执行的速度和效率。

本节将介绍计算机指令流水线的定义和基本原理。

二、计算机指令流水线的原理计算机指令流水线是基于指令执行的并行处理技术。

它将一条指令的执行划分为多个阶段,并且允许多个指令同时在不同的阶段执行。

下面是计算机指令流水线的基本原理:1. 指令划分阶段:将一条指令划分为多个独立且可执行的子指令。

2. 指令执行阶段:每个子指令在不同的处理阶段执行,例如指令提取、指令解码、操作数获取等。

3. 管道寄存器:用于在不同的阶段之间传递数据和指令。

4. 阶段并行执行:多个指令在不同的阶段同时执行,实现指令级并行。

5. 超标量流水线:同时执行多条指令。

三、计算机指令流水线的优点计算机指令流水线相较于传统的顺序执行方式,具有以下优点:1. 提高吞吐量:通过并行执行多条指令,大大提高了计算机的吞吐量。

2. 提高运行速度:指令流水线的并行执行能够加快指令的执行速度,提高计算机的运行效率。

3. 提高资源利用率:指令流水线可以充分利用计算机的硬件资源,使处理器单元始终保持繁忙状态。

四、计算机指令流水线的局限性虽然计算机指令流水线有很多优点,但也存在一些局限性:1. 指令依赖:由于指令之间存在数据或控制依赖关系,可能导致流水线的暂停或冲突,进而影响指令的执行速度和效率。

2. 硬件成本:为了实现指令流水线,需要增加硬件资源和复杂的控制电路,导致成本的增加。

3. 分支预测错误:分支指令的预测错误或错误的预测会导致流水线的中断和重组。

五、题库类型答案与解析在计算机指令流水线的相关题库中,我们可以通过以下方式给出答案与解析:1. 填空题:要求填写与指令流水线相关的概念、原理或术语。

计算机体系结构之流水线工作原理与分类

计算机体系结构之流水线工作原理与分类
如:多操作部件处理机、超标量处理机 时间并行性:采用流水线技术
不增加或只增加少量硬件就能使运算速度提高几倍, 如:流水线处理机、超流水线处理机
流水线工作原理
流水线的分类
线性流水线的性能分析
非线性流水线的调度技术
流水线工作原理
1、流水线锁存器 流水线的每一个阶段称为流水步、流水步骤、流水段、 流水 线阶段、流水功能段、功能段、流水级、流水节拍等。
在每一个流水段的末尾或开头必须设置一个(多个)寄存器,
称为
流水寄存器、流水锁存器、流水闸门寄存器等。
流水锁存器会增加每条指令的执行时间,但采用流水线之
后整个程序的执行时间会缩短。
为了简化,在一般流水线中不画出流水锁存器。
输入
指令分析器 分析 k+1
流水 锁存器
△t1
指令执行部件 执行 k
流水 锁存器
Latency & throughput?
流水线技术
流水线技术在50年代后期被应用于处理器设计 IBM Stretch----first general-purpose pipelined
computer CDC 6600 use load/store design to achieve efficient

时间
务A
顺 序B
C
D
°
洗4 个人的衣物,顺序操作需要 8 个小时
°
如果使用流水线作业, 将需要多少时间呢?
流水线作业
6 下午 7
8
9
10
11
12
时间

30 30 30 30 30 30 30
务A


B
C
D

处理器系列之CPU流水线科普

处理器系列之CPU流水线科普

处理器系列之CPU流水线科普1989年推出的i486处理器引入了五级流水线。

这时,在CPU中不再仅运行一条指令,每一级流水线在同一时刻都运行着不同的指令。

这个设计使得i486比同频率的386处理器性能提升了不止一倍。

五级流水线中的取指阶段将指令从指令缓存中取出(i486中的指令缓存为8KB);第二级为译码阶段,将取出的指令翻译为具体的功能操作;第三级为转址阶段,用来将内存地址和偏移进行转换;第四级为执行阶段,指令在该阶段真正执行运算;第五级为退出阶段,运算的结果被写回寄存器或者内存。

由于处理器同时运行了多条指令,大大提升了程序运行的性能。

处理器一般由如下功能单元组成:取指单元译码单元执行单元Load/store单元(load用于从内存中取数据,而STORE用于存数据到内存)例外/中断单元电源管理单元流水线通常由取指、译码、执行及Load/Store等单元组成。

各单元按图所示的几个步骤循环重复自身工作。

流水线的含义:与工厂生产线类似,将一件工作分成若干个固定的工序进行。

cpu流水线技术是一种将指令分解为多步,并让不同指令的各步操作重叠,从而实现几条指令并行处理,以加速程序运行过程的技术。

指令的每步有各自独立的电路来处理,每完成一步,就进到下一步,而前一步则处理后续指令。

(原理和生产流水线一样)CPU指令流水线根据之前描述的基础,指令进入流水线,通过流水线处理,从流水线出来的过程,对于我们程序员来说,是比较直观的。

I486拥有五级流水线。

分别是:取指(Fetch),译码(D1, main decode),转址(D2, translate),执行(EX, execute),写回(WB)。

某个指令可以在流水线的任何一级。

但是这样的流水线有一个明显的缺陷。

对于下面的指令代码,它们的功能是将两个变量的内容进行交换。

1 XOR a, b2 XOR b, a3 XOR a, b从8086直到386处理器都没有流水线。

指令集的实现与流水线结构

指令集的实现与流水线结构
算术流水线
18
Computer Architecture Spring 2016
算术流水线
19
Computer Architecture Spring 2016
算术流水线
20
Computer Architecture Spring 2016
算术流水线
21
Computer Architecture Spring 2016
4、流水线需要有“填充时间”(第一个任务流出结果所需的时间), 在此之后流水过程才进入稳定工作状态,每一个时钟周期(拍)流出 一个结果;
5、流水技术适合于大量重复的时序过程,只有输入端能连续地提供 任务,流水线的效率才能充分发挥。
8
Computer Architecture Spring 2016
部件级、处理机级及处理机间流水线
所谓部件级流水线又叫运算操作流水线(Arithmetic pipelines),它是把处理机的算术逻辑部件分段,以便为各 种数据类型进行流水操作。
所谓处理机级流水线,又叫指令流水线(Instruction pipelines),它是把解释指令的过程按照流水方式处理。
所谓处理机间流水线,又叫宏流水线(Macro pipelines)。
段空 号间
8 7 6
浮点加 1 2 3 … … n-1 n
定点乘 一
一二 一二三
5
1 2 3 … … n-1 n
4
1 2 3 … … n-1 n
3
1 2 3 … … n-1 n
2
1 2 3 … … n-1 n
1 1 2 3 … … n-1 n
一二三四
时间
静态流水线 11
Computer Architecture Spring 2016

6计算机组成原理第6章流水线原理

6计算机组成原理第6章流水线原理
1)对存储器的频繁访问 ① 有哪些访问:取指令、取操作 数、存放执行结果, I/O通道访问. ② 希望存储器为多体结构,以适 应多种访问源的需要。 ③ 当存储器为单体结构时,需要 将访问源排队,先后顺序为: 取指令、取数据、I/O通道访问、存
结果
6.1 先行控制技术
• 先行控制(look-ahead)技术最早在IBM公司研制的 STRETCH机器中采用。目前,许多处理机中都已经采 用了这种技术,包括超流水处理机和超标量处理机等。
6.4 线性流水线性能分析
衡量流水线的主要指标有吞吐率,加速比和效率。
6.4.1 吞吐率TP
吞吐率(TP ── ThroughPut)指流水线在单位时间内执行的任务数, 可以用输入任务数或输出任务数表示。
TP n Tk
其中k表示流水线划分的段数。
当满足 ti 条t 件时,有 Tk (n k 1) t。
第6章 流水线原理及其 §1 重叠方式
通常提高指令执行速度的途径有如下三种: 1. 提高处理机的工作主频。 2. 采用更好的算法和设计更好的功能部件。 3. 多条指令并行执行,称为指令级并行技术。
• 可以从两个方面来开发处理机内部的并行性:
– 空间并行性:即在一个处理机内设置多个独 立的操作部件,并让这些操作部件并行工作, 这种处理机称为多操作部件处理机或超标量 处理机;
• 超长指令字技术VLIW:指让一条指令包含多个独立的操 作字段,并且分别控制多个功能部件并行工作的技术。
一.重叠解释方式
1.一条指令的几个过程段
1)取指令:根据PC(指令计数器)从M(存储器)取 出指令送到IR(指令寄存器)
2)译码分析:译出指令的操作性质,准备好所需数 据
3)执行:将准备好的数按译出性质进行处理,主要 涉及ALU(算术逻辑运算部件)

流水线原理——ILP

流水线原理——ILP
– 编译器,指令调度。乱序执行,动态调度
llxx@ 18
直到C6,数据才可用
指令调度
• 指令调度,是RISC微处理器编译技术之一。 • 指令调度是解决数据相关的最经济的方法,它可以解决RAW、WAR 和WAW数据相关。 • 假设有这样一个指令序列: I0: R1+R2R3 I1: R3+R4R5 I2: R7 OR R8R9 • 假定我们按下列方法重新安排指令次序: R1+R2 R3 R7 OR R8 R9 R3+R4 R5
从此开始,每个 周期流出一条指 令,IPC≈1
Execute Store res.
pipelined instruction execution
Time
llxx@
9
流水线分类
• 单功能流水线:只能完成一种功能的流水线,如浮点加法 流水线。 • 多功能流水线:流水线的各段可以进行不同的连接,从而 使流水线在不同的时间完成不同的功能。 • 静态流水线:在某一时间段内,流水线的各段只能按同一 种功能的连接方式工作,即只有当输入是一串相同性质的 操作时其性能才能得到发挥。 • 动态流水线:在某一段时间内,某些段正在实现某类操作 (定点乘),其他段却在实现另一类操作(浮点加)。 • 线性流水线:流水线的各段串行连接,没有反馈回路。 • 非线性流水线:流水线中除了串行的通路,还有反馈回来。 • 顺序流水线:流水线的流出顺序与其流入顺序相同。 • 乱序流水线:流水线的流出顺序与其流入顺序不同。
Pipelined
non-pipelined dish cleaning
Time
pipelined dish cleaning
Time
• 流水过程由多个相互联系的子过程组成,每个子过程称为 流水线的“级”或“段”。

冯诺依曼计算机工作原理的设计思想

冯诺依曼计算机工作原理的设计思想

冯诺依曼计算机工作原理的设计思想
冯诺依曼计算机工作原理的设计思想是基于存储程序的概念。

其主要特点包括以下几点:
1. 存储程序:冯诺依曼计算机将程序和数据以相同的方式存储在计算机的内存中。

程序中的指令和数据都被存储在存储器中的不同地址上,可以被按需读取和写入。

2. 指令流水线:冯诺依曼计算机借鉴了装配线工作方式,引入指令流水线的概念。

指令流水线将指令的执行过程分为多个步骤,并使得多条指令可以并行执行,提高了计算机的效率。

3. 控制单元和运算器的分离:冯诺依曼计算机将计算机的功能分为控制单元和运算器。

控制单元负责从内存中读取指令并解析执行流程,而运算器则负责执行实际计算操作。

4. 寄存器:冯诺依曼计算机引入了寄存器的概念,用于临时存储数据和指令。

寄存器的使用可以提高计算速度,并减少对内存的访问。

5. 存储器的层次结构:冯诺依曼计算机采用了存储器的层次结构,分为高速缓存、主存和辅助存储器。

不同层次的存储器具有不同的速度和容量,可以根据需求进行数据的存取。

6. 数据和指令的二进制表示:冯诺依曼计算机使用二进制来表示数据和指令。

所有的数据和指令在计算机内部都以二进制的形式进行处理和存储。

7. 硬件和软件的分离:冯诺依曼计算机将硬件和软件分离,使得计算机的功能可以通过更改软件来实现,而不需要对硬件进行改动。

冯诺依曼计算机的设计思想在现代计算机中得到了广泛的应用,成为计算机结构设计的基础。

通过存储程序的概念,指令流水线的引入等方法,可以提高计算机的运行效率和性能,同时也方便了软件的开发和维护。

第7章流水线结构RISC CPU设计

第7章流水线结构RISC CPU设计

(7-4)
7.3流水线的性能评价
7.3.1 流水线的性能指标
2.CPU性能公式
总时钟周期数 CPU时间 时钟频率
(7-5)
总时钟周期数 CPI (7-6) IC
CPU时间
(CPI
i 1
n
CPI IC (7-7) 总CPU时间 时钟频率
(7-8)
i
ICi )
时钟频率
CPI
7.1.2流水线CPU的时空图
空间S
I 1 I 2I 3I 4I 5 I 6 I 7 I 8I 9 I 10
空间S
WB EX ID IF
I3 I4 I5 I1 I2 I3 I4 I5 I1 I2 I3 I4 I5 I1 I2 I3 I4 I5 I1 I2 I3 I4 I5 1 2 3 4 5 6 7 8 时间T
Reg
图7-10 例7-4的流水线状态图
ALU
7.2 流水线中的主要问题及处理 CC1 CC2 CC3 CC4 CC5
时钟周期
CC6
ALU
程 序 Reg 执 LW R1,0(R2) IM 7.2.3 数据竞争的处理技术 行 序 列 SUB R4,R1,R5 IM
ALU
DM
Reg
Reg
气泡
DM
AND R6,R1,R7
Reg
ALU
程 序 Reg 执 ADD R1,R2,R3 IM 行 序 列 7.2.3 数据竞争的处理技术 SUB R4,R1,R5 IM
ALU
7.2 流水线中的主要问题及处理
DM Reg DM
时钟周期
CC1
CC2
CC3
CC4
CC5
CC6
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指令流水线的原理
指令流水线是一种基于并行处理的计算机指令执行方法,通过将指令执行过程分为若干个互相独立的阶段,使得每个阶段可以同时处理不同的指令,从而提高计算机的执行效率。

指令流水线的原理可以简单描述为以下几个步骤:
1. 指令获取阶段:从存储器中获取将要执行的指令,并将其送入指令译码阶段。

2. 指令译码阶段:对获取的指令进行译码,确定指令类型和操作数,并将其送入执行阶段。

3. 执行阶段:根据指令类型和操作数进行相应的操作,如运算、移位、存储等。

4. 访存阶段:如果指令需要访问存储器,则进行存储器操作,如读取或写入数据。

5. 写回阶段:将执行结果写回到寄存器文件或存储器中。

以上是指令流水线的基本阶段,不同的指令流水线可能还包括其他特定的阶段,如乘法器阶段、除法器阶段等。

指令流水线的关键在于将指令执行过程分解为多个互相独立的阶段,并使得各个阶段可以同时进行。

这样可以避免指令之间的冲突,提高指令的并行度和处理效率。

同时,指令流水线还
可以通过插入空泡来解决可能出现的冲突和数据依赖问题,以保证指令的正确执行。

总之,指令流水线是一种有效提高计算机处理效率的方法,通过将指令执行过程分解为多个互相独立的阶段,实现指令的并行处理,从而加快指令的执行速度。

相关文档
最新文档