平面直角坐标系的对称和平移
坐标平面内图形的轴对称和平移(基础) 知识讲解

坐标平面内图形的轴对称和平移(基础)【学习目标】1.能在同一直角坐标系中,感受图形经轴对称后点的坐标的变化.2.掌握左右、上下平移点的坐标规律.【要点梳理】要点一、关于坐标轴对称点的坐标特征1.关于坐标轴对称的点的坐标特征P(a,b)关于x轴对称的点的坐标为 (a,-b);P(a,b)关于y轴对称的点的坐标为 (-a,b);P(a,b)关于原点对称的点的坐标为 (-a,-b).2.象限的角平分线上点坐标的特征第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).3.平行于坐标轴的直线上的点平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同.要点二、用坐标表示平移1.点的平移:在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).要点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.2.图形的平移:在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.要点诠释:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化.【典型例题】类型一、用坐标表示轴对称1.已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则b a的值为_______. 【思路点拨】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得a+b=-3,1-b=-1,再解方程可得a、b的值,进而算出b a的值.【答案】25【解析】解:∵点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),∴a+b=-3,1-b=-1,解得:b=2,a=-5,ba=25,【总结升华】此题主要考查了关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.举一反三:【变式】点(3,2)关于x轴的对称点为()A.(3,-2)B.(-3,2)C.(-3,-2)D.(2,-3)【答案】A.2.已知点A(-3,2)与点B(x,y)在同一条平行于y轴的直线上,且点B到x轴的距离等于3,求点B的坐标.【思路点拨】由“点A(-3,2)与点B(x,y)在同一条平行于y轴的直线上”可得点B的横坐标;由“点B到x轴的距离等于3”可得B的纵坐标为3或﹣3,即可确定B的坐标.【答案与解析】解:如图,∵点B与点A在同一条平行于y轴的直线上,∴点B与点A的横坐标相同,∴ x=-3.∵点B到x轴的距离为3,∴ y=3或y=-3.∴点B的坐标是(-3,3)或(-3,-3).【总结升华】在点B的横坐标为-3的条件下,点B到x轴的距离等于3,则点B可能在第二象限,也可能在第三象限,所以要分类讨论,防止漏解.举一反三:【变式1】若x轴上的点P到y轴的距离为3,则点P的坐标为().A.(3,0) B.(3,0)或(–3,0)C.(0,3) D.(0,3)或(0,–3)【答案】B.【变式2】若点P (a ,b)在第二象限,则:(1)点P1(a ,-b)在第象限;(2)点P2(-a ,b)在第象限;(3)点P3(-a ,-b)在第象限;(4)点P4( b ,a )在第象限.【答案】(1)三;(2)一;(3)四;(4)四.类型二、用坐标表示平移3.(2015•海安县校级二模)在平面直角坐标系中,将点A(﹣2,3)向右平移2个单位长度,再向下平移6个单位长度得点B,则点B的坐标是.【思路点拨】根据向右平移横坐标加,向下平移纵坐标减列式计算即可得解.【答案】(0,﹣3).【解析】解:∵将点A(﹣2,3)向右平移2个单位长度,再向下平移6个单位长度得点B,∴点B的坐标是(﹣2+2,3﹣6),即(0,﹣3).故答案为:(0,﹣3).【总结升华】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.举一反三:【变式1】已知:两点A(-4,2)、B(-2,-6),(1)线段AB的中点C坐标是;(2)若将线段AB沿x轴向右平移5个单位,得到线段A1B1,则A1点的坐标是 ,B1点的坐标是.(3)若将线段AB沿y轴向下平移3个单位,得到线段A2B2,则A2点的坐标是 ,B2点的坐标是.【答案】(1)(-3, -2); (2)(1,2),(3,-6); (3)(-4,-1),(-2,-9).【变式2】点P(-2,5)向右平移个单位长度,向下平移个单位长度,变为P′(0,1).【答案】2、4.4.(2016春•江西期末)如图中,A、B两点的坐标分别为(2,3)、(4,1),(1)求△ABO的面积.(2)把△ABO向下平移3个单位后得到一个新三角形△O′A′B′,求△O′A′B′的3个顶点的坐标.【思路点拨】(1)把△ABO放在一个矩形里面,用矩形COED的面积﹣△ACO的面积﹣△ABD的面积﹣△BEO的面积即可算出△ABO的面积;(2)根据点的坐标平移的规律,用A、B、O的坐标的纵坐标分别减去3即可.【答案与解析】解:(1)如图所示:S△ABO=3×4﹣×3×2﹣×4×1﹣×2×2=5;(2)A′(2,0),B′(4,﹣2),O′(0,﹣3).【总结升华】此题主要考查了点的平移,以及求三角形的面积,当计算一个三角形的面积时,可以把它放在一个矩形里,然后用矩形的面积减去周围三角形的面积.举一反三:【变式】(2014秋•宣汉县期末)如图所示,△ABC三个顶点A,B,C的坐标分别为A(1,2),B(4,3),C(3,1).把△A1B1C1向右平移4个单位长度,再向下平移3个单位长度,恰好得到△ABC,试写出△A1B1C1三个顶点的坐标.【答案】解:A1(﹣3,5),B1(0,6),C1(﹣1,4).。
抛物线

(二)抛物线在平面直角坐标系中的轴对称变换。抛物线在平面直角坐系中的轴对称变换主要有两种变换。即关于x轴对称的抛物线和关于y轴对称的抛物线变换。
其变换的一般规律是:抛物线y=ax2+bx+c关于x轴对称的抛物线解析式为y=-ax2-bx-c。变化的实质是:只改变抛物线的开口方向,对称轴保持不变。
一、抛物线在平面直角坐标系中的平移、旋转、轴对称、中心对称变换
(一)抛物线在平面直角坐标系中的平移。我们知道,抛物线y=ax2+bx+c的形状(包括开口方向与开口大小)是由其二次项系数决定的,具体来说,a的符号决定了其开口方向。a>0时,开口向上;a<0时,开口向下。|a|越大,抛物线开口越小;|a|越小,其开口越大。因此抛物线在平面直角坐标系中的平移,并不会改变抛物线的形状,即在平移过程中其开口方向与抛物线开口的大小保持不变。平移中改变的是抛物线在平面直角坐标系中的位置,即对称轴和顶点坐标的改变。其一般变化规律是:把抛物线y=ax2向左平移h个单位后其解析式为y=a(x+h)2,向右平移h个单位后其解析式为y=a(x-h)2,向上平移k个单位后其解析式是y=ax2+k,向下平移k个单位后其解析式是y=ax2-k。平移中解析式变化的实质是:左右平移时只要自变量x加减某个量即可,即抛物线上每个点的横坐标发生变化,纵坐标保持不变。上、下平移时抛物线上每个点的纵坐标发生改变,横坐标保持不变。
二、在知识探索中,认定归类整理的教学方法
由以上综述可知,抛物线在平面直角坐标系中的变换非常灵活。无论是抛物线在平面直角坐标系中的平移变换,轴对称变换,还是抛物线在平面直角坐标系中的旋转变换,中心对称变换,其形状和大小均保持不变。即归类整理就有头绪。只要我们在数学课堂教学中注意引导学生探索发现它们变化的一般规律,就能发现它们的奥妙所在,那么学生们在学习本单元内容时会充满兴趣。把本来比较枯燥难以理解掌握的抛物线在平面直角坐标系中的变换内容,变得生动有趣,使同学们对学好本单元内容充满自信,为我们提高数学课堂效率,大面积提为学生长远发展打好坚实基础。
平面直角坐标系规律

平面直角坐标系规律
在平面直角坐标系中,规律主要体现在点的坐标表示、距离
计算、直线方程和图形变换等方面。
1.坐标表示:
平面直角坐标系中,每个点都可以用一个有序对(x,y)表示,
其中x表示点在x轴上的投影长度,y表示点在y轴上的投影
长度。
根据坐标的正负,可以判断点在哪个象限。
2.距离计算:
两点之间的距离可以通过勾股定理计算,即
$d=\sqrt{(x_2x_1)^2+(y_2y_1)^2}$。
这个公式可以用来
计算两点之间的直线距离。
3.直线方程:
在平面直角坐标系中,直线可以用一般式、斜截式、点斜式
和截距式等多种形式表示。
例如,一般式表示为Ax+By+C=0,其中A、B、C为常数;斜截式表示为y=kx+b,其中k为斜率,b为y轴截距;点斜式表示为yy_1=k(xx_1),其中(x_1,y_1)
为直线上一点的坐标;截距式表示为x/a+y/b=1,其中a、b
为x和y轴的截距。
4.图形变换:
平面直角坐标系中,常见的图形变换包括平移、旋转、缩放和对称等。
平移是通过给坐标加上一个平移向量实现,旋转是通过坐标旋转变换矩阵实现,缩放是通过给坐标乘上一个缩放因子实现,对称是通过以某一直线或点为中心实现。
总结一下,平面直角坐标系中的规律主要体现在坐标表示、距离计算、直线方程和图形变换等方面。
这些规律在几何学、图像处理、物理学等领域中都有广泛应用。
平面直角坐标系点的坐标移动规律

平面直角坐标系点的坐标移动规律平面直角坐标系中的点的坐标移动规律在平面直角坐标系中,点的坐标移动规律是描述点在平面上移动的方式和规则。
点的坐标由x轴和y轴上的数值组成,通过改变这些数值,我们可以改变点在平面上的位置。
点的坐标移动可以有多种方式,下面我们将介绍一些常见的移动规律。
1. 平移:平移是指点在平面上沿着某个方向移动一定的距离。
平移可以分为水平平移和垂直平移两种。
水平平移是指点在x轴方向上移动,垂直平移是指点在y轴方向上移动。
在平移过程中,点的x 轴和y轴坐标同时改变,但是它们的差值保持不变。
2. 旋转:旋转是指点围绕某个固定点旋转一定的角度。
旋转可以分为顺时针旋转和逆时针旋转两种。
顺时针旋转是指点沿着一个圆周顺时针方向旋转,逆时针旋转是指点沿着一个圆周逆时针方向旋转。
在旋转过程中,点的坐标随着旋转角度的变化而改变。
3. 缩放:缩放是指改变点到固定点的距离。
缩放可以分为放大和缩小两种。
放大是指点到固定点的距离变大,缩小是指点到固定点的距离变小。
在缩放过程中,点的x轴和y轴坐标同时改变,但是它们的比例保持不变。
4. 对称:对称是指点关于某条直线或某个点对称。
关于直线对称是指点在直线两侧对称,关于点对称是指点关于一个点对称。
在对称过程中,点的x轴和y轴坐标同时改变,但是它们的符号改变。
这些移动规律可以单独应用,也可以同时应用。
通过组合使用这些规律,我们可以描述点在平面上的任意移动方式。
在实际应用中,点的坐标移动规律被广泛应用于几何学、物理学、计算机图形学等领域。
在几何学中,点的坐标移动规律可以用来描述线段、角度、面积等几何概念。
在物理学中,点的坐标移动规律可以用来描述物体的运动轨迹和变形过程。
在计算机图形学中,点的坐标移动规律可以用来生成图像和动画效果。
点的坐标移动规律是描述点在平面上移动的方式和规则。
通过改变点的x轴和y轴坐标,我们可以改变点在平面上的位置。
这些移动规律可以单独应用,也可以同时应用,通过组合使用这些规律,我们可以描述点在平面上的任意移动方式。
平面直角坐标系下的图形变换

平面直角坐标系下的图形变换王建华图形变换是近几年来中考热点,除了选择题、解答题外,创新探索题往往以“图形变换”为载体,将试题设计成探索性问题、开放性问题综合考察学生的逻辑推理能力,一般难度较大。
在平面直角坐标系中,探索图形坐标的的变化和平移、对称、旋转和伸缩间的关系,是中考考查平面直角坐标系的命题热点和趋势,这类试题设计灵活平移: 上下平移横坐标不变,纵坐标改变左右平移横坐标改变,纵坐标不变对称: 关于x轴对称横坐标不变,纵坐标改变关于y轴对称横坐标不变,纵坐标不变关于中心对称横坐标、纵坐标都互为相反数旋转:改变图形的位置,不改变图形的大小和形状旋转角旋转半径弧长公式L=nπR/180一、平移例1,如图1,已知△ABC的位置,画出将ABC向右平移5个单位长度后所得的ABC,并写出三角形各顶点的坐标,平移后与平移前对应点的坐标有什么变化?解析:△ABC的三个顶点的坐标是:A(-2,5)、B(-4,3)、C(-1,2).向右平移5个单位长度后,得到的△A′B′C′对应的顶点的坐标是:A′(3,5,、B′(1,3)、C′(4,2).比较对应顶点的坐标可以得到:沿x轴向右平移之后,三个顶点的纵坐标都没有变化,而横坐标都增加了5个单位长度.友情提示:如果将△ABC沿y轴向下平移5个单位,三角形各顶点的横坐标都不变,而纵坐标都减少5个单位.(请你画画看).例2. 如图,要把线段AB平移,使得点A到达点A'(4,2),点B到达点B',那么点B'的坐标是_______。
析解:由图可知点A移动到A/可以认为先向右平移4个单位,再向上平移1个单位,∴)3,3(B经过相同的平移后可得)4,7(/B反思:①根据平移的坐标变化规律:★左右平移时:向左平移h个单位),(),(bhaba-→向右平移h个单位),(),(bhaba+→★上下平移时:向上平移h个单位),(),(hbaba+→向下平移h个单位),(),(hbaba-→二、旋转例3.如图2,已知△ABC,画出△ABC关于坐标原点0旋转180°后所得△A′B′C′,并写出三角形各顶点的坐标,旋转后与旋转前对应点的坐标有什么变化?解析:△ABC三个顶点的坐标分别是:A(-2,4),B(-4,2),C(-1,1).△A′B′C′三个顶点的坐标分别是:图2图1B/图2图1A′(2,-4),B′(4,-2),C′(1,-1).比较对应点的坐标可以发现:将△ABC沿坐标原点旋转180°后,各顶点的坐标分别是原三角形各顶点坐标的相反数.例3如图,在直角坐标系中,△ABO的顶点A、B、O的坐标分别为(1,0)、(0,1)、(0,0).点列P1、P2、P3、…中的相邻两点都关于△ABO的一个顶点对称:点P1与点P2关于点A对称,点P2与点P3关于点B对称,点P3与P4关于点O对称,点P4与点P5关于点A对称,点P5与点P6关于点B对称,点P6与点P7关于点O 对称,….对称中心分别是A、B,O,A,B,O,…,且这些对称中心依次循环.已知点P1的坐标是(1,1),试求出点P2、P7、P100的坐标.分析:本题是一道和对称有关的探索题,是在中心对称和点的坐标知识基础上的拓宽题,由于是规律循环的对称,所以解决问题的关键是找出循环规律.如图,标出P1到P7各点,可以发现点P7和点P1重合,继续下去可以发现点P8和点P2循环,所以6个点循环一次,这样可以求出各点的坐标.解:如图P2(1,-1),P7(1,1),因为100除以6余4,所以点P100和点P4的坐标相同,所以P100的坐标为(1,-3).三、对称例4.如图3,已知△ABC,画出△ABC关于x轴对称的△A′B′C′,并写出各顶点的坐标.关于x轴对称的两个三角形对应顶点的坐标有什么关系?解析:△ABC三个顶点的坐标分别是:A(1,4),B(3,1),C(-2,2).△A′B′C′三个顶点的坐标分别是:A′(1,-4),B′(3,-1),C′(-2,-2).观察各对应顶点的坐标可以发现:关于x轴对称两个三角形的对应顶点的横坐标不变,纵坐标互为相反数.友情提示:关于y轴对成的两个图形,对称点的纵坐标不变,横坐标互为相反数.在直角坐标系中,ABC△的三个顶点的位置如图3所示.(1)请画出ABC△关于y轴对称的A B C'''△(其中A B C''',,分别是A B C,,的对应点,不写画法);(2)直接写出A B C''',,三点的坐标:(_____)(_____)(_____)A B C''',,.析解:如图4,根据关于y轴对称的点的纵坐标不变,横坐标为原横坐标的相反数,即横坐标乘以1-,故可得(2)(23)A',,(31)B',,(12)C'--,反思:★关于x轴对称的点的横坐标不变,纵坐标为原纵坐标的相反数,即纵坐标乘以1-★关于y轴对称的点的纵坐标不变,横坐标为原横坐标的相反数,即横坐标乘以1-★关于原点成中心对称的点的,横坐标为原横坐标的相反数,纵坐标为原纵坐标的相反数,即横坐标、纵坐标同乘以1-四、位似例4 如图4,已知△ABC,画出△ABC以坐标原点0为位似中心的位似△A′B′C′,使△A′B′C′在第三象限,与△ABC 的位似比为21,写出三角形各顶点的坐标,位似变换后对应顶点发生什么变化?解析:△ABC三个顶点的坐标分别是:A(2,2),B(6,4),C(4,6).△A′B′C′三个顶点的坐标分别是:A′(-1,-1),B′(-3,-2),C′(-2,-3).图31 2 xO1-1ABCy1 2 xO1-1ABCA'B'C'y图3 图4C B AA 2C 2A 1B 1C 1O观图形可知,△A ′B ′C ′各顶点的坐标分别是△ABC对应各顶点坐标21的相反数.友情提示: △ABC 以坐标原点0为位似中心的位似△A ′B ′C ′,当△A ′B ′C ′与△ABC 的位似比为21,且△A ′B ′C ′在第一象限时, △A ′B ′C ′各顶点的坐标分别是△ABC 各顶点坐标的21.课前练习:在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC 的三个顶点都在格点上(每个小方格的顶点叫格点). ⑴画出△ABC 向下平移4个单位后的△A 1B 1C 1;⑵画出△ABC 绕点O 顺时针旋转90°后的△A 2B 2C 2,并求出A 旋转到A 2所经过的路线长.解:⑴画出△A 1B 1C 1;⑵画出△A 2B 2C 2, ,连接OA 1、OA 2,OA=2223+=13点A 旋转到A 2,所经过的路线长为:ι=9013131802ππ⋅=点评:图形的变换可以转化为点的问题,即找到顶点变换后的对应点,再顺次连接这些点即可得到图形.旋转变换要明确旋转中心、旋转方向、旋转半径、旋转角度;平移变换要明确平移的方向和距离;作一个图形关于某点的中心对称图形要明确对应点的连线经过对称中心,且对应点到对称中心的距离相等;作一个图形关于某一条直线的的对称图形,要明确对应点的连线被对称轴平分,且对应点到对称轴的距离相等。
初中数学平面直角坐标系与坐标变换

初中数学平面直角坐标系与坐标变换平面直角坐标系是数学中常用的坐标系之一,用于描述二维平面上的点的位置。
学会使用平面直角坐标系及其坐标变换,对于数学的学习和解题能力的提高至关重要。
本文将介绍平面直角坐标系的概念、性质以及常用的坐标变换方法。
一、平面直角坐标系平面直角坐标系是由一个平面上的两个相互垂直的直线(通常称为x轴和y轴)所确定的。
x轴和y轴的交点称为原点O,它是平面直角坐标系的起点。
在平面直角坐标系中,每个点都可以用一个有序数对(x, y)来表示,其中x代表点在x轴上的坐标,y代表点在y轴上的坐标。
二、平面直角坐标系的性质1. 坐标轴:平面直角坐标系中的x轴和y轴互相垂直,且相交于原点O。
x轴是水平方向的,y轴是垂直方向的。
2. 坐标轴的正方向:x轴从左往右延伸,正方向是从左往右;y轴从下往上延伸,正方向是从下往上。
3. 坐标轴的刻度:x轴和y轴上的刻度表示数值,用来表示点在坐标轴上的位置。
沿x轴和y轴的正方向,每个刻度之间的距离相等。
4. 坐标轴的单位:坐标轴上的单位长度可以自行确定,一般用数值表示。
5. 坐标变换:平面直角坐标系可以通过平移、旋转等方式进行坐标变换,不改变原点的位置和坐标轴的方向。
三、坐标变换1. 平移变换:平移变换是平面直角坐标系中最基本的坐标变换。
平移变换只改变点的位置,不改变点的坐标值。
假设有一个点A(x, y),平移变换后的点A'的坐标为(x+a, y+b),其中a和b分别表示平移的横向和纵向距离。
例题:已知点A(2, 3),对平面直角坐标系进行平移变换,使得点A'的坐标为(-1, 4),求平移的向量。
解答:设平移的向量为(a, b),根据平移变换的定义可得:-1 = 2 + a4 = 3 + b解方程组可得 a = -3,b = 1。
因此,平移的向量为(-3, 1)。
2. 旋转变换:旋转变换是将平面直角坐标系绕原点进行旋转的变换。
旋转变换可以按顺时针或逆时针方向进行。
坐标平面内图形的轴对称和平移(提高) 知识讲解

坐标平面内图形的轴对称和平移(提高)【学习目标】1.能在同一直角坐标系中,感受图形经轴对称后点的坐标的变化.2.掌握左右、上下平移点的坐标规律.【要点梳理】要点一、关于坐标轴对称点的坐标特征1.关于坐标轴对称的点的坐标特征P(a,b)关于x轴对称的点的坐标为 (a,-b);P(a,b)关于y轴对称的点的坐标为 (-a,b);P(a,b)关于原点对称的点的坐标为 (-a,-b).2.象限的角平分线上点坐标的特征第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).3.平行于坐标轴的直线上的点平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同.要点二、用坐标表示平移1.点的平移:在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).要点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.2.图形的平移:在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度. 要点诠释:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化. 【典型例题】类型一、用坐标表示轴对称1.在直角坐标系中,已知点A (a +b ,2-a )与点B (a -5,b -2a )关于y 轴对称, (1)试确定点A 、B 的坐标;(2)如果点B 关于x 轴的对称的点是C ,求△ABC 的面积.【思路点拨】(1)根据在平面直角坐标系中,关于y 轴对称时,横坐标为相反数,纵坐标不变,得出方程组求出a ,b 即可解答本题;(2)根据点B 关于x 轴的对称的点是C ,得出C 点坐标,进而利用三角形面积公式求出即可.【答案与解析】解:(1)∵点A (a +b ,2-a )与点B (a -5,b -2a )关于y 轴对称,∴2250a b aa b a -=-⎧⎨++-=⎩,解得:13a b =⎧⎨=⎩, ∴点A 、B 的坐标分别为:(4,1),(-4,1);(2)∵点B关于x轴的对称的点是C,∴C点坐标为:(-4,-1),∴△ABC的面积为:12×BC×AB=12×2×8=8.【总结升华】本题主要考查了平面直角坐标系中,各象限内点的坐标的符号的确定方法以及三角形面积求法,熟练记忆各象限内点的坐标符号是解题关键.举一反三:【变式】小华看到了坐标系中点B关于X轴的对称点为C(-3,2),点A关于Y轴对称点为D(-3,4),若将A、B、C、D顺次连接,此图形的面积是多少?【答案】解:∵B关于x轴的对称点为C(-3,2),∴B(-3,-2),∵点A关于y轴对称点为D(-3,4),∴A(3,4),∴△ABD的面积为:12×AD×DB=12×6×6=18.2.已知点A(a,3)、B(-4,b),试根据下列条件求出a、b的值.(1)A、B两点关于y轴对称;(2)A、B两点关于x轴对称;(3)AB∥x轴;(4)A、B两点在第二、四象限两坐标轴夹角的平分线上.【思路点拨】(1)关于y轴对称,y不变,x变为相反数.(2)关于x轴对称,x不变,y变为相反数.(3)AB∥x轴,即两点的纵坐标不变即可.(4)在二、四象限两坐标轴夹角的平分线上的点的横纵坐标互为相反数,即分别令点A,点B的横纵坐标之和为0,列出方程并解之,即可得出a,b.【答案与解析】解:(1)A、B两点关于y轴对称,故有b=3,a=4;(2)A、B两点关于x轴对称;所以有a=-4,b=-3;(3)AB∥x轴,即b=3,a为≠-4的任意实数.(4)如图,根据题意,a+3=0;b-4=0;所以a=-3,b=4.【总结升华】本题主要考查学生对点在坐标系中的对称问题的掌握;在一、三象限角平分线上的点的横纵坐标相等,在二、四象限角平分线上的点的横纵坐标互为相反数.类型二、用坐标表示平移3.如图,△A′B′C′是由△ABC平移后得到的,已知△ABC中一点P(x0,y0)经平移后对应点为P′(x0+5,y0﹣2).(1)已知A(﹣1,2),B(﹣4,5),C(﹣3,0),请写出A′、B′、C′的坐标;(2)试说明△A′B′C′是如何由△ABC平移得到的;(3)请直接写出△A′B′C′的面积为.【思路点拨】(1)根据点P(x0,y0)经平移后对应点为P′(x0+5,y0﹣2)可得A、B、C三点的坐标变化规律,进而可得答案;(2)根据点的坐标的变化规律可得△ABC先向右平移5个单位,再向下平移2个单位;(3)把△A′B′C′放在一个矩形内,利用矩形的面积减去周围多余三角形的面积即可.【答案与解析】解:(1)A′为(4,0)、B′为(1,3)C′为(2,﹣2);(2)△ABC先向右平移5个单位,再向下平移2个单位(或先向下平移2个单位,再向右平移5个单位);(3)△A′B′C′的面积为6.【总结升华】此题主要考查了坐标与图形的变化,在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)举一反三:【变式】(大庆校级模拟)如图所示,△COB是由△AOB经过某种变换后得到的图形,观察点A与点C的坐标之间的关系,解答下列问题:(1)若点M的坐标为(x、y),则它的对应点N的坐标为.(2)若点P(a,2)与点Q(﹣3,b)关于x轴对称,求代数式…的值.【答案】解:(1)由图象知点M和点N关于x轴对称,∵点M的坐标为(x、y),∴点N的坐标为(x,﹣y);(2)∵点P(a,2)与点Q(﹣3,b)关于x轴对称,∴a=﹣3,b=﹣2,∴…=+++…+,=﹣+﹣+…+,=﹣,=.类型三、综合应用4. 如图是某台阶的一部分,如果建立适当的坐标系,使A点的坐标为(0,0),B点的坐标为(1,1)(1)直接写出C,D,E,F的坐标;(2)如果台阶有10级,你能求得该台阶的长度和高度吗?【思路点拨】(1)根据平面直角坐标系的定义建立,然后写出各点的坐标即可;(2)利用平移的性质求出横向与纵向的长度,然后求解即可.【答案与解析】解:(1)∵点P(a﹣2,2a+8),在x轴上,∴2a+8=0,解得:a=﹣4,故a﹣2=﹣4﹣2=﹣6,则P(﹣6,0);(2))∵点P(a﹣2,2a+8),在y轴上,∴a﹣2=0,解得:a=2,故2a+8=2×2+8=12,则P(0,12);(3)∵点Q的坐标为(1,5),直线PQ∥y轴;,∴a﹣2=1,解得:a=3,故2a+8=14,则P(1,14);(4)∵点P到x轴、y轴的距离相等,∴a﹣2=2a+8或a﹣2+2a+8=0,解得:a1=﹣10,a2=﹣2,故当a=﹣10则:a﹣2=﹣12,2a+8=﹣12,则P(﹣12,﹣12);故当a=﹣2则:a﹣2=﹣4,2a+8=4,则P(﹣4,4).综上所述:P(﹣12,﹣12),(﹣4,4).【总结升华】此题主要考查了点的坐标性质,用到的知识点为:点到坐标轴的距离相等,那么点的横纵坐标相等或互为相反数以及在坐标轴上的点的性质.。
初中数学知识点归纳平面直角坐标系

初中数学知识点归纳平面直角坐标系平面直角坐标系是数学中非常重要的概念,它由平面上的两条相互垂直的直线组成。
下面我们来归纳一下初中数学中关于平面直角坐标系的知识点。
1.平面直角坐标系的建立:平面直角坐标系一般由两条相互垂直的直线组成,其中一条称为x轴,另一条称为y轴。
通过将这两条直线固定在平面上,并以相交点为原点,可以确定其他点的坐标,从而建立平面直角坐标系。
2.坐标的表示和性质:在平面直角坐标系中,每个点都可以用一个有序数对(x,y)来表示,其中x表示横坐标,y表示纵坐标。
例如,点A的坐标为(2,3),表示A点在x轴上的坐标为2,在y轴上的坐标为3性质:对于平面上的任意两点A(x1,y1)和B(x2,y2),有以下性质:-若x1=x2且y1=y2,则A=B,即两点相等;-若x1≠x2或y1≠y2,则A≠B,即两点不等;-若x1=x2且y1=y2,则AB=0,即两点重合;-若x1≠x2或y1≠y2,则AB≠0,即两点不重合。
3.平面上点的四象限和坐标轴上的点:平面直角坐标系将平面划分为四个部分,称为四个象限。
x轴和y轴分别将平面分成两半,可形成4个象限:第一象限,该象限中x坐标和y坐标均为正;第二象限,该象限中x坐标为负,y坐标为正;第三象限,该象限中x坐标和y坐标均为负;第四象限,该象限中x坐标为正,y坐标为负。
此外,坐标轴上的点有特殊的性质:x轴上的点坐标形式为(x,0),y 轴上的点坐标形式为(0,y)。
4.两点间的距离和中点:在平面直角坐标系中,两点间的距离可以通过勾股定理求得。
设A(x1, y1)和B(x2, y2)是平面上的两点,其距离为AB=sqrt((x2-x1)^2+(y2-y1)^2)。
中点公式:在平面直角坐标系中,连接线段AB的中点M(xm, ym)的坐标可以通过以下公式得到:xm=(x1+x2)/2,ym=(y1+y2)/25.点的对称性和平移性:关于原点对称:对于平面直角坐标系中的点A(x,y),关于原点O对称的点A'的坐标为A'(-x,-y)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原图形上的点(a,b) , 向左平移|h|个单位 原图形上的点(a,b) , 向右平移|h|个单位 (a-|h|,b) (a+|h|,b)
(2)上、下平移:
原图形上的点(a,b) , 向上平移|h|个单位 (a,b +|h|,)
原图形上的点(a,b) , 向下平移|h|个单位
(a,b -|h|,)
7 6 5 A' 4 B' 乙 3 2 1 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 A B -1 -2 甲 -3 从图甲到图乙可以看做只经 -4
y
x
过一次平移变换吗?请描述 这个平移变换.
可以看做沿AA’的方向,移动距离为 50 的平移
解(1)点A,A’的坐标分别为(-8,-1),A ’(-3,4);点B,B’的 坐标分别为B(-3,-1),B’(2,4),由A到A’横坐标增加5, 纵坐标增加5;由B到B’,横坐标增加5,纵坐标增加5;
B'
5 6
(2)把线段AB向上平移2.5单 位,作出所得的线段A'B',线 段A'B'任意一点的坐标怎样 表示? (3)把线段CD向左平移3个单 位,作出所得的线段C'D',线段 C'D'上任意一点的坐标怎样 表示?
C' பைடு நூலகம்1 A
C
B
例3、如图:(1)分别求 出点A,A’的坐标;点B, B’的坐标,并比较A与A’, B与B’之间的坐标变化; (2)从图甲到图乙可以 看做经过怎样的图形变换?
(2)由第(1)题知,A,B都向右平移5个单位,向上平移5个单位,从 图甲到图乙,经过两次平移变换:一次是向右平移5个单位, 另一次是向上平移5个单位.
课堂提升
1、三角形ABC三个顶点A、B、C的坐标分别为 A(2,-1),B(1,-3),C(4,-3.5)。 把三角形A1B1C1向右平移4个单位,再向下平移3个 单位,恰好得到三角形ABC,试写出三角形A1B1C1 三个顶点
例2、如图,在直角坐标系中,平行于x轴的线段AB上所有 点的纵坐标都是-1,横坐标x的取值范围是1≤x≤5,则线段 AB上任意一点的坐标可以用(x,-1)( 1≤x≤5)表示,按 照这样的规定,回答下面的问题:
D'
4
3
D
(1)怎样表示线段CD上任 意一点的坐标?
2
1 -2 -1 0 -2
A'
1 2 3 4
•(2,3)
x
(2,3) (-1,5) (-3,5)
-5 -4 -3 -2 -1 0 1 2 3 4 5 -1 -2 • (4,-2) -3 -4 -5
B (4,5) 向下平移7个单位 (4,-2) 比较各点平移时的坐标变化,填在表格 内,总结点平移时坐标变化的规律.
坐标变化
横坐标 纵坐标
你能总结出点平移变化规律吗?
2、在直角坐标系中,把点P(a,b)先向左平移3个单位,再 向上平移2个单位,则所得的点与点(5,4)关于x轴对称 ,求点P的坐标。
这节课你有什么收获和体会?
4.3坐标平面内图形的轴对 称和平移
y
如图:将点A(-3,3)、B(4,5) 分别作以下平移变换,作出 相应的点,并写出点的坐标:
A(-3,3) B (4,5) A(-3,3)
向右平移5个单位 向左平移5个单位 向上平移2个单位
(-3,5) •
A • (-3,3)
•5 (-1,5)
4 3 2 1
(4,5) B •