线性代数考试练习题带答案(8)

合集下载

线性代数单元测试卷(含答案)

线性代数单元测试卷(含答案)

线性代数单元测试卷(含答案)一、选择题(每题2分,共20分)1. 在线性代数中,什么是矩阵的秩?A. 矩阵的行数B. 矩阵的列数C. 矩阵的非零行数D. 矩阵的最大线性无关行数正确答案:D2. 下列哪个不是矩阵的运算?A. 矩阵的加法B. 矩阵的减法C. 矩阵的除法D. 矩阵的乘法正确答案:C3. 矩阵的转置满足下列哪个性质?A. (A^T)^T = AB. (AB)^T = B^T * A^TC. (A + B)^T = A^T + B^TD. (AB)^T = A^T + B^T正确答案:B4. 什么是向量的线性组合?A. 向量相加B. 向量相减C. 向量乘以常数后相加D. 向量与常数相乘正确答案:C5. 下列哪组向量线性无关?A. (1, 0)B. (0, 1)C. (1, 1)D. (1, -1)正确答案:C二、填空题(每题3分,共30分)1. 给定矩阵A = [[1, 2], [3, 4]],求A的逆矩阵。

正确答案:[[-2, 1], [1.5, -0.5]]2. 给定矩阵B = [[2, 4], [1, 3]],求B的特征值。

正确答案:[5, 0]3. 给定向量v = (1, 2, 3),求v的范数。

正确答案:sqrt(14)4. 给定矩阵C = [[1, 2, 3], [4, 5, 6]],求C的秩。

正确答案:25. 给定矩阵D = [[1, 2], [3, 4], [5, 6]],求D的转置矩阵。

正确答案:[[1, 3, 5], [2, 4, 6]]三、解答题(每题10分,共40分)1. 什么是线性相关和线性无关?线性相关表示向量之间存在线性组合的系数不全为零的情况,即存在非零向量组合得到零向量。

线性无关表示向量之间不存在这样的关系,即只有全为零的线性组合才能得到零向量。

2. 什么是矩阵的行列式?矩阵的行列式是一个标量,它是一个方阵中各个元素按照一定规律相乘再求和的结果。

行列式可以用来判断方阵的逆是否存在,以及计算方阵的特征值等。

线性代数练习题(有答案)

线性代数练习题(有答案)

《线性代数》 练习题一、选择题1、 设A ,B 是n 阶方阵,则必有 ……………………………………………( A )A 、|AB |=|BA | B 、2222)(B AB A B A ++=+C 、22))((B A B A B A -=-+D 、BA AB = 2、设A 是奇数阶反对称矩阵,则必有( B ) (A)、1=A (B)、0=A (C)、0≠A (D)、A 的值不确定3、向量组)0,1,1(,)9,0,3(-,)3,2,1(,)6,1,1(--的秩为____2 ________4、向量组)1,3,1,2(-,)4,5,2,4(-,)1,4,1,2(--的秩为______2__ ___.5、设A 是n m ⨯阶矩阵,r A r =)(,则齐次线性方程组O AX =的基础解系中包含解向量的个数为( C )(A)、r (B)、n (C)、r n - (D)、r m - 二、计算与证明题6、设⎪⎪⎪⎭⎫ ⎝⎛----=020212022A , ⎪⎪⎪⎭⎫⎝⎛---=221021132B 求(1)32AB A -,(2).T B A6、解(1). A AB 23-2202313212120020122--⎛⎫⎛⎫ ⎪⎪=-- ⎪⎪ ⎪⎪---⎝⎭⎝⎭2202212020-⎛⎫⎪--- ⎪ ⎪-⎝⎭2223186240-⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭2202212020-⎛⎫ ⎪--- ⎪ ⎪-⎝⎭210612622680-⎛⎫ ⎪=- ⎪ ⎪--⎝⎭(2). 220231231212120120020122122T A B ---⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=--= ⎪⎪ ⎪ ⎪⎪ ⎪-----⎝⎭⎝⎭⎝⎭222186240-⎛⎫⎪=-- ⎪ ⎪--⎝⎭7、设A ,B 是n 阶方阵满足AB B A =+,证明:E A -可逆. 7、解、1()A E B E --=-8、设方阵A 满足0332=--E A A ,证明:A 可逆,并求1-A .8、解、由2330A A E --=有A (3A E -)=3E ,于是,A [21(3A E -)]=E ,所以A 可逆,且11(3)3A A E -=-.9、计算行列式:1014300211321221---=D9、69D =-.10、计算行列式D =4232002005250230---- 10、解:D =423200200525230----0205252304--=55208---=80-=11、计算n 阶行列式abbb b a bb b a D =11、1[(1)]()n D a n b a b -=+--。

线性代数考试练习题带答案

线性代数考试练习题带答案

线性代数试题集与答案解析一、单项选择题(只有一个选项正确,共8道小题)1. 设向量组α1,α2,α3 线性无关,则下列向量组中线性无关的是 ( )。

(A) α 1 −α 2 ,α 2 −α 3 ,α 3 −α 1(B) α 1 ,α 2 ,α 3 + α 1(C) α 1 ,α 2 ,2 α 1 −3 α 2(D) α 2 ,α 3 ,2 α 2 + α 3正确答案:B解答参考:A中的三个向量之和为零,显然A线性相关;B中的向量组与α1,α2,α3等价, 其秩为3,B向量组线性无关;C、D中第三个向量为前两个向量的线性组合,是线性相关向量组。

2.(A) 必有一列元素全为0;(B) 必有两列元素对应成比例;(C) 必有一列向量是其余列向量的线性组合;(D) 任一列向量是其余列向量的线性组合。

你选择的答案:未选择[错误]正确答案:C解答参考:3. 矩阵 ( 0 1 1 −1 2 ,0 1 −1 −1 0 ,0 1 3 −1 4 ,1 1 0 1 −1 ) 的秩为( )。

(A) 1(B) 2(C) 3(D) 4你选择的答案:未选择[错误]正确答案:C解答参考:4. 若矩阵 ( 1 a −1 2, 1 −1 a 2 ,1 0 −1 2 ) 的秩为2,则 a的值为。

(A) 0(B) 0或-1(C) -1(D) -1或1正确答案:B解答参考:5. 二次型 f( x 1 , x 2 , x 3 )=2 x 1 2 +5 x 2 2 +5 x 3 2 +4 x 1 x 2 −8 x 2 x 3,则 f的矩阵为。

(A) ( 2 4 0 0 5 −8 0 0 5 )(B) ( 2 4 0 0 5 −4 0 −4 5 )(C) ( 2 2 0 2 5 −4 0 −4 5 )(D) ( 2 4 0 4 5 −4 0 −4 5 )正确答案:C解答参考:6. 设 A、 B为 n阶方阵,且 A与 B等价, | A |=0 ,则 r(B)(A) 小于n(B) 等于n(C) 小于等于n(D) 大于等于n正确答案:A解答参考:7. 若矩阵 [ 1 2 2 −3 ,1 −1 λ−3 ,1 0 2 −3 ] 的秩为2,则λ的取值为(A) 0(B) -1(C) 2(D) -3正确答案:C8. 设α 1 , α 2 , α 3 是齐次方程组 Ax=0 的基础解系,则下列向量组中也可作为 A x=0 的基础解系的是(A) 2(B) -2(C) 1(D) -1正确答案:B解答参考:二、判断题(判断正误,共6道小题)9.设A ,B 是同阶方阵,则AB=BA 。

线性代数试题(附参考答案)

线性代数试题(附参考答案)

《 线性代数 》课程试题(附答案)一、 填空。

(3×8=24分)1.设A 为四阶方阵,且3=A ,则=-A 22.设⎪⎪⎪⎭⎫⎝⎛=003020100A ,则=-1A3.设⎪⎪⎭⎫⎝⎛=4321A ,则A 的伴随矩阵=*A 4.设CB A ,,为n 阶方阵,若0≠A ,且C AB =,则=B 5.矩阵A 可逆的充要条件为6.齐次线性方程组01=⨯⨯n n m X A 有非零解的充要条件为7.设n 维向量组321,,∂∂∂线性无关,则向量组32,∂∂ (填“线性相关”或“线性无关”)8.设n 元齐次线性方程组0=Ax ,且n r A r <=)(,则基础解系中含有 个解向量。

二、 计算行列式的值。

(10分)321103221033210=D三、 已知矩阵⎪⎪⎪⎭⎫ ⎝⎛---=145243121A ,求1-A 。

(10分)四、 设矩阵⎪⎪⎭⎫ ⎝⎛=1112A ,求矩阵X ,使E A AX 2+=。

(10分)五、 问K 取什么值时下列向量组线性相关(10分) T k )1,2,(1=α,T k )0,,2(2=α,T )1,1,1(3-=α。

六、 设A ,B 为n 阶矩阵且2B B =,E B A +=,证明A 可逆并求其逆(6分)七、 设矩阵⎪⎪⎪⎭⎫⎝⎛----=979634121121112A ,求矩阵A 的列向量组的秩及一个极大线性无关组,并把其余向量用极大线性无关组表示。

(15分)八、 求非齐次线性方程组⎪⎩⎪⎨⎧=--+=+--=--+0895443313432143214321x x x x x x x x x x x x 的通解。

(15分)《线性代数》课程试题参考答案一、 填空。

(3×8=24分)1.设A 为四阶方阵,且3=A ,则=-A 2482.设⎪⎪⎪⎭⎫ ⎝⎛=003020100A ,则=-1A ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛001021031003.设⎪⎪⎭⎫⎝⎛=4321A ,则A 的伴随矩阵=*A ⎪⎪⎭⎫ ⎝⎛--1324 4.设C B A ,,为n 阶方阵,若0≠A ,且C AB =,则=B C A 1- 5.矩阵A 可逆的充要条件为0≠A6.齐次线性方程组01=⨯⨯n n m X A 有非零解的充要条件为n A r <)(7.设n 维向量组321,,∂∂∂线性无关,则向量组32,∂∂线性无关(填“线性相关”或“线性无关”)8.设n 元齐次线性方程组0=Ax ,且n r A r <=)(,则基础解系中含有r n -个解向量。

线性代数考试题及答案

线性代数考试题及答案

线性代数考试题及答案一、单项选择题(每题2分,共10分)1. 矩阵A的行列式为0,则矩阵A是:A. 可逆的B. 不可逆的C. 正定的D. 负定的答案:B2. 若向量组\( \alpha_1, \alpha_2, \ldots, \alpha_n \)线性相关,则:A. 存在不全为0的实数k1, k2, ..., kn,使得k1\( \alpha_1 +k2\alpha_2 + \ldots + k_n\alpha_n = 0 \)B. 所有向量都为零向量C. 存在不全为0的实数k1, k2, ..., kn,使得k1\( \alpha_1 +k2\alpha_2 + \ldots + k_n\alpha_n \)是零向量D. 所有向量都为非零向量答案:A3. 矩阵A和B的乘积AB等于零矩阵,则:A. A和B都是零矩阵B. A和B中至少有一个是零矩阵C. A和B的秩之和小于A的列数D. A和B的秩之和小于B的行数答案:C4. 向量组\( \beta_1, \beta_2, \ldots, \beta_m \)可以由向量组\( \alpha_1, \alpha_2, \ldots, \alpha_n \)线性表示,则:A. m > nB. m ≤ nC. m ≥ nD. m < n答案:B5. 若矩阵A和B合同,则:A. A和B具有相同的行列式B. A和B具有相同的秩C. A和B具有相同的特征值D. A和B具有相同的迹答案:B二、填空题(每题3分,共15分)1. 若矩阵A的特征值为λ,则矩阵A^T的特征值为______。

答案:λ2. 若矩阵A可逆,则矩阵A的行列式|A|与矩阵A^-1的行列式|A^-1|满足关系|A^-1|=______。

答案:1/|A|3. 若向量组\( \alpha_1, \alpha_2 \)线性无关,则由这两个向量构成的矩阵的秩为______。

答案:24. 矩阵A的秩为r,则矩阵A的零空间的维数为______。

线性代数考试题及答案

线性代数考试题及答案

线性代数考试题及答案**线性代数考试题及答案**一、单项选择题(每题3分,共30分)1. 矩阵A的行列式为0,则矩阵A()A. 可逆B. 不可逆C. 可交换D. 不可交换答案:B2. 若矩阵A和B均为n阶方阵,且AB=0,则()A. A=0或B=0B. A和B至少有一个为0C. A和B都为0D. A和B可能都不为0答案:D3. 向量组α1,α2,…,αs线性无关,则()A. s ≤ nB. s > nC. s ≥ nD. s < n答案:A4. 矩阵A的特征值是()A. 矩阵A的行最简形式B. 矩阵A的列最简形式C. 矩阵A的对角线元素D. 满足|A-λE|=0的λ值答案:D5. 矩阵A和B相等的充要条件是()A. A和B的对应元素相等B. A和B的行向量组相同C. A和B的列向量组相同D. A和B的秩相等答案:A6. 若矩阵A可逆,则下列说法正确的是()A. |A|≠0B. A的秩为nC. A的行列式为1D. A的转置矩阵可逆答案:AA. r(A+B) = r(A) + r(B)B. r(AB) ≤ min{r(A), r(B)}C. r(A) = r(A^T)D. r(A) = r(A^-1)答案:C8. 向量组α1,α2,…,αn线性相关,则()A. 存在不全为0的k个向量,使得k个向量线性组合等于0B. 存在不全为0的n个向量,使得n个向量线性组合等于0C. 存在不全为0的n+1个向量,使得n+1个向量线性组合等于0D. 存在不全为0的m个向量,使得m个向量线性组合等于0,其中1≤m≤n答案:DA. r(A+B) = r(A) + r(B)B. r(AB) ≤ min{r(A), r(B)}C. r(A) = r(A^T)D. r(A) = r(A^-1)答案:B10. 若矩阵A和B均为n阶方阵,且AB=0,则()A. A=0或B=0B. A和B至少有一个为0C. A和B都为0D. A和B可能都不为0答案:D二、填空题(每题4分,共20分)1. 若矩阵A的行列式|A|=2,则矩阵A的伴随矩阵的行列式|adj(A)|= _ 。

线性代数试题(完整试题与详细答案)

线性代数试题(完整试题与详细答案)

线性代数试题(完整试题与详细答案)一、单项选择题(本大题共10小题,每小题2分,共20分)1.行列式111101111011110------第二行第一列元素的代数余子式21A =( )A .-2B .-1C .1D .22.设A 为2阶矩阵,若A 3=3,则=A 2( ) A .21 B .1 C .34 D .23.设n 阶矩阵A 、B 、C 满足E ABC =,则=-1C ( ) A .AB B .BA C .11--B AD .11--A B4.已知2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A 的行列式1-=A ,则=-1*)(A ( ) A .⎪⎪⎭⎫⎝⎛----d c b aB .⎪⎪⎭⎫⎝⎛--a c b dC .⎪⎪⎭⎫ ⎝⎛--a cb d D .⎪⎪⎭⎫ ⎝⎛d c b a5.向量组)2(,,,21≥s s ααα 的秩不为零的充分必要条件是( ) A .s ααα,,,21 中没有线性相关的部分组 B .s ααα,,,21 中至少有一个非零向量 C .s ααα,,,21 全是非零向量D .s ααα,,,21 全是零向量6.设A 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 有非零解的充分必要条件是( )A .n r =)(AB .m r =)(AC .n r <)(AD .m r <)(A 7.已知3阶矩阵A 的特征值为-1,0,1,则下列矩阵中可逆的是( ) A .A B .AE - C .A E -- D .A E -2 8.下列矩阵中不是..初等矩阵的为( )A .⎪⎪⎪⎭⎫ ⎝⎛101010001B .⎪⎪⎪⎭⎫⎝⎛-101010001C .⎪⎪⎪⎭⎫⎝⎛100020001D .⎪⎪⎪⎭⎫⎝⎛1010110019.4元二次型4332412143212222),,,(x x x x x x x x x x x x f +++=的秩为( ) A .1B .2C .3D .410.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=001010100A ,则二次型Ax x T 的规范形为( )A .232221z z z ++ B .232221z z z ---C .232221z z z --D .232221z z z -+二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

线性代数大学试题及答案

线性代数大学试题及答案

线性代数大学试题及答案一、选择题(每题5分,共20分)1. 设A是一个3阶方阵,且满足A^2 = A,则下列说法正确的是:A. A是可逆矩阵B. A是幂等矩阵C. A是正交矩阵D. A是单位矩阵答案:B2. 若矩阵A的特征值为1,则下列说法正确的是:A. 1是A的迹B. 1是A的行列式C. 1是A的一个特征值D. 1是A的秩答案:C3. 设向量组α1, α2, ..., αn线性无关,则下列说法正确的是:A. 向量组中任意向量都可以用其他向量线性表示B. 向量组中任意向量都不可以被其他向量线性表示C. 向量组中任意向量都可以被其他向量线性表示D. 向量组中任意向量都不可以被其他向量线性表示,除非它们线性相关答案:B4. 若矩阵A的秩为2,则下列说法正确的是:A. A的行向量组线性无关B. A的列向量组线性无关C. A的行向量组线性相关D. A的列向量组线性相关答案:A二、填空题(每题5分,共30分)1. 若矩阵A的行列式为0,则A的______。

答案:秩小于矩阵的阶数2. 设向量空间V的一组基为{v1, v2, ..., vn},则任意向量v∈V可以唯一地表示为______。

答案:v = c1v1 + c2v2 + ... + cnn,其中ci为标量3. 设矩阵A和B可交换,即AB = BA,则A和B的______。

答案:特征值相同4. 若线性变换T: R^n → R^m,且T是可逆的,则T的______。

答案:行列式不为零5. 设A为n阶方阵,若A的特征多项式为f(λ) = (λ-1)^2(λ-2),则A的特征值为______。

答案:1, 1, 26. 若向量组α1, α2, ..., αn线性无关,则向量组α1, α2, ..., αn, α1+α2也是______。

答案:线性相关三、简答题(每题10分,共20分)1. 简述什么是矩阵的秩,并给出如何计算矩阵的秩的方法。

答案:矩阵的秩是指矩阵行向量或列向量组中线性无关向量的最大个数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数考试练习题带答案说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,||α||表示向量α的长度,αT表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式. 一、单项选择题(本大题共10小题,每小题2分,共20分)1.设行列式111213212223313233a a a a a a a a a =2,则111213313233213122322333333a a a a a a a a a a a a ------=( ) A .-6 B .-3 C .3 D .62.设矩阵A ,X 为同阶方阵,且A 可逆,若A (X -E )=E ,则矩阵X =( ) A .E +A -1B .E -AC .E +AD .E -A -13.设矩阵A ,B 均为可逆方阵,则以下结论正确的是( ) A .⎛⎫⎪⎝⎭A B 可逆,且其逆为-1-1⎛⎫⎪⎝⎭A B B .⎛⎫ ⎪⎝⎭A B 不可逆C .⎛⎫⎪⎝⎭A B 可逆,且其逆为-1-1⎛⎫⎪⎝⎭B AD .⎛⎫ ⎪⎝⎭A B 可逆,且其逆为-1-1⎛⎫⎪⎝⎭A B 4.设α1,α2,…,αk 是n 维列向量,则α1,α2,…,αk 线性无关的充分必要条件是( )A .向量组α1,α2,…,αk 中任意两个向量线性无关B .存在一组不全为0的数l 1,l 2,…,l k ,使得l 1α1+l 2α2+…+l k αk ≠0C .向量组α1,α2,…,αk 中存在一个向量不能由其余向量线性表示D .向量组α1,α2,…,αk 中任意一个向量都不能由其余向量线性表示 5.已知向量2(1,2,2,1),32(1,4,3,0),T T +=---+=--αβαβ则+αβ=( ) A .(0,-2,-1,1)TB .(-2,0,-1,1)TC .(1,-1,-2,0)TD .(2,-6,-5,-1)T6.实数向量空间V ={(x , y , z )|3x +2y +5z =0}的维数是( ) A .1 B .2 C .3D .47.设α是非齐次线性方程组Ax =b 的解,β是其导出组Ax =0的解,则以下结论正确的是()A.α+β是Ax=0的解B.α+β是Ax=b的解C.β-α是Ax=b的解D.α-β是Ax=0的解8.设三阶方阵A的特征值分别为11,,324,则A-1的特征值为()A.12,4,3B.111,,243C.11,,324D.2,4,39.设矩阵A=121-,则与矩阵A相似的矩阵是()A.11123--B.01102C.211-D.121-10.以下关于正定矩阵叙述正确的是()A.正定矩阵的乘积一定是正定矩阵B.正定矩阵的行列式一定小于零C.正定矩阵的行列式一定大于零D.正定矩阵的差一定是正定矩阵二、填空题(本大题共10小题,每空2分,共20分)请在每小题的空格中填上正确答案,错填、不填均无分。

11.设det (A)=-1,det (B)=2,且A,B为同阶方阵,则det ((AB)3)=__________.12.设3阶矩阵A=12243311t--,B为3阶非零矩阵,且AB=0,则t=__________.13.设方阵A满足A k=E,这里k为正整数,则矩阵A的逆A-1=__________.14.实向量空间R n的维数是__________.15.设A是m×n矩阵,r (A)=r,则Ax=0的基础解系中含解向量的个数为__________.16.非齐次线性方程组Ax=b有解的充分必要条件是__________.17.设α是齐次线性方程组Ax=0的解,而β是非齐次线性方程组Ax=b的解,则(32)+Aαβ=__________.18.设方阵A 有一个特征值为8,则det (-8E +A )=__________.19.设P 为n 阶正交矩阵,x 是n 维单位长的列向量,则||Px ||=__________.20.二次型222123123121323(,,)56422f x x x x x x x x x x x x =+++--的正惯性指数是__________.三、计算题(本大题共6小题,每小题9分,共54分) 21.计算行列式1112114124611242-----. 22.设矩阵A =235,且矩阵B 满足ABA -1=4A -1+BA -1,求矩阵B .23.设向量组1234(3,1,2,0),(0,7,1,3),(1,2,0,1),(6,9,4,3),===-=αααα求其一个极大线性无关组,并将其余向量通过极大线性无关组表示出来.24.设三阶矩阵A =143253242----,求矩阵A 的特征值和特征向量.25.求下列齐次线性方程组的通解.13412412345023020x x x x x x x x x x +-=⎧⎪+-=⎨⎪+-+=⎩ 26.求矩阵A =22420306110300111210----的秩.四、证明题(本大题共1小题,6分) 27.设三阶矩阵A =111213212223313233a a a a a a a a a 的行列式不等于0,证明: 131112121222323313233,,a a a a a a a a a ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ααα线性无关.线性代数考试练习题带答案说明:在本卷中,A T表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 是单位矩阵,|A |表示方阵A 的行列式,r (A)表示矩阵A 的秩.一、 单项选择题(本大题共10小题,每小题2分,共20分)1.设行列式111213212223313233a a a a a a a a a =2,则111213212223313233232323a a a a a a a a a ------=( D ) A.-12B.-6C.6D.122.设矩阵A =120120003⎛⎫⎪⎪ ⎪⎝⎭,则A *中位于第1行第2列的元素是( A )A.-6B.-3C.3D.63.设A 为3阶矩阵,且|A |=3,则1()A --=( B ) A.-3B.13-C.13D.34.已知4⨯3矩阵A 的列向量组线性无关,则A T 的秩等于( C ) A.1 B.2 C.3 D.45.设A 为3阶矩阵,P =100210001⎛⎫⎪⎪ ⎪⎝⎭,则用P 左乘A ,相当于将A ( A )A.第1行的2倍加到第2行B.第1列的2倍加到第2列C.第2行的2倍加到第1行D.第2列的2倍加到第1列6.齐次线性方程组123234230+= 0x x x x x x ++=⎧⎨--⎩的基础解系所含解向量的个数为( B )A.1B.2C.3D.47.设4阶矩阵A 的秩为3,12ηη,为非齐次线性方程组Ax =b 的两个不同的解,c 为任意常数,则该方程组的通解为( A ) A.1212cηηη-+ B.1212c ηηη-+ C.1212cηηη++ D.1212c ηηη++8.设A 是n 阶方阵,且|5A +3E |=0,则A 必有一个特征值为( B ) A.53-B.35-C.35D.539.若矩阵A 与对角矩阵D =100010001-⎛⎫ ⎪- ⎪ ⎪⎝⎭相似,则A 3=( C )A.EB.DC.AD.-E10.二次型f 123(,,)x x x =22212332x x x +-是( D )A.正定的B.负定的C.半正定的D.不定的二、填空题(本大题共10小题,每小题2分,共20分)11.行列式11124641636=_______16_____.12.设3阶矩阵A 的秩为2,矩阵P =001010100⎛⎫ ⎪ ⎪ ⎪⎝⎭,Q =100010101⎛⎫ ⎪⎪ ⎪⎝⎭,若矩阵B =QAP ,则r (B)=______2_______. 13.设矩阵A =1414-⎛⎫⎪-⎝⎭,B =4812⎛⎫⎪⎝⎭,则AB =_______________.14.向量组1α=(1,1,1,1),2α=(1,2,3,4),3α=(0,1,2,3)的秩为______2________. 15.设1η,2η是5元齐次线性方程组Ax =0的基础解系,则r (A)=_______3_______.16.非齐次线性方程组Ax =b 的增广矩阵经初等行变换化为10002010020012-2⎛⎫⎪⎪ ⎪⎝⎭,则方程组的通解是__________.17.设A 为3阶矩阵,若A 的三个特征值分别为1,2,3,则|A |=____6_______.18.设A 为3阶矩阵,且|A |=6,若A 的一个特征值为2,则A *必有一个特征值为_____3____.19.二次型f 123(,,)x x x =2221233x x x -+的正惯性指数为____2_____.20.二次型f 123(,,)x x x =22212323224x x x x x --+经正交变换可化为标准形. 三、计算题(本大题共6小题,每小题9分,共54分)21.计算行列式D =3512 4533 1201 2034----22.设A=130210002-⎛⎫⎪⎪⎪⎝⎭,矩阵X满足关系式A+X=XA,求X.23.设234αβγγγ,,,,均为4维列向量,A =(234αγγγ,,,)和B =(234βγγγ,,,)为4阶方阵.若行列式|A |=4,|B |=1,求行列式|A+B |的值.24.已知向量组1α=(1,2,-1,1)T ,2α=(2,0,t ,0)T ,3α=(0,-4,5,-2)T ,4α=(3,-2,t+4,-1)T (其中t 为参数),求向量组的秩和一个极大无关组.25.求线性方程组12341234123423222547x x x x x x x x x x x x +++=⎧⎪++-=⎨⎪+++=⎩的通解..(要求用它的一个特解和导出组的基础解系表示)26.已知向量1=α(1,1,1)T ,求向量23αα,,使123ααα,,两两正交.四、证明题(本题6分)27.设A为m n实矩阵,A T A为正定矩阵.证明:线性方程组A x=0只有零解.。

相关文档
最新文档