初中数学二次函数综合题及答案(经典题型).

合集下载

中考数学复习《二次函数》专题训练-附带有参考答案

中考数学复习《二次函数》专题训练-附带有参考答案

中考数学复习《二次函数》专题训练-附带有参考答案一、选择题1.下列函数中,是二次函数的是()A.y=x2+1x B.y=12x(x-1) C.y=-2x-1 D.y=x(x2+1).2.抛物线y=(x−2)2−3的顶点坐标是()A.(2,−3)B.(−2,3)C.(2,3)D.(−2,−3)3.把抛物线y=5x2向左平移2个单位,再向上平移3个单位,得到的抛物线是()A.y=5(x−2)2+3B.y=5(x+2)2−3C.y=5(x+2)2+3D.y=5(x−2)2−34.函数y=ax2与y=﹣ax+b的图象可能是()A. B. C. D.5.函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是()A.k<3 B.k<3且k≠0 C.k≤3且k≠0 D.k≤36.若A(−5,y1),B(1,y2),C(2,y3)为二次函数y=x2+2x+m的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y2<y1<y3D.y3<y1<y27.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①b>0;②当x>0,y随着x 的增大而增大;③(a+c)2﹣b2<0;④a+b≥m(am+b)(m为实数).其中结论正确的个数为()A.4个B.3个C.2个D.1个8.某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时,平均每天能售出8件,而当销售价每降低2元时,平均每天能多售出4件,为使该服装店平均每天的销售利润最大,则每件的定价为()A.21元B.22元C.23元D.24元二、填空题9.将二次函数y=x2-2x化为y=(x-h)2+k的形式,结果为10.若抛物线y=ax2+bx+c与x轴的两个交点坐标是(-1,0),(3,0),则此抛物线的对称轴是直线.11.将二次函数y=x2﹣4x+a的图象向左平移1个单位,再向上平移1个单位,若得到的函数图象与直线y=2有两个交点,则a的取值范围是.12.飞机着陆后滑行的距离y (单位:m)关于滑行时间t (单位:s)的函数解析式是y=60t-65t2,从飞机着陆至停下来共滑行米.13.已知如图:抛物线y=ax2+bx+c与直线y=kx+n相交于点A(−52,74)、B(0,3)两点,则关于x的不等式ax2+bx+c<kx+n的解集是三、解答题14.如图,在平面直角坐标系中,一次函数y1=kx−7的图象与二次函数y2=2x2+bx+c的图象交于A(1,−5)、B(3,t)两点.(1)求y1与y2的函数关系式;(2)直接写出当y1<y2时,x的取值范围;(3)点C为一次函数y1图象上一点,点C的横坐标为n,若将点C向右平移2个单位,再向上平移4个单位后刚好落在二次函数y2的图象上,求n的值.15.某品牌服装公司新设计了一款服装,其成本价为60(元/件).在大规模上市前,为了摸清款式受欢迎状况以及日销售量y(件)与销售价格x(元/件)之间的关系,进行了市场调查,部分信息如表:销售价格x(元/件)80 90 100 110日销售量y(件)240 220 200 180(1)若y与x之间满足一次函数关系,请直接写出函数的解析式(不用写自变量x的取值范围);(2)若该公司想每天获利8000元,并尽可能让利给顾客,则应如何定价?(3)为了帮助贫困山区的小朋友,公司决定每卖出一件服装向希望小学捐款10元,该公司应该如何定价,才能使每天获利最大?(利润用w表示)16.如图,抛物线y=−x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴交于点N,过A点的直线:l:y=−x−1与y轴交于点C,与抛物线y=−x2+bx+c的另一个交点为D(5,−6),已知P点为抛物线y=−x2+bx+c上一动.点(不与A、D重合).(1)求抛物线的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF∥y轴交直线l于点F,求PE+PF的最大值;(3)设M为直线l上的动点,以NC为一边且顶点为N,C,M,P的四边形是平行四边形,直接写出所有符合条件的M点坐标.17.如图是北京冬奥会举办前张家口某小型跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点作水平线的垂线为y轴,建立平面直角坐标系,图中的抛物线C1:y=−18x2+32x+32近似表示滑雪场地上的一座小山坡,某滑雪爱好者小张从点O正上方A点滑出,滑出后沿一段抛物线C2:y=−14x2+bx+c 运动.(1)当小张滑到离A处的水平距离为8米时,其滑行高度为10米,求出b,c的值;(2)在(1)的条件下,当小张滑出后离的水平距离为多少米时,他滑行高度与小山坡的竖直距离为是5米?2(3)若小张滑行到坡顶正上方,且与坡顶距离不低于4米,求b的取值范围.18.如图,在平面直角坐标系中,抛物线y=ax2+bx−4与x轴交于A(4,0)、B(−3,0)两点,与y轴交于点C.(1)求这条抛物线所对应的函数表达式.(2)如图①,点D是x轴下方抛物线上的动点,且不与点C重合.设点D的横坐标为m,以O、A、C、D 为顶点的四边形面积为S,求S与m之间的函数关系式.(3)如图②,连结BC,点M为线段AB上一点,点N为线段BC上一点,且BM=CN=n,直接写出当n为何值时△BMN为等腰三角形.参考答案 1.B 2.A 3.C 4.B 5.D 6.B 7.B 8.B9.y =(x −1)2−1 10.x =1 11.a <5 12.75013.x <−52或x >014.(1)解:把点A(1,−5)代入y 1=kx −7得−5=k −7 ∴y 1=2x −7;把点B(3,t)代入y 1=2x −7中,得t =−1 ∴A(1,−5)把点A 、B 分别代入y 2=2x 2+bx +c 中,得{−2=2+b +c−1=18+3b +c 解得{b =−6c =−1∴y 2=2x 2−6x −1; (2)x <1或x >3(3)解:∵点C 为一次函数y 1图象上一点,∴C(n ,2n −7)将点C 向右平移2个单位,再向上平移4个单位后得到点C ′(n +2,2n −3) 把C ′代入y 2=2x 2−6x −1,得2n −3=2(n +2)2−6(n +2)−1 解得n =±1 所以n 的值为1或-1 15.(1)y=-2x+400(2)解:由题意,得:(x −60)(−2x +400)=8000解得x 1=100,x 2=160 ∵公司尽可能多让利给顾客 ∴应定价100元(3)解:由题意,得w =(x −60−10)(−2x +400)=−2x 2+540x −28000 =−2(x −135)2+8450∵−2<0∴当x =135时,w 有最大值,最大值为8450. 答:当一件衣服定为135元时,才能使每天获利最大. 16.(1)解:∵直线l :y =−x −1过点A∴A(−1,0)又∵D(5,−6)将点A ,D 的坐标代入抛物线表达式可得:{−1−b +c =0−25+5b +c =−6 解得{b =3c =4.∴抛物线的解析式为:y =−x 2+3x +4. (2)解:如图设点P(x ,−x 2+3x +4) ∵PE ∥x 轴,PF ∥y 轴则E(x 2−3x −5,−x 2+3x +4),F(x ,−x −1) ∵点P 在直线l 上方的抛物线上∴−1<x <5∴PE =|x −(x 2−3x −5)|=−x 2+4x +5,PF =|−x 2+3x +4−(−x −1)|=−x 2+4x +5 ∴PE +PF =2(−x 2+4x +5)=−2(x −2)2+18. ∴当x =2时,PE +PF 取得最大值,最大值为18.(3)符合条件的M 点有三个:M 1(4,−5),M 2(2+√14,−3−√14), M 3(2−√14,−3+√14). 17.(1)解:由题意可知抛物线C 2:y=−14x 2+bx+c 过点(0, 4)和(8, 10) 将其代入得:{4=c10=−14×82+8b +c解得 ∴b=114,c=4(2)解:由(1)可得抛物线Cq 解析式为: y=−14x 2+114x+4设运动员运动的水平距离为m 米时,运动员与小山坡的竖直距离为52米,依题意得: −14m 2+114m +4−(−18m 2+32m +32)=52解得: m 1=10,m 2=0(舍)故运动员运动的水平距离为10米时,运动员与小山坡的竖直距离为为52米. (3)解:∵抛物线C 2经过点(0, 4) ∴c=4抛物线C 1: y=−18x 2+32x +32=−18(x −6)2+6 当x=6时,运动员到达坡项 即−14×62+6b+4≥4+6. ∴b ≥15618.(1)解:把A(4,0)、B(−3,0)代入y =ax 2+bx −4中 得{16a +4b −4=09a −3b −4=0解得{a =13b =−13∴这条抛物线所对应的函数表达式为y =13x 2−13x −4. (2)解:当x =0时y =−4∴C(0,−4)当−3<m <0时S =S △ODC +S △OAC =12×4×(−m)+12×4×4=−2m +8当0<m <4时S =S △ODC +S △OAD =12×4×m +12×4×(−13m 2+13m +4)=−23m 2+83m +8. (3)解:n =52,n =2511,n =3011.。

初中数学专题训练《二次函数》综合练习题及解析

初中数学专题训练《二次函数》综合练习题及解析

专题47 二次函数综合(1)【典例分析】例1、如图,分别过点P i(i,0)(i=1、2、…、n)作x轴的垂线,交y=12x2的图象于点A i,交直线y=−12x于点B i.则1A1B1+1A2B2+⋯+1A nB n的值为()A. 2nn+1B. 2C. 2n(n+1)D. 2n+1【答案】A【解析】【分析】此题考查了二次函数综合题,属于规律型试题,找出题中的规律是解本题的关键.根据A i的纵坐标与B i纵坐标的绝对值之和为A i B i的长,分别表示出所求式子的各项,拆项后抵消即可得到结果.【解答】解:根据题意得:A i B i=12x2−(−12x)=12x(x+1),∴1A iB i =2x(x+1)=2(1x−1x+1),∴1A1B1+1A2B2+⋯+1A nB n=2(1−12+12−13+⋯+1n−1n+1)=2nn+1.故选:A.例2、如图,在平面直角坐标系中,正方形ABCD的顶点A,B的坐标分别为(0,2),(1,0),顶点C在函数y=13x2+bx−1的图象上,将正方形ABCD沿x轴正方向平移后得到正方形A′B′C′D′,点D的对应点D′落在抛物线上,则点D与其对应点D′间的距离为______.【答案】2【解析】解:如图,过C作GH⊥x轴,交x轴于G,过D 作DH⊥GH于H,∵A(0,2),B(1,0),∴OA=2,OB=1,∵四边形ABCD为正方形,∴∠ABC=90°,AB=BC,∴∠ABO+∠CBG=90°,∵∠ABO+∠OAB=90°,∴∠CBG=∠OAB,∵∠AOB=∠BGC=90°,∴△AOB≌△BGC,∴BG=OA=2,CG=OB=1,∴C(3,1),同理得:△BCG≌△CDH,∴CH=BG=2,DH=CG=1,∴D(2,3),∵C在抛物线的图象上,把C(3,1)代入函数y=13x2+bx−1中得:b=−13,∴y=13x2−13x−1,设D′(x,y),由平移得:D与D′的纵坐标相同,则y=3,当y=3时,13x2−13x−1=3,解得:x1=4,x2=−3(舍),∴DD′=4−2=2,则点D与其对应点D′间的距离为2,故答案为:2.作辅助线,构建全等三角形,先根据A和B的坐标求OB和OA的长,证明∴△AOB≌△BGC,BG=OA=2,CG=OB=1,写出C(3,1),同理得:△BCG≌△CDH,得出D的坐标,根据平移的性质:D与D′的纵坐标相同,则y=3,求出D′的坐标,计算其距离即可.本题考查出了二次函数图象与几何变换--平移、三角形全等的性质和判定、正方形的性质,作辅助线,构建全等三角形,明确D与D′的纵坐标相同是关键.例3、如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(−1,0),B(4,0),C(0,−4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.【答案】解:(1)设抛物线解析式为y=ax2+bx+c,把A、B、C三点坐标代入可得{a−b+c=016a+4b+c=0c=−4,解得{a=1b=−3c=−4,∴抛物线解析式为y=x2−3x−4;(2)作OC的垂直平分线DP,交OC于点D,交BC下方抛物线于点P,如图1,∴PO=PC,此时P点即为满足条件的点,∵C(0,−4),∴D(0,−2),∴P点纵坐标为−2,代入抛物线解析式可得x2−3x−4=−2,解得x=3−√172(小于0,舍去)或x=3+√172,∴存在满足条件的P点,其坐标为(3+√172,−2);(3)∵点P在抛物线上,∴可设P(t,t2−3t−4),过P作PE⊥x轴于点E,交直线BC于点F,如图2,∵B(4,0),C(0,−4),∴直线BC解析式为y=x−4,∴F(t,t−4),∴PF=(t−4)−(t2−3t−4)=−t2+4t,∴S△PBC=S△PFC+S△PFB=12PF⋅OE+12PF⋅BE=12PF⋅(OE+BE)=12PF⋅OB=1(−t2+4t)×4=−2(t−2)2+8,2∴当t=2时,S△PBC最大值为8,此时t2−3t−4=−6,∴当P点坐标为(2,−6)时,△PBC的最大面积为8.【解析】【试题解析】本题为二次函数的综合应用,涉及待定系数法、等腰三角形的性质、二次函数的性质、三角形的面积、方程思想等知识.在(1)中注意待定系数法的应用,在(2)中确定出P点的位置是解题的关键,在(3)中用P点坐标表示出△PBC的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由题意可知点P在线段OC的垂直平分线上,则可求得P点纵坐标,代入抛物线解析式可求得P点坐标;(3)过P作PE⊥x轴,交x轴于点E,交直线BC于点F,用P点坐标可表示出PF的长,则可表示出△PBC的面积,利用二次函数的性质可求得△PBC面积的最大值及P点的坐标.【好题演练】一、选择题1.如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A(−1,0),B(3,0)两点,与y轴的正半轴交于点C,顶点为D,则下列结论:①2a+b=0;②2c<3b;③当△ABC是等腰三角形时,a的值有2个;④当△BCD是直角三角形时,a=−√2.2其中正确的有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】解:∵二次函数y=ax2+bx+c的图象与x轴交于A(−1,0),B(3,0)两点,=1,∴对称轴为直线x=−b2a∴b=−2a,∴2a+b=0,故①正确,当x=1时,0=a−b+c,∴a+2a+c=0,∴c=−3a,∴2c=3b,故②错误;∵二次函数y=ax2−2ax−3a,(a<0)∴点C(0,−3a),当BC=AB时,4=√9+9a2,∴a=−√7,3当AC=BC时,4=√1+9a2,∴a=−√15,3∴当△ABC是等腰三角形时,a的值有2个,故③正确;∵二次函数y=ax2−2ax−3a=a(x−1)2−4a,∴顶点D(1,4a),∴BD2=4+16a2,BC2=9+9a2,CD2=a2+1,若∠BDC=90°,可得BC2=BD2+CD2,∴9+9a2=4+16a2+a2+1,∴a=−√2,2若∠DCB=90°,可得BD2=CD2+BC2,∴4+16a2=9+9a2+a2+1,∴a=−1,∴当△BCD是直角三角形时,a=−1或−√2,故④错误.2故选:B.=1,可得b=−2a,可判断①;将点A坐标代入解析式由图象可得对称轴为直线x=−b2a可得c=−3a,可判断②;由等腰三角形的性质和两点距离公式,可求a的值,可判断③;由直角三角形的性质和两点距离可求a=−1或−√2,可判断④,即可求解.2本题考查了抛物线与x轴的交点,二次函数图象与系数关系,等腰三角形的性质,直角三角形的性质等知识,灵活运用这些性质进行推理是本题的关键.2.如图,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是()A.B.C.D.【答案】B【解析】【分析】本题需根据自变量的取值范围,并且可以考虑求出函数的解析式来解决.根据条件可知△AEH≌△BFE≌△CGF≌△DHG,设AE为x,则AH=1−x,根据勾股定理EH2=AE2+AH2= x2+(1−x)2,进而可求出函数解析式,求出答案.【解答】解:∵根据正方形的四边相等,四个角都是直角,且AE=BF=CG=DH,∴可证△AEH≌△BFE≌△CGF≌△DHG.设AE为x,则AH=1−x,根据勾股定理,得EH2=AE2+AH2=x2+(1−x)2即s=x2+(1−x)2,s=2x2−2x+1,∴所求函数开口向上的抛物线,对称轴是直线x=1,2∴自变量的取值范围是0<x<1.故选B.3.如图,点E(x1,y1),F(x2,y2)在抛物线y=ax2+bx+c上,且在该抛物线对称轴的同侧(点E在点F的左侧),过点E、F分别作x轴的垂线,分别交x轴于点B、D,交直线y=2ax+b于点A、C.设S为四边形ABDC的面积.则下列关系正确的是()A. S=y2+y1B. S=y2+2y1C. S=y2−y1D. S=y2−2y1【答案】C【解析】【分析】此题考查了二次函数与一次函数的综合应用问题.此题难度较大,解题的关键是抓住点与函数的关系,注意根据整式的运算法则将原整式变形,注意数形结合思想的应用.首先根据题意可求得:y1,y2的值,A与C的坐标,即可用x1与x2表示出AB,CD,BD的值,(AB+CD)⋅BD,然后代入其取值,整理变形,易得四边形ABCD是直角梯形,即可得S=12即可求得S与y1、y2的数量关系式.【解答】解:根据题意得:y1=ax12+bx1+c,y2=ax22+bx2+c,点A的坐标为:(x1,2ax1+b),点C的坐标为:(x2,2ax2+b),∴AB=2ax1+b,CD=2ax2+b,BD=x2−x1,∵EB⊥BD,CD⊥BD,∴AB//CD,∴四边形ABCD是直角梯形,∴S=12(AB+CD)⋅BD=12(2ax1+b+2ax2+b)(x2−x1)=a(x2+x1)(x2−x1)+b(x2−x1)=(ax22+bx2)−(ax12+bx1)=(ax22+bx2+c)−(ax12+bx1+c)=y2−y1.即S=y2−y1.故选C.4.如图(1)所示,E为矩形ABCD的边AD上一边,动点P,Q同时从点B出发,点P沿折线BE−ED−DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒,设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分)则下列结论正确的是()A. AB:AD=3:4B. 当△BPQ是等边三角形时,t=5秒C. 当△ABE∽△QBP时,t=7秒D. 当△BPQ的面积为4cm2时,t的值是√10或475秒【答案】D【解析】【分析】此题是二次函数综合题,主要考查动点问题的函数图象、矩形的性质、三角形的面积公式等知识.解题的关键是读懂图象信息求出相应的线段,学会转化的思想,把问题转化为方程的思想解决,属于中考常考题型.先根据图象信息求出AB、BC、BE、AE、ED,A 、直接求出比,B 、先判断出∠EBC ≠60°,从而得出点P 可能在ED 上时,△PBQ 是等边三角形,但必须是AD 的中点,而AE >ED ,所以点P 不可能到AD 中点的位置,故△PBQ 不可能是等边三角形;C 、利用相似三角形性质列出方程解决,分两种情况讨论计算即可,D 、分点P 在BE 上和点P 在CD 上两种情况计算即可. 【解答】解:由图象可知,AD =BC =BE =5,CD =AB =4,AE =3,DE =2, A 、∴AB :AD =4:5,故A 错误, B 、∵tan∠ABE =AEAB =34, ∴∠ABE ≠30° ∴∠PBQ ≠60°,∴点P 在ED 时,有可能△PBQ 是等边三角形, ∵BE =BC ,∴点P 到点E 时,点Q 到点C ,∴点P 在线段AD 中点时,有可能△PBQ 是等边三角形, ∵AE >DE ,∴点P 不可能到AD 的中点,∴△PBQ 不可能是等边三角形,故B 错误, C 、∵△ABE∽△QBP ,∴点E 只有在CD 上,且满足BCAB =CQAE , ∴54=CQ 3, ∴CQ =154.∴t =(BE +ED +DQ)÷1=5+2+(4−154)=294.故C 错误, D 、①如图(1)在Rt △ABE 中,AB =4,BE =5 sin∠AEB =AB BE =45, ∴sin∠CBE =45 ∵BP =t ,∴PG =BPsin∠CBE =45t ,∴S △BPQ =12BQ ×PG =12×t ×45t =25t 2=4, ∴t =−√10(舍)或t =√10, ②当点P 在CD 上时,S △BPQ =12×BC ×PC =12×5×(5+2+4−t)=52×(11−t)=4,∴t =475,∴当△BPQ 的面积为4cm 2时,t 的值是√10或475秒,故D 正确, 故选D .5. 如图,已知在平面直角坐标系xOy 中,抛物线y =1318(x −3)2−32与y 轴相交于点A ,顶点为B ,直线l:y =−43x +b 经过点A ,与抛物线的对称轴交于点C ,点P 是对称轴上的一个动点,若AP +35PC 的值最小,则点P 的坐标为( )A. (3,1)B. (3,114) C. (3,165) D. (3,125)【解析】【分析】本题考查一次函数与二次函数的应用,三角形相似的判定与性质,勾股定理,轴对称的性质,点到直线的距离,垂线段最短.过点C作CD⊥y轴于D,作点A关于抛物线对称轴的对称点A′,连接AA′,CA′,过点A作AE⊥CA′交抛物线对称轴于点P,此时点A到A′C距离最小.先求出A、C的坐标,再证△ADC∽△CEP和勾股定理求得PE=35PC,此时PA+35PC=AE值最小.再利用抛物线的对称性与三角形面积公式求出AE长,从而求出CE长,即可求出PC 长,继而得出点P坐标.【解答】解:如图,过点C作CD⊥y轴于D,作点A关于抛物线对称轴的对称点A′,连接AA′,CA′,过点A作AE⊥CA′交抛物线对称轴于点P,此时点A到A′C距离最小.∵抛物线y=1318(x−3)2−32,∴抛物线的对称轴为直线x=3,令x=0,则y=5,∴A(0,5),把A(0,5)代入y=−43x+b,得b=5,∴y=−43x+5,当x=3时,y=1,∴C(3,1),∴D(0,1),∴OA=5,CD=3,∴AD=4,CF=4,∵点A与点A′关于直线x=3对称,∴A′(6,5),CA′=CA=5,∠ACP=∠ECP,∴AA′=6,∵S△ACA′=12AA′·CF=12CA′·AE,∴6×4=5AE,∴AE=245,∵CF//y轴,∴∠CAD=∠ACP,∴∠CAD=∠ECP,∵∠ADC=∠CEP=90°,∴△ADC∽△CEP,∴PECD =PCAC=CEAD即PE3=PC5=CE4,∴PE=35PC,CE=45PC,∴PA+35PC=AE=245值最小,在Rt△ACE中,CE=√AC2−AE2=√52−(245)2=75,∴PC=74,∴PG=PC+CG=74+1=114,∴P(3,114).故选B.二、填空题6.抛物线y=ax2+bx+c(a,b,c为常数)的顶点为P,且抛物线经过点A(−1,0),B(m,0),C(−2,n)(1<m<3,n<0),下列结论:①abc>0,②3a+c<0,③a(m−1)+2b>0,④a=−1时,存在点P使△PAB为直角三角形.其中正确结论的序号为______.【答案】②③【解析】解:将A(−1,0),B(m,0),C(−2,n)代入解析式y=ax2+bx+c,∴对称轴x=m−12=−b2a,∴−ba=m−1,∵1<m<3,∴ab<0,∵n<0,∴a<0,∴b>0,∵a−b+c=0,∴c=b−a>0①abc<0;错误;②当x=3时,y<0,∴9a+3b+c=9a+3(a+c)+c=12a+4c=4(3a+c)<0,②正确;③a(m−1)+2b=−b+2b=b>0,③正确;④a=−1时,y=−x2+bx+c,∴P(b2,b+1+b24),若△PAB为直角三角形,则△PAB为等腰直角三角形,∴AP的直线解析式的k=1,∴b+1+b24=b2+1,∴b=−2,∵b>0,∴不存在点P使△PAB为直角三角形.④错误;故答案为②③;由已知可以确定a<0,b>0,c=b−a>0;①abc <0;②当x =3时,y <0,即9a +3b +c =9a +3(a +c)+c =12a +4c =4(3a +c)<0; ③a(m −1)+2b =−b +2b =b >0; ④a =−1时,P(b2,b +1+b 24),则△PAB 为等腰直角三角形,b +1+b 24=b2+1,求出k =−2不合题意;本题考查二次函数的图象及性质;能够熟练掌握二次函数的图象,根据给出的点判断函数系数a ,b ,c 的取值情况是解题的关键.7. 如图,已知点A(3,3),点B(0,2),点A 在二次函数y =x 2+bx −9的图象上,作射线AB ,再将射线AB 绕点A 按逆时针方向旋转45°,交二次函数图象于点C ,则点C 的坐标为______.【答案】(−2,−7)【解析】解:∵点A(3,3)在二次函数y =x 2+bx −9的图象上, ∴9+3b −9=3, 解得b =1,∴二次函数为y =x 2+x −9,过B 作BF ⊥AC 于F ,过F 作FD ⊥y 轴于D ,过A 作AE ⊥DF 于E ,则△ABF 为等腰直角三角形,易得△AEF≌△FDB(AAS),设BD =a ,则EF =a , ∵点A(3,3)和点B(0,2),∴DF =3−a =AE ,OD =OB −BD =2−a , ∵AE +OD =3, ∴3−a +2−a =3, 解得a =1, ∴F(2,1),设直线AC 的解析式为y =kx +b ,则{2k +b =13k +b =3,解得{k =2b =−3,∴y =2x −3,解方程组{y =2x −3y =x 2+x −9,可得{x =3y =3或{x =−2y =−7, ∴C(−2,−7), 故答案为:(−2,−7).根据待定系数法求得b ,得到二次函数的解析式,过B 作BF ⊥AC 于F ,过F 作FD ⊥y 轴于D ,过A 作AE ⊥DF 于E ,则△ABF 为等腰直角三角形,易得△AEF≌△FDB ,依据全等三角形的性质,即可得出F(2,1),进而得出直线AC 的解析式,解方程组即可得到C 点坐标. 本题主要考查了二次函数图象,旋转的性质以及二次函数图象上点的坐标特征的运用,解决问题的关键是利用45°角,作辅助线构造等腰直角三角形.8. 如图,已知直线y =12x +1与y 轴交于点A ,与x 轴交于点D ,抛物线y =12x 2+bx +c与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为(1,0). 在抛物线的对称轴上找一点M ,使|AM −MC|的值最大,求出点M 的坐标______.【答案】(32,−12) 【解析】 【分析】本题综合考查了待定系数法求二次函数的解析式,二次函数的性质,直线和抛物线的交点等.根据直线的解析式求得点A(0,1),那么把A ,B 坐标代入y =12x 2+bx +c 即可求得函数解析式,据此知抛物线的对称轴,点C 关于对称轴的对称点为点B.易得当|AM −MC|的值最大时,连接AB 交对称轴的一点就是M.令过AB 的直线解析式和对称轴的解析式联立即可求得点M 坐标. 【解答】解:∵直线y =12x +1与y 轴交于点A ,∴点A 坐标为(0,1),将A(0,1)、B(1,0)坐标代入y =12x 2+bx +c 得{c =112+b +c =0, 解得:{b =−32c =1. ∴抛物线的解折式为y =12x 2−32x +1=12(x −32)2−18; 则抛物线的对称轴为x =32,B 、C 关于x =32对称, ∴MC =MB ,要使|AM −MC|最大,即是使|AM −MB|最大,由三角形两边之差小于第三边得,当A 、B 、M 在同一直线上时|AM −MB|的值最大. 易知直线AB 的解析式为y =−x +1 ∴{y =−x +1x =32,解得:{x =32y =−12.则M(32,−12), 故答案为:(32,−12).9. 如图,抛物线y =−x 2+2x +3交x 轴于A ,B 两点,交y 轴于点C ,点C 关于抛物线的对称轴的对称点为E ,点G ,F 分别在x 轴和y 轴上,则四边形EDFG 周长的最小值为______.【答案】√2+√58 【解析】解:如图,在y=−x2+2x+3中,当x=0时,y=3,即点C(0,3),∵y=−x2+2x+3=−(x−1)2+4,∴对称轴为x=1,顶点D(1,4),则点C关于对称轴的对称点E的坐标为(2,3),作点D关于y轴的对称点D′(−1,4),作点E关于x轴的对称点E′(2,−3),连接D′、E′,D′E′与x轴的交点G、与y轴的交点F即为使四边形EDFG的周长最小的点,四边形EDFG的周长=DE+DF+FG+GE=DE+D′F+FG+GE′=DE+D′E′=√(1−2)2+(4−3)2+√(−1−2)2+(4+3)2=√2+√58,∴四边形EDFG的周长的最小值为:√2+√58.故答案是:√2+√58.根据抛物线解析式求得点D(1,4)、点E(2,3),作点D关于y轴的对称点D′(−1,4)、作点E关于x轴的对称点E′(2,−3),从而得四边形EDFG的周长=DE+DF+FG+GE=DE+D′F+ FG+GE′,当点D′、F、G、E′四点共线时,周长最短,据此根据两点间的距离公式可得答案.本题主要考查抛物线与x轴的交点、轴对称−最短路线问题,根据轴对称的性质得出点F、G的位置是解题的关键.10.如图,抛物线y=ax2+bx+c与x轴的一个交点A在点(−2,0)和(−1,0)之间(包括这两点),顶点C是矩形DEFG上(包括边界和内部)的一个动点,则:(1)abc______0(填“>”或“<”);(2)a的取值范围是______.【答案】(1)<;(2)−34≤a ≤−225 【解析】解:(1)观察图形发现,抛物线的开口向下, ∴a <0,∵顶点坐标在第一象限, ∴−b2a >0, ∴b >0,而抛物线与y 轴的交点在y 轴的上方, ∴c >0, ∴abc <0; 故填<(2)顶点C 是矩形DEFG 上(包括边界和内部)的一个动点,当顶点C 与D 点重合,顶点坐标为(1,3),则抛物线解析式y =a(x −1)2+3,由{a(−1−1)2+3≥0a(−2−1)2+3≤0,解得−34≤a ≤−13;当顶点C 与F 点重合,顶点坐标为(3,2),则抛物线解析式y =a(x −3)2+2, 由{a(−1−3)2+2≥0a(−2−3)2+2≤0,解得−18≤a ≤−225; ∵顶点可以在矩形内部, ∴−34≤a ≤−225.解法二:由题意及图可知:当抛物线经过(−2,0),顶点为F(3,2)时,抛物线开口最大,解得a =−225;当抛物线经过(−1,0),顶点为D(1,3)时,抛物线开口最小,解得a =−34,∵当a <0时,a 越小抛物线的开口越小,a 越大抛物线的开口越大,故填−34≤a ≤−225【分析】(1)观察图形发现,由抛物线的开口向下得到a<0,顶点坐标在第一象限得到b>0,抛物线与y轴的交点在y轴的上方推出c>0,由此即可判定abc的符号;(2)顶点C是矩形DEFG上(包括边界和内部)的一个动点,当顶点C与D点重合,可以知道顶点坐标为(1,3)且抛物线过(−1,0),则它与x轴的另一个交点为(3,0),由此可求出a;当顶点C与F点重合,顶点坐标为(3,2)且抛物线过(−2,0),则它与x轴的另一个交点为(8,0),由此也可求a,然后由此可判断a的取值范围.本题主要考查了抛物线的解析式y=ax2+bx+c中a、b、c对抛物线的影响,在对于抛物线的顶点在所给图形内进行运动的判定,充分利用了利用形数结合的方法,展开讨论,加以解决.三、解答题11.如图,抛物线y=ax2+bx+c(a≠0)与直线y=x+1相交于A(−1,0),B(4,m)两点,且抛物线经过点C(5,0).(1)求抛物线的解析式;(2)点P是抛物线上的一个动点(不与点A、点B重合),过点P作直线PD⊥x轴于点D,交直线AB于点E.①当PE=2ED时,求P点坐标;②是否存在点P使△BEC为等腰三角形?若存在请直接写出点P的坐标;若不存在,请说明理由.【答案】解:(1)∵点B(4,m)在直线y=x+1上,∴m=4+1=5,∴B(4,5),把A 、B 、C 三点坐标代入抛物线的解析式可得{a −b +c =016a +4b +c =525a +5b +c =0,解得{a =−1b =4c =5,∴抛物线的解析式为y =−x 2+4x +5;(2)①设P(x,−x 2+4x +5),则E(x,x +1),D(x,0),则PE =|−x 2+4x +5−(x +1)|=|−x 2+3x +4|,DE =|x +1|, ∵PE =2ED ,∴|−x 2+3x +4|=2|x +1|,当−x 2+3x +4=2(x +1)时,解得x =−1或x =2,但当x =−1时,P 与A 重合不合题意,舍去, ∴P(2,9);当−x 2+3x +4=−2(x +1)时,解得x =−1或x =6,但当x =−1时,P 与A 重合不合题意,舍去, ∴P(6,−7);综上可知P 点坐标为(2,9)或(6,−7);②设P(x,−x 2+4x +5),则E(x,x +1),且B(4,5),C(5,0), ∴BE =√(x −4)2+(x +1−5)2=√2|x −4|,CE =√(x −5)2+(x +1)2=√2x 2−8x +26,BC =√(4−5)2+(5−0)2=√26,当△BEC 为等腰三角形时,则有BE =CE 、BE =BC 或CE =BC 三种情况, 当BE =CE 时,则√2|x −4|=√2x 2−8x +26,解得x =34,此时P 点坐标为(34,11916);当BE =BC 时,则√2|x −4|=√26,解得x =4+√13或x =4−√13,此时P 点坐标为(4+√13,−4√13−8)或(4−√13,4√13−8);当CE =BC 时,则√2x 2−8x +26=√26,解得x =0或x =4,当x =4时E 点与B 点重合,不合题意,舍去,此时P 点坐标为(0,5); 综上可知存在满足条件的点P ,其坐标为(34,11916)或(4+√13,−4√13−8)或(4−√13,4√13−8)或(0,5).【解析】本题为二次函数的综合应用,涉及待定系数法、两点间距离公式、等腰三角形的性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中用P 点坐标分别表示出PE 和ED 的长是解题关键,在(2)②中用P 点坐标表示出BE 、CE 和BC 的长是解题的关键,注意分三种情况讨论.本题考查知识点较多,综合性较强,难度适中.(1)由直线解析式可求得B点坐标,由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)①可设出P点坐标,则可表示出E、D的坐标,从而可表示出PE和ED的长,由条件可得到关于P点坐标的方程,则可求得P点坐标;②由E、B、C三点坐标可表示出BE、CE和BC的长,由等腰三角形的性质可得到关于E 点坐标的方程,可求得E点坐标,则可求得P点坐标.12.如图,二次函数y=ax2+bx+c(a≠0)的图象交x轴于A、B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4).(1)求二次函数的解析式和直线BD的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在异于B、D的点Q,使△BDQ中BD边上的高为2√2?若存在求出点Q的坐标;若不存在请说明理由.【答案】解:(1)∵抛物线的顶点C的坐标为(1,4),∴可设抛物线解析式为y=a(x−1)2+4,∵点B(3,0)在该抛物线的图象上,∴0=a(3−1)2+4,解得a=−1,∴抛物线解析式为y=−(x−1)2+4,即y=−x2+2x+3,∵点D在y轴上,令x=0可得y=3,∴D点坐标为(0,3),∴可设直线BD 解析式为y =kx +3,把B 点坐标代入可得3k +3=0,解得k =−1, ∴直线BD 解析式为y =−x +3;(2)设P 点横坐标为m(m >0),则P(m,−m +3),M(m,−m 2+2m +3), ∴PM =−m 2+2m +3−(−m +3)=−m 2+3m =−(m −32)2+94,∴当m =32时,PM 有最大值94;(3)如图,过Q 作QG//y 轴交BD 于点G ,交x 轴于点E ,作QH ⊥BD 于H ,设Q(x,−x 2+2x +3),则G(x,−x +3),∴QG =|−x 2+2x +3−(−x +3)|=|−x 2+3x|, ∵△BOD 是等腰直角三角形, ∴∠DBO =45°, ∴∠HGQ =∠BGE =45°,当△BDQ 中BD 边上的高为2√2时,即QH =HG =2√2, ∴QG =√2×2√2=4, ∴|−x 2+3x|=4,当−x 2+3x =4时,△=9−16<0,方程无实数根, 当−x 2+3x =−4时,解得x =−1或x =4, ∴Q(−1,0)或(4,−5),综上可知存在满足条件的点Q ,其坐标为(−1,0)或(4,−5).【解析】(1)可设抛物线解析式为顶点式,由B 点坐标可求得抛物线的解析式,则可求得D 点坐标,利用待定系数法可求得直线BD 解析式;(2)设出P 点坐标,从而可表示出PM 的长度,利用二次函数的性质可求得其最大值;(3)过Q 作QG//y 轴,交BD 于点G ,过Q 和QH ⊥BD 于H ,可设出Q 点坐标,表示出QG 的长度,由条件可证得△DHG 为等腰直角三角形,则可得到关于Q 点坐标的方程,可求得Q 点坐标.本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、等腰直角三角形的性质及方程思想等知识.在(1)中主要是待定系数法的考查,注意抛物线顶点式的应用,在(2)中用P 点坐标表示出PM 的长是解题的关键,在(3)中构造等腰直角三角形求得QG 的长是解题的关键.本题考查知识点较多,综合性较强,难度适中.13. 如图,已知顶点为C(0,−3)的抛物线y =ax 2+b(a ≠0)与x 轴交于A ,B 两点,直线y =x +m 过顶点C 和点B .(1)求m 的值;(2)求函数y =ax 2+b(a ≠0)的解析式;(3)抛物线上是否存在点M ,使得∠MCB =15°?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】解:(1)将(0,−3)代入y =x +m , 可得:m =−3;(2)将y =0代入y =x −3得:x =3, 所以点B 的坐标为(3,0),将(0,−3)、(3,0)代入y =ax 2+b 中, 可得:{b =−39a +b =0,解得:{a =13b =−3, 所以二次函数的解析式为:y =13x 2−3; (3)存在,分以下两种情况:①若M 在B 上方,设MC 交x 轴于点D , ∵OB =OC ,∴∠OCB +∠OBC =45°, 则∠ODC =45°+15°=60°, ∴∠OCD =30°, ∴OD =12CD ,在Rt △COD 中,CD 2=OC 2+OD 2,即(2OD)2=32+OD 2, 解得OD =√3,设DC 为y =kx −3,代入(√3,0),可得:k =√3, 联立两个方程可得:{y =√3x −3y =13x 2−3, 解得:{x 1=0y 1=−3,{x 2=3√3y 2=6,所以M 1(3√3,6);②若M 在B 下方,设MC 交x 轴于点E ,则∠OEC =45°−15°=30°, ∴OC =12CE ,∴CE =2OC =6,在Rt △COE 中,CE 2=OC 2+OE 2,即62=32+OE 2, 解得OE =3√3,设EC 为y =kx −3,代入(3√3,0)可得:k =√33,联立两个方程可得:{y =√33x −3y =13x 2−3, 解得:{x 1=0y 1=−3,{x 2=√3y 2=−2, 所以M 2(√3,−2),综上所述M 的坐标为(3√3,6)或(√3,−2).【解析】此题主要考查了二次函数的综合题,需要掌握待定系数法求二次函数解析式,待定系数法求一次函数解析式等知识是解题关键. (1)把C(0,−3)代入直线y =x +m 中解答即可;(2)把y =0代入直线解析式得出点B 的坐标,再利用待定系数法确定函数关系式即可; (3)分M 在BC 上方和下方两种情况进行解答即可.14. 如图,直线y =−23x +c 与x 轴交于点A(3,0),与y 轴交于点B ,抛物线y =−43x 2+bx +c 经过点A ,B .(1)求点B 的坐标和抛物线的解析式;(2)M(m,0)为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P ,N .①点M 在线段OA 上运动,若以B ,P ,N 为顶点的三角形与△APM 相似,求点M 的坐标;②点M 在x 轴上自由运动,若三个点M ,P ,N 中恰有一点是其它两点所连线段的中点(三点重合除外),则称M ,P ,N 三点为“共谐点”.请直接写出使得M ,P ,N 三点成为“共谐点”的m 的值.【答案】解:(1)∵y =−23x +c 与x 轴交于点A(3,0),与y 轴交于点B , ∴0=−2+c ,解得c =2, ∴B(0,2),∵抛物线y =−43x 2+bx +c 经过点A ,B , ∴{−12+3b +c =0c =2,解得{b =103c =2,∴抛物线解析式为y=−43x2+103x+2;(2)①由(1)可知直线解析式为y=−23x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,−23m+2),N(m,−43m2+103m+2),∴PM=−23m+2,AM=3−m,PN=−43m2+103m+2−(−23m+2)=−43m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴N点的纵坐标为2,∴−43m2+103m+2=2,解得m=0(舍去)或m=2.5,∴M(2.5,0);当∠NBP=90°时,过点N作NC⊥y轴于点C,则∠NBC+∠BNC=90°,NC=m,BC=−43m2+103m+2−2=−43m2+103m,∵∠NBP=90°,∴∠NBC+∠ABO=90°,∴∠ABO=∠BNC,∴Rt△NCB∽Rt△BOA,∴NCOB =CBOA,∴m2=−43m2+103m3,解得m=0(舍去)或m=118,∴M(118,0);综上可知当以B ,P ,N 为顶点的三角形与△APM 相似时,点M 的坐标为(2.5,0)或(118,0); ②当M ,P ,N 三点成为“共谐点”时m 的值为12或−1或−14.【解析】本题为二次函数的综合应用,涉及待定系数法、函数图象的交点、相似三角形的判定和性质、勾股定理、线段的中点、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中利用相似三角形的性质得到关于m 的方程是解题的关键,注意分两种情况,在(2)②中利用“共谐点”的定义得到m 的方程是解题的关键,注意分情况讨论.本题考查知识点较多,综合性较强,分情况讨论比较多,难度较大.(1)把A 点坐标代入直线解析式可求得c ,则可求得B 点坐标,由A 、B 的坐标,利用待定系数法可求得抛物线解析式;(2)①由M 点坐标可表示P 、N 的坐标,从而可表示出MA 、MP 、PN 、PB 的长,分∠NBP =90°和∠BNP =90°两种情况,分别利用相似三角形的性质可得到关于m 的方程,可求得m 的值; ②用m 可表示出M 、P 、N 的坐标,由题意可知有P 为线段MN 的中点、M 为线段PN 的中点或N 为线段PM 的中点,可分别得到关于m 的方程,可求得m 的值. 解(1)见答案; (2)①见答案;②由①可知M(m,0),P(m,−23m +2),N(m,−43m 2+103m +2),∵M ,P ,N 三点为“共谐点”,∴有P 为线段MN 的中点、M 为线段PN 的中点或N 为线段PM 的中点, 当P 为线段MN 的中点时,则有2(−23m +2)=−43m 2+103m +2,解得m =3(三点重合,舍去)或m =12;当M 为线段PN 的中点时,则有−23m +2+(−43m 2+103m +2)=0,解得m =3(舍去)或m =−1;当N 为线段PM 的中点时,则有−23m +2=2(−43m 2+103m +2),解得m =3(舍去)或m =−14;综上可知当M ,P ,N 三点成为“共谐点”时m 的值为12或−1或−14.15.如图,抛物线y=ax2+bx−3经过点A(2,−3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.(1)求抛物线的解析式;(2)点D在y轴上,且∠BDO=∠BAC,求点D的坐标;(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.【答案】解:(1)由y=ax2+bx−3得C(0.−3),∴OC=3,∵OC=3OB,∴OB=1,∴B(−1,0),把A(2,−3),B(−1,0)代入y=ax2+bx−3得{4a+2b−3=−3a−b−3=0,∴{a=1b=−2,∴抛物线的解析式为y=x2−2x−3;(2)设连接AC,作BF⊥AC交AC的延长线于F,∵A(2,−3),C(0,−3),∴AF//x轴,∴F(−1,−3),∴BF=3,AF=3,∴∠BAC=45°,设D(0,m),则OD=|m|,∵∠BDO=∠BAC,∴∠BDO=45°,∴OD=OB=1,∴|m|=1,∴m=±1,∴D1(0,1),D2(0,−1);(3)设M(a,a2−2a−3),N(1,n),①以AB为边,则AB//MN,AB=MN,如图2,过M作ME⊥对称轴于E,AF⊥x轴于F,则△ABF≌△NME,∴NE=AF=3,ME=BF=3,∴|a−1|=3,∴a=4或a=−2,∴M(4,5)或(−2,5);②以AB为对角线,BN=AM,BN//AM,如图3,则N在x轴上,M与C重合,∴M(0,−3),综上所述,存在以点A,B,M,N为顶点的四边形是平行四边形,M(4,5)或(−2,5)或(0,−3).【解析】(1)待定系数法即可得到结论;(2)连接AC,作BF⊥AC交AC的延长线于F,根据已知条件得到AF//x轴,得到F(−1,−3),设D(0,m),则OD=|m|即可得到结论;(3)设M(a,a2−2a−3),N(1,n),①以AB为边,则AB//MN,AB=MN,如图2,过M 作ME⊥对称轴于E,AF⊥x轴于F,于是得到△ABF≌△NME,证得NE=AF=3,ME= BF=3,得到M(4,5)或(−2,5);②以AB为对角线,BN=AM,BN//AM,如图3,则N在x轴上,M与C重合,于是得到结论.本题考查了待定系数法求二次函数的解析式,全等三角形的判定和性质,平行四边形的判定和性质,正确的作出图形是解题的关键.。

最新初中数学二次函数综合题及答案(经典题型)复习过程

最新初中数学二次函数综合题及答案(经典题型)复习过程

二次函数试题论:①抛物线1212--=x y 是由抛物线221x y -=怎样移动得到的? ②抛物线2)1(21+-=x y 是由抛物线221x y -=怎样移动得到的?③抛物线1)1(212-+-=x y 是由抛物线1212--=x y 怎样移动得到的?④抛物线1)1(212-+-=x y 是由抛物线2)1(21+-=x y 怎样移动得到的?⑤抛物线1)1(212-+-=x y 是由抛物线221x y -=怎样移动得到的?选择题:1、y=(m-2)x m2- m 是关于x 的二次函数,则m=( )A -1B 2C -1或2D m 不存在2、下列函数关系中,可以看作二次函数y=ax 2+bx+c(a ≠0)模型的是( ) A 在一定距离内,汽车行驶的速度与行驶的时间的关系B 我国人中自然增长率为1%,这样我国总人口数随年份变化的关系C 矩形周长一定时,矩形面积和矩形边长之间的关系D 圆的周长与半径之间的关系4、将一抛物线向下向右各平移2个单位得到的抛物线是y=-x 2,则抛物线的解析式是( ) A y=—( x-2)2+2 B y=—( x+2)2+2 C y=— ( x+2)2+2 D y=—( x-2)2—25、抛物线y= 21x 2-6x+24的顶点坐标是( )A (—6,—6)B (—6,6)C (6,6)6、已知函数y=ax 2+bx+c,①abc 〈0 ②a +c 〈b ③ a+b+c 〉0 ④ 2A 1 B 2 C 3 D 47、函数y=ax 2-bx+c (a ≠0)的图象过点(-1,0),则c b a + =c a b + =ba c+ 的值是( ) A -1 B 1 C 21 D -218、已知一次函数y= ax+c 与二次函数y=ax 2+bx+c (a ≠0),它们在同一坐标系内的大致图象是图中的( )二填空题:13、无论m 为任何实数,总在抛物线y=x 2+2mx +m 上的点的坐标是————————————。

初中数学二次函数专题经典练习题(附答案)

初中数学二次函数专题经典练习题(附答案)

二次函数总复习经典练习题1.抛物线y =-3x 2+2x -1的图象与坐标轴的交点情况是的图象与坐标轴的交点情况是( ) ( ) (A)(A)没有交点.没有交点.没有交点. (B) (B) (B)只有一个交点.只有一个交点.(C)(C)有且只有两个交点.有且只有两个交点.有且只有两个交点. (D) (D) (D)有且只有三个交点.有且只有三个交点.2.已知直线y =x 与二次函数y =ax 2-2x -1图象的一个交点的横坐标为1,则a 的值为的值为( ) ( ) (A)2(A)2.. (B)1 (B)1.. (C)3 (C)3.. (D)4 (D)4..3.二次函数y =x 2-4x +3的图象交x 轴于A 、B 两点,交y 轴于点C ,则△ABC 的面积为的面积为( ) ( )(A)6(A)6.. (B)4 (B)4.. (C)3 (C)3.. (D)1 (D)1..4.函数y =ax 2+bx +c 中,若a >0,b <0,c <0,则这个函数图象与x 轴的交点情况是轴的交点情况是( ) ( )(A)(A)没有交点.没有交点.(B)(B)有两个交点,都在有两个交点,都在x 轴的正半轴.(C)(C)有两个交点,都在有两个交点,都在x 轴的负半轴.(D)(D)一个在一个在x 轴的正半轴,另一个在x 轴的负半轴.5.已知已知(2(2(2,,5)5)、、(4(4,,5)5)是抛物线是抛物线y =ax 2+bx +c 上的两点,则这个抛物线的对称轴方程是则这个抛物线的对称轴方程是( ) ( ) (A)x =a b-. (B)x =2=2.. (C)x =4=4.. (D)x =3=3..6.已知函数y=ax 2+bx +c 的图象如图1所示,那么能正确反映函数y=ax +b 图象的只可能是( )(D)(C)(B)(A)x yo y xo yxxy o 7.二次函数y =2x 2-4x +5的最小值是的最小值是__________________..8.某二次函数的图象与x 轴交于点轴交于点((-1,0)0),,(4(4,,0)0),且它的形状与,且它的形状与y =-x 2形状相同.则这个二次函数的解析式为这个二次函数的解析式为__________________..9.若函数y =-x 2+4的函数值y >0,则自变量x 的取值范围是的取值范围是__________________..1010.某品牌电饭锅成本价为.某品牌电饭锅成本价为70元,销售商对其销量与定价的关系进行了调查,结果如下:定价(元)100110120130140150图1 xyo -4-3-2-113销量(个) 80 100 110 100 80 60为获得最大利润,销售商应将该品牌电饭锅定价为为获得最大利润,销售商应将该品牌电饭锅定价为 元.元.元.1111.函数.函数y =ax 2-(a -3)x +1的图象与x 轴只有一个交点,那么a 的值和交点坐标分别为____________..1212.某涵洞是一抛物线形.某涵洞是一抛物线形.某涵洞是一抛物线形,,它的截面如图3所示所示,,现测得水面宽 1.6AB m =,涵洞顶点O 到水面的距离为2.4m ,在图中的直角坐标系内在图中的直角坐标系内,,涵洞所在抛物线的解析式为涵洞所在抛物线的解析式为________. ________.1313..(本题8分)已知抛物线y =x 2-2x -2的顶点为A ,与y 轴的交点为B ,求过A 、B 两点的直线的解析式.的直线的解析式.1414..(本题8分)抛物线y =ax 2+2ax +a 2+2的一部分如图3所示,求该抛物线在y 轴左侧与x 轴的交点坐标.轴的交点坐标.1515..(本题8分)如图4,已知抛物线y =ax 2+bx +c (a >0)0)的顶点是的顶点是C (0(0,,1)1),直线,直线l :y =-ax +3与这条抛物线交于P 、Q 两点,且点P 到x 轴的距离为2.(1)(1)求抛物线和直线求抛物线和直线l 的解析式;的解析式;(2)(2)(2)求点求点Q 的坐标.的坐标.1616..(本题8分)工艺商场以每件155元购进一批工艺品.若按每件200元销售,工艺商场每天可售出该工艺品100件;若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?1717..(本题10分)) )) 杭州休博会期间,杭州休博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施.若不计维修保养费用,预计开放后每月可创收33万元.而该游乐设施开放后,从第1个月图3 yxO1图4 PQyxO到第x 个月的维修保养费用累计为y (万元万元)),且y =ax 2+bx ;若将创收扣除投资和维修保养费用称为游乐场的纯收益g (万元万元)),g 也是关于x 的二次函数.的二次函数.(1)(1)若维修保养费用第若维修保养费用第1个月为2万元,第2个月为4万元.求y 关于x 的解析式;的解析式; (2)(2)求纯收益求纯收益g 关于x 的解析式;的解析式;(3)(3)问设施开放几个月后,游乐场的纯收益达到最大?几个月后,能收回投资?问设施开放几个月后,游乐场的纯收益达到最大?几个月后,能收回投资?问设施开放几个月后,游乐场的纯收益达到最大?几个月后,能收回投资? 18(本题10分)如图所示,图4-4-①是一座抛物线型拱桥在建造过程中装模时的设计示意图,①是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m 30m,,支柱A 3B 3=50m =50m,,5根支柱A 1B 1、A 2B 2、A 3B 3、A 4B 4、A 5B 5之间的距离均为15m 15m,,B 1B 5∥A 1A 5,将抛物线放在图4-4-②所示的直角坐标系中.②所示的直角坐标系中.②所示的直角坐标系中. (1)(1)直接写出图直接写出图4-4-②中点②中点B 1、B 3、B 5的坐标;的坐标; (2)(2)求图求图4-4-②中抛物线的函数表达式;②中抛物线的函数表达式;②中抛物线的函数表达式; (3)(3)求图求图4-4-①中支柱①中支柱A 2B 2、A 4B 4的长度.的长度.1919、、 如图5,已知A (2(2,,2)2),,B (3(3,,0)0).动点.动点P (m ,0)0)在线段在线段OB 上移动,过点P 作直线l 与x 轴垂直.轴垂直.(1)(1)设△设△OAB 中位于直线l 左侧部分的面积为S ,写出S 与m 之间的函数关系式;之间的函数关系式; (2)(2)试问是否存在点试问是否存在点P ,使直线l 平分△OAB 的面积?若有,求出点P 的坐标;若无,请说明的坐标;若无,请说明 理由.理由.更多学习方法和中高考复习资料,免费下载,扫一扫关注微信:更多学习方法和中高考复习资料,免费下载,扫一扫关注微信:图5 PyxO AB 图4-②B 1B 3B 5yxO图4-① B 5B 4B 3B 2B 1A 5A 4A 3A 1A 230m答案:答案:一、一、11.B 2B 2..D 3D 3..C 4C 4..D 5D 5..D 6D 6..B二、二、77.3 83 8..y =-x 2+3x +4 94 9.-.-.-22<x <2 102 10..1301111..a =0=0,,(13-,0)0);;a =1=1,,(-1,0)0);;a =9=9,,(13,0) 120) 12..2154y x =- 1313.抛物线的顶点为.抛物线的顶点为.抛物线的顶点为(1(1(1,-,-,-3)3)3),点,点B 的坐标为的坐标为(0(0(0,-,-,-2)2)2).直线.直线AB 的解析式为y =-x -21414.依题意可知抛物线经过点.依题意可知抛物线经过点.依题意可知抛物线经过点(1(1(1,,0)0).于是.于是a +2a +a 2+2=02=0,解得,解得a 1=-1,a 2=-2.当a =-1或a =-2时,求得抛物线与x 轴的另一交点坐标均为轴的另一交点坐标均为((-3,0)1515..(1)(1)依题意可知依题意可知b =0=0,,c =1=1,且当,且当y =2时,ax 2+1=2①,-ax +3=2②.由①、②解得a =1=1,,x =1=1.故抛物线与直线的解析式分别为:.故抛物线与直线的解析式分别为:y =x 2+1,y =-x +3;(2)Q (-2,5) 1616..设降价x 元时,获得的利润为y 元.则依意可得y =(45=(45--x )(100)(100++4x )=)=--4x 2+80x +45004500,,即y =-4(x -10)2+49004900.故当.故当x =10时,y 最大最大=4900(=4900(=4900(元元)1717..(1)(1)将将(1(1,,2)2)和和(2(2,,6)6)代入代入y =ax 2+bx ,求得a =b =1=1.故.故y =x 2+x ;(2)g =33x -150150--y ,即g =-x 2+32x -150150;;(3)(3)因因y =-(x -16)2+106106,,所以设施开放后第16个月,纯收益最大.令g =0=0,得-,得-x 2+32x -150=0150=0.解得.解得x =16±106,x ≈16-≈16-10.3=5.7(10.3=5.7(10.3=5.7(舍去舍去26.3)26.3).当.当x =5时,g <0, 当x =6时,g >0,故6个月后,能收回投资个月后,能收回投资 1818..(1)1(30)B -,0,3(030)B ,,5(300)B ,; (2)设抛物线的表达式为(30)(30)y a x x =-+, 把3(030)B ,代入得(030)(030)30y a =-+=. 130a =-∴. ∵所求抛物线的表达式为:1(30)(30)30y x x =--+.(3)4B ∵点的横坐标为1515,, 4B ∴的纵坐标4145(1530)(1530)302y =--+=.3350A B =∵,拱高为3030,,∴立柱44458520(m)22A B =+=.由对称性知:224485(m)2A B A B ==.四、四、1919..(1)(1)当当0≤m ≤2时,S =212m ;当2<m ≤3时,S =12×3×2-12(3(3--m )()(--2m +6)=6)=--m 2+6m -6.(2)(2)若有这样的若有这样的P 点,使直线l 平分△OAB 的面积,很显然0<m <2.由于△OAB 的面积等于3,故当l 平分△OAB 面积时,S =32.21322m =∴.解得m =3.故存在这样的P 点,使l 平分△OAB 的面积.且点P 的坐标为的坐标为((3,0)0)..。

中考数学专题复习二次函数的综合题及答案解析

中考数学专题复习二次函数的综合题及答案解析

中考数学专题复习二次函数的综合题及答案解析一、二次函数1.如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.【答案】(1)点B 的坐标为(1,0).(2)①点P 的坐标为(4,21)或(-4,5).②线段QD 长度的最大值为94. 【解析】【分析】(1)由抛物线的对称性直接得点B 的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解.【详解】解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0), ∴点B 的坐标为(1,0).(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0), ∴2a 1b 12a 9a 3b c 0=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩.∴抛物线的解析式为2y x 2x 3=+-.∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=⨯⨯=. ∵POC BOC S 4S ∆∆=,∴3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=,∴点P 的坐标为(4,21)或(-4,5).②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:3k b 0b 3-+=⎧⎨=-⎩,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3).又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).∴()22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭. ∵a 10<=-,-3302<<-∴线段QD 长度的最大值为94.2.童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售,经市场调查发现:每降价1元,每星期可多卖10件,已知该款童装每件成本30元,设降价后该款童装每件售价x 元,每星期的销售量为y 件.(1)降价后,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?(2)当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?【答案】(1)这一星期中每件童装降价20元;(2)每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【解析】【分析】(1)根据售量与售价x (元/件)之间的关系列方程即可得到结论.(2)设每星期利润为W 元,构建二次函数利用二次函数性质解决问题.【详解】解:(1)根据题意得,(60﹣x )×10+100=3×100,解得:x =40,60﹣40=20元,答:这一星期中每件童装降价20元;(2)设利润为w ,根据题意得,w =(x ﹣30)[(60﹣x )×10+100]=﹣10x 2+1000x ﹣21000=﹣10(x ﹣50)2+4000,答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【点睛】本题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题,利用图象法解一元二次不等式,属于中考常考题型.3.如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值; (3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.【答案】(1)二次函数的解析式为233642y x x =--+;(2)当23x =-时,ADE ∆的面积取得最大值503;(3)P 点的坐标为()1,1-,(1,11-,(1,219--. 【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D 坐标,过点D 作DG ⊥x 轴,交AE 于点F ,表示△ADE 的面积,运用二次函数分析最值即可;(3)设出点P 坐标,分PA =PE ,PA =AE ,PE =AE 三种情况讨论分析即可.详解:(1)∵二次函数y =ax 2+bx +c 经过点A (﹣4,0)、B (2,0),C (0,6), ∴16404206a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:34326a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩, 所以二次函数的解析式为:y =233642x x --+; (2)由A (﹣4,0),E (0,﹣2),可求AE 所在直线解析式为y =122x --, 过点D 作DN ⊥x 轴,交AE 于点F ,交x 轴于点G ,过点E 作EH ⊥DF ,垂足为H ,如图,设D (m ,233642m m --+),则点F (m ,122m --), ∴DF =233642m m --+﹣(122m --)=2384m m --+, ∴S △ADE =S △ADF +S △EDF =12×DF ×AG +12DF ×EH =12×DF ×AG +12×DF ×EH =12×4×DF =2×(2384m m --+) =23250233m -++(), ∴当m =23-时,△ADE 的面积取得最大值为503. (3)y =233642x x --+的对称轴为x =﹣1,设P (﹣1,n ),又E (0,﹣2),A (﹣4,0),可求PA 29n +PE 212n ++()AE 16425+=,分三种情况讨论:当PA =PE 时,29n +=212n ++(),解得:n =1,此时P (﹣1,1); 当PA =AE 时,29n +=16425+=,解得:n =11±,此时点P 坐标为(﹣1,11±);当PE =AE 时,212n ++()=16425+=,解得:n =﹣219±,此时点P 坐标为:(﹣1,﹣219±).综上所述:P 点的坐标为:(﹣1,1),(﹣1,11±),(﹣1,﹣219±).点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.4.二次函数y=x 2-2mx+3(m >)的图象与x 轴交于点A (a ,0)和点B (a+n ,0)(n >0且n 为整数),与y 轴交于C 点.(1)若a=1,①求二次函数关系式;②求△ABC 的面积;(2)求证:a=m-;(3)线段AB (包括A 、B )上有且只有三个点的横坐标是整数,求a 的值.【答案】(1)y=x 2-4x+3;3;(2)证明见解析;(3)a=1或a=−.【解析】试题分析:(1)①首先根据a=1求得A 的坐标,然后代入二次函数的解析式,求得m 的值即可确定二次函数的解析式;②根据解析式确定抛物线与坐标轴的交点坐标,从而确定三角形的面积;(2)将原二次函数配方后即可确定其对称轴为x=m ,然后根据A 、B 两点关于x=m 对称得到a+n-m=m-a ,从而确定a 、m 、n 之间的关系;(3)根据a=m-得到A (m-,0)代入y=(x-m )2-m 2+3得0=(m--m )2-m 2+3,求得m 的值即可确定a 的值.试题解析:(1)①∵a=1,∴A (1,0),代入y=x 2-2mx+3得1-2m+3=0,解得m=2,∴y=x 2-4x+3;②在y=x 2-4x+3中,当y=0时,有x 2-4x+3=0可得x=1或x=3,∴A (1,0)、B (3,0),∴AB=2再根据解析式求出C 点坐标为(0,3),∴OC=3,△ABC 的面积=×2×3=3;(2)∵y=x 2-2mx+3=(x-m )2-m 2+3,∴对称轴为直线x=m,∵二次函数y=x2-2mx+3的图象与x轴交于点A和点B∴点A和点B关于直线x=m对称,∴a+n-m=m-a,∴a=m-;(3)y=x2-2mx+3(m>)化为顶点式为y=(x-m)2-m2+3(m>)①当a为整数,因为n>0且n为整数所以a+n是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=2,∴a=m-1,∴A(m-1,0)代入y=(x-m)2-m2+3得(x-m)2-m2+3=0,∴m2-4=0,∴m=2,m=-2(舍去),∴a=2-1=1,②当a不是整数,因为n>0且n为整数所以a+n不是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=3,∴a=m-∴A(m-,0)代入y=(x-m)2-m2+3得0=(m--m)2-m2+3,∴m2=,∴m=,m=-(舍去),∴a=−,综上所述:a=1或a=−.考点:二次函数综合题.5.在平面直角坐标系xOy中,抛物线y=x2﹣2x+a﹣3,当a=0时,抛物线与y轴交于点A,将点A向右平移4个单位长度,得到点B.(1)求点B的坐标;(2)将抛物线在直线y=a上方的部分沿直线y=a翻折,图象的其他部分保持不变,得到一个新的图象,记为图形M,若图形M与线段AB恰有两个公共点,结合函数的图象,求a的取值范围.【答案】(1)A(0,﹣3),B(4,﹣3);(2)﹣3<a≤0;【解析】【分析】(1)由题意直接可求A,根据平移点的特点求B;(2)图形M与线段AB恰有两个公共点,y=a要在AB线段的上方,当函数经过点A时,AB与函数两个交点的临界点;【详解】解:(1)A(0,﹣3),B(4,﹣3);(2)当函数经过点A时,a=0,∵图形M与线段AB恰有两个公共点,∴y=a要在AB线段的上方,∴a>﹣3∴﹣3<a≤0;【点睛】本题二次函数的图象及性质;熟练掌握二次函数图象的特点,函数与线段相交的交点情况是解题的关键.6.(10分)(2015•佛山)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.【答案】(1)(2,4);(2)(,);(3);(4)(,).【解析】试题分析:(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P的坐标;(2)联立两解析式,可求出交点A的坐标;(3)作PQ⊥x轴于点Q,AB⊥x轴于点B.根据S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入数值计算即可求解;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛物线的解析式联立,得到方程组,解方程组即可求出点M的坐标.试题解析:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4,故二次函数图象的最高点P的坐标为(2,4);(2)联立两解析式可得:,解得:,或.故可得点A的坐标为(,);(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B.S△POA=S△POQ+S△梯形PQBA﹣S△BOA=×2×4+×(+4)×(﹣2)﹣××=4+﹣=;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,∵P的坐标为(2,4),∴4=×2+b,解得b=3,∴直线PM的解析式为y=x+3.由,解得,,∴点M的坐标为(,).考点:二次函数的综合题7.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.【答案】(1)y=﹣x2﹣2x+3;(2)抛物线与x轴的交点为:(﹣3,0),(1,0)(3)15.【解析】【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B 点坐标代入,即可求出二次函数的解析式;(2)根据函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标;(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【详解】(1)设抛物线顶点式y=a(x+1)2+4,将B(2,﹣5)代入得:a=﹣1,∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3),令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0);(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0),当函数图象向右平移经过原点时,M 与O 重合,因此抛物线向右平移了3个单位, 故A'(2,4),B'(5,﹣5),∴S △OA′B′=12×(2+5)×9﹣12×2×4﹣12×5×5=15.【点睛】本题考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的求法等知识.熟练掌握待定系数法、函数图象与坐标轴的交点的求解方法、不规则图形的面积的求解方法等是解题的关键.8.如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上。

初中数学二次函数专题经典练习题(附答案)

初中数学二次函数专题经典练习题(附答案)

二次函数总复习经典练习题1.抛物线y=-3x2+2x-1的图象与坐标轴的交点情况是( )(A)没有交点. (B)只有一个交点.(C)有且只有两个交点. (D)有且只有三个交点.2.已知直线y=x与二次函数y=ax2-2x-1图象的一个交点的横坐标为1,则a的值为( ) (A)2. (B)1. (C)3. (D)4.3.二次函数y=x2-4x+3的图象交x轴于A、B两点,交y轴于点C,则△ABC的面积为( ) (A)6. (B)4. (C)3. (D)1.4.函数y=ax2+bx+c中,若a>0,b<0,c<0,则这个函数图象与x轴的交点情况是( )(A)没有交点.(B)有两个交点,都在x轴的正半轴.(C)有两个交点,都在x轴的负半轴.(D)一个在x轴的正半轴,另一个在x轴的负半轴.5.已知(2,5)、(4,5)是抛物线y=ax2+bx+c上的两点,则这个抛物线的对称轴方程是( )(A)x=ab. (B)x=2. (C)x=4. (D)x=3.6.已知函数y=ax2+bx+c的图象如图1所示,那么能正确反映函数y=ax+b图象的只可能是( )7.二次函数y=2x2-4x+5的最小值是______.8.某二次函数的图象与x轴交于点(-1,0),(4,0),且它的形状与y=-x2形状相同.则这个二次函数的解析式为______.9.若函数y=-x2+4的函数值y>0,则自变量x的取值范围是______.10.某品牌电饭锅成本价为70元,销售商对其销量与定价的关系进行了调查,结果如下:销量(个) 801001101008060为获得最大利润,销售商应将该品牌电饭锅定价为 元.11.函数y =ax 2-(a -3)x +1的图象与x 轴只有一个交点,那么a 的值和交点坐标分别为______.12.某涵洞是一抛物线形,它的截面如图3所示,现测得水面宽 1.6AB m ,涵洞顶点O 到水面的距离为2.4m ,在图中的直角坐标系内,涵洞所在抛物线的解析式为________.13.(本题8分)已知抛物线y =x 2-2x -2的顶点为A ,与y 轴的交点为B ,求过A 、B 两点的直线的解析式.14.(本题8分)抛物线y =ax 2+2ax +a 2+2的一部分如图3所示,求该抛物线在y 轴左侧与x 轴的交点坐标.15.(本题8分)如图4,已知抛物线y =ax 2+bx +c (a >0)的顶点是C (0,1),直线l :y =-ax +3与这条抛物线交于P 、Q 两点,且点P 到x 轴的距离为2.(1)求抛物线和直线l 的解析式;(2)求点Q 的坐标.16.(本题8分)工艺商场以每件155元购进一批工艺品.若按每件200元销售,工艺商场每天可售出该工艺品100件;若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?17.(本题10分)) 杭州休博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施.若不计维修保养费用,预计开放后每月可创收33万元.而该游乐设施开放后,从第1个月图3yxO1图4PQyxO到第x个月的维修保养费用累计为y(万元),且y=ax2+bx;若将创收扣除投资和维修保养费用称为游乐场的纯收益g(万元),g也是关于x的二次函数.(1)若维修保养费用第1个月为2万元,第2个月为4万元.求y关于x的解析式;(2)求纯收益g关于x的解析式;(3)问设施开放几个月后,游乐场的纯收益达到最大?几个月后,能收回投资?18(本题10分)如图所示,图4-①是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m,支柱A3B3=50m,5根支柱A1B1、A2B2、A3B3、A4B4、A5B5之间的距离均为15m,B1B5∥A1A5,将抛物线放在图4-②所示的直角坐标系中.(1)直接写出图4-②中点B1、B3、B5的坐标;(2)求图4-②中抛物线的函数表达式;(3)求图4-①中支柱A2B2、A4B4的长度.19、如图5,已知A(2,2),B(3,0).动点P(m,0)在线段OB上移动,过点P作直线l与x轴垂直.(1)设△OAB中位于直线l左侧部分的面积为S,写出S与m之间的函数关系式;(2)试问是否存在点P,使直线l平分△OAB的面积?若有,求出点P的坐标;若无,请说明理由.更多学习方法和中高考复习资料,免费下载,扫一扫关注微信:图4-①BA5A4A31A2答案:一、1.B 2.D 3.C 4.D 5.D 6.B 二、7.3 8.y =-x 2+3x +4 9.-2<x <2 10.130 11.a =0,(13-,0);a =1,(-1,0);a =9,(13,0) 12.2154y x =- 13.抛物线的顶点为(1,-3),点B 的坐标为(0,-2).直线AB 的解析式为y =-x -2 14.依题意可知抛物线经过点(1,0).于是a +2a +a 2+2=0,解得a 1=-1,a 2=-2.当a =-1或a =-2时,求得抛物线与x 轴的另一交点坐标均为(-3,0)15.(1)依题意可知b =0,c =1,且当y =2时,ax 2+1=2①,-ax +3=2②.由①、②解得a =1,x =1.故抛物线与直线的解析式分别为:y =x 2+1,y =-x +3;(2)Q (-2,5)16.设降价x 元时,获得的利润为y 元.则依意可得y =(45-x )(100+4x )=-4x 2+80x +4500,即y =-4(x -10)2+4900.故当x =10时,y 最大=4900(元)17.(1)将(1,2)和(2,6)代入y =ax 2+bx ,求得a =b =1.故y =x 2+x ;(2)g =33x -150-y ,即g =-x 2+32x -150;(3)因y =-(x -16)2+106,所以设施开放后第16个月,纯收益最大.令g =0,得-x 2+32x -150=0.解得x x ≈16-10.3=5.7(舍去26.3).当x =5时,g <0, 当x =6时,g >0,故6个月后,能收回投资18.(1)1(30)B -,0,3(030)B ,,5(300)B ,; (2)设抛物线的表达式为(30)(30)y a x x =-+,把3(030)B ,代入得(030)(030)30y a =-+=. 130a =-∴. ∵所求抛物线的表达式为:1(30)(30)30y x x =--+. (3)4B ∵点的横坐标为15, 4B ∴的纵坐标4145(1530)(1530)302y =--+=. 3350A B =∵,拱高为30,∴立柱44458520(m)22A B =+=. 由对称性知:224485(m)2A B A B ==. 四、19.(1)当0≤m ≤2时,S =212m ;当2<m ≤3时,S =12×3×2-12(3-m )(-2m +6)=-m 2+6m -6.(2)若有这样的P 点,使直线l 平分△OAB 的面积,很显然0<m <2.由于△OAB的面积等于3,故当l 平分△OAB 面积时,S =32.21322m ∴.解得m .故存在这样的P 点,使l 平分△OAB 的面积.且点P 的坐标为,0).。

二次函数最新综合题练习50道(含详细解析)

二次函数最新综合题练习50道(含详细解析)

二次函数最新综合题练习50道一.解答题(共50小题)1.如图,已知二次函数y=﹣x2+bx+c的图象经过点C(0,3),与x轴分别交于点A、点B(3,0).点D(n,y1)、E(n+t,y2)、F(n+4,y3)都在这个二次函数的图象上,其中0<t<4,连接DE、DF、EF,记△DEF的面积为S.(1)求二次函数y=﹣x2+bx+c的表达式;(2)若n=0,求S的最大值,并求此时t的值;(3)若t=2,当n不同数值时,S的值是否变化?如不变,求该定值;如变化,试用含n的代数式表示S.2.抛物线y=x2+(2t﹣2)x+t2﹣2t﹣3与x轴交于A、B两点(A在B左侧),与y轴交于点C.(1)如图1,当t=0时,连接AC、BC,求△ABC的面积;(2)如图2,在(1)的条件下,若点P为在第四象限的抛物线上的一点,且∠PCB+∠CAB=135°,求P点坐标;(3)如图3,当﹣1<t<3时,若Q是抛物线上A、C之间的一点(不与A、C 重合),直线QA、QB分别交y轴于D、E两点.在Q点运动过程中,是否存在固定的t值,使得CE=2CD.若存在,求出t值;若不存在,请说明理由.3.如图,在平面直角坐标系中,直线y=﹣x+3与x轴,y轴分别交于点A,点B,抛物线y=ax2+bx+c(a≠0)经过A,B与点C(﹣1,0).(1)求抛物线的解析式;(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x 轴的垂线,垂足为D,交线段AB于点E.设点P的横坐标为m.①求△PAB的面积y关于m的函数关系式,当m为何值时,y有最大值,最大值是多少?②若点E是垂线段PD的三等分点,求点P的坐标.4.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为;(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.5.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y 轴交于点A(0,5),与x轴交于点E,B.(1)求二次函数y=ax2+bx+c的解析式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P 在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A,E,N,M为顶点的四边形是平行四边形,且AE为其一边,求点M,N的坐标.6.如图①,直线y=kx+2与坐标轴交于A、B两点,OA=4,点C是x轴正半轴上的点,且OC=OB,过点C作AB的垂线,交y轴于点D,抛物线y=ax2+bx+c 过A、B、C三点.(1)求抛物线函数关系式;(2)如图②,点P是射线BA上一动点(不与点B重合),连接OP,过点O作OP的垂线交直线CD于点Q.求证:OP=OQ;(3)如图③,在(2)的条件下,分别过P、Q两点作x轴的垂线,分别交x轴于点E、F,交抛物线于点M、N,是否存在点P的位置,使以P、Q、M、N 为顶点的四边形为平行四边形?如果存在,求出点P的坐标;如果不存在,请说明理由.7.如图,已知抛物线L1:y=x2﹣x﹣,L1交x轴于A,B(点A在点B左边),交y轴于C,其顶点为D,P是L1上一个动点,过P沿y轴正方向作线段PQ ∥y轴,使PQ=t,当P点在L1上运动时,Q随之运动形成的图形记为L2.(1)若t=3,求点P运动到D点时点Q的坐标,并直接写出图形L2的函数解析式;(2)过B作直线l∥y轴,若直线l和y轴及L1,L2所围成的图形面积为12,求t的值.8.已知二次函数y=ax2+bx+c的图象对称轴为x=,图象交x轴于A,B,交y轴于C(0,﹣3),且AB=5,直线y=kx+b(k>0)与二次函数图象交于M,N(M 在N的右边),交y轴于P.(1)求二次函数图象的解析式;(2)若b=﹣5,且△CMN的面积为3,求k的值;(3)若b=﹣3k,直线AN交y轴于Q,求的值或取值范围.9.如图,函数y=2x的图象与函数y=ax2﹣3(a≠0)的图象相交于点P(3,k),Q两点.(1)a=,k=;(2)当x在什么范围内取值时,2x>ax2﹣3;(3)解关于x的不等式:|ax2﹣3|>1.10.如图,平面直角坐标系中,二次函数y=x2﹣2x﹣3的部分图象与x轴交于点A、B(A在B的左边),与y轴交于点C,连接BC,D为顶点(1)求∠OBC的度数;(2)在x轴下方的抛物线上是否存在一点Q,使△ABQ的面积等于5?如存在,求Q点的坐标,如不存在,说明理由;(3)点P是第四象限的抛物线上的一个动点(不与点D重合),过点P作PF⊥x 轴交BC于点F,求线段PF长度的最大值.11.如图,已知抛物线过点A(3,0),B(﹣1,0),C(0,3),连接AC,点M 是抛物线AC段上的一点,且CM∥x轴.(1)求抛物线的解析式;(2)求∠CAM的正切值;(3)点Q在抛物线上,且∠BAQ=∠CAM,求点Q的坐标.12.如图,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴分别交于点B、C;抛物线y=﹣x2+bx+c经过B、C两点,与x轴交于另一点A.设P(x,y)是在第一象限内抛物线上的一个动点,过点P作直线k⊥x轴于点M,交直线BC 于点N.(1)求该抛物线所对应的函数关系式;(2)连接PC、ON,若以P、C、O、N四点能围成平行四边形时,求此时点P坐标;(3)是否存在以P、C、N为顶点的三角形与△BNM相似?若存在,求出点N 坐标;若不存在,请说明理由.13.如图,抛物线y=ax2+bx+c经过点A(2,﹣3),且与x轴交点坐标为(﹣1,0),(3,0)(1)求抛物线的解析式;(2)在直线AB下方抛物线上找一点D,求出使得△ABD面积最大时点D的坐标;(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N 为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.14.如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使点A正好落在BC上的E处,E点坐标为(6,8),抛物线y=ax2+bx+c经过O、A、E三点.(1)求此抛物线的解析式;(2)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标;(3)当t≤x≤t+1时,求y=ax2+bx+c的最大值.15.在平面直角坐标系中,抛物线交x轴于A,B两点,交y轴于点C,已知抛物线的对称轴为x=1,B(3,0),C(0,﹣3).(1)求这个抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使点P到A、C两点间的距离之和最小.若存在,求出点P的坐标;若不存在,请说明理由;(3)点Q是直线BC下方抛物线上的一点,当△BCQ的面积最大时求Q点的坐标;(4)如果在x轴上方平行于x轴的一条直线交抛物线于M,N两点,以MN为直径作圆恰好与x轴相切,求此圆的直径.16.如图,抛物线y=﹣x2+bx+3与x轴交于点A,B,点B的坐标为(1,0).(1)求抛物线的解析式及顶点坐标;(2)若P(0,t)(t<﹣1)是y轴上一点,Q(5,0),将点Q绕着点P逆时针方向旋转90°得到点E.①用含t的式子表示点E的坐标;②当点E恰好在该抛物线上时,求t的值.17.如图,抛物线y=ax2﹣3ax﹣10a交x轴于A、B两点(A左B右),交y轴正半轴于C点,连AC,tan∠CAB=,(1)求抛物线解析式;(2)点P是第三象限内抛物线上一点,过C作x轴平行线交抛物线于D,连DP、BP,分别交y轴于E、F,设P点横坐标为p,线段EF长为m,求出m与自变量p之间的函数关系式;(3)在(2)条件下,当tan∠DPB=时,求P点坐标.18.如图所示,平面直角坐标系中,O为坐标原点,二次函数y=x2﹣bx+c(b>0)的图象与x轴交于A(﹣1,0)、B两点,与y轴交于点C;(1)求c与b的函数关系式;(2)点D为抛物线顶点,作抛物线对称轴DE交x轴于点E,连接BC交DE于F,若AE=DF,求此二次函数解析式;(3)在(2)的条件下,点P为第四象限抛物线上一点,过P作DE的垂线交抛物线于点M,交DE于H,点Q为第三象限抛物线上一点,作QN⊥ED于N,连接MN,且∠QMN+∠QMP=180°,当QN:DH=15:16时,连接PC,求tan ∠PCF的值.19.如图,抛物线y=ax2+x+c与x轴交于A,B两点,A点坐标为(﹣3,0),与y轴交于点C,点C坐标为(0.﹣6),连接BC,点C关于x轴的对称点D,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l 交抛物线于点Q,交直线BD于点M.(1)求二次函数解析式;(2)点P在x轴上运动,若﹣6≤m≤2时,求线段MQ长度的最大值.(3)点P在x轴上运动时,N为平面内一点,使得点B、C、M、N为顶点的四边形为菱形?如果存在,请直接写出点N坐标;不存在,说明理由.20.在平面直角坐标系xOy中,抛物线y=ax2﹣2x(a≠0)与x轴交于点A,B(点A在点B的左侧).(1)当a=﹣1时,求A,B两点的坐标;(2)过点P(3,0)作垂直于x轴的直线l,交抛物线于点C.①当a=2时,求PB+PC的值;②若点B在直线l左侧,且PB+PC≥14,结合函数的图象,直接写出a的取值范围.21.在平面直角坐标系中,抛物线y1=ax2﹣2amx+am2﹣m+1(a<0)的顶点为点P.(1)写出顶点坐标(含有m的式子表示);(2)抛物线与x轴分别交于点(x1,0)、(x20),若x1•x2<0,且知m=﹣1,则求a的取值范围;(3)已知点P在直线y2=kx+b上运动,y1与y2交于另一点A,过点A作x轴平行线交抛物线于另一点B:①求直线y2解析式;=1,且m≤x≤时,y1≥x﹣3恒成立,求m的最小值.②当S△PAB22.如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,C在x 轴的正半轴上,已知A(0,8)、C(10,0),作∠AOC的平分线交AB于点D,连接CD,过点D作DE⊥CD交OA于点E.(1)求点D的坐标;(2)求证:△ADE≌△BCD;(3)抛物线y=x2﹣x+8经过点A、C,连接AC.探索:若点P是x轴下方抛物线上一动点,过点P作平行于y轴的直线交AC于点M.是否存在点P,使线段MP的长度有最大值?若存在,求出点P的坐标;若不存在,请说明理由.23.在平面直角坐标系中,抛物线C1:y=ax2+4x+4a(0<a<2).(1)当C1与x轴只有一个公共点时,求此时C1的解析式:(2)如图①,若A(1,y A),B(0,y B),C(﹣1,y C)三点均在C1上,连接BC,作AE∥BC交抛物线C1于E,求点E到y轴的距离;(3)若a=1,将抛物线C1先向右平移3个单位长度,再向下平移2个单位长度得到抛物线C2,如图②,抛物线C2与x轴相交于点M,N(点M在点N的左侧),抛物线C2的对称轴交x轴于点F,过点F的直线l与抛物线C2相交于点P,Q(点P在第四象限),且S△FMQ﹣S△FNP=,求直线l的解析式.24.如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.(1)求抛物线的解析式;(2)在AC上方的抛物线上有一动点G,如图,当点G运动到某位置时,以AG,AO为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点G的坐标;(3)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由.25.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M 点的坐标和△ANM周长的最小值;若不存在,请说明理由.26.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1)求该抛物线的解析式;(2)抛物线的对称轴上是否存在一点M,使△ACM的周长最小?若存在,请求出M点的坐标,若不存在,请说明理由.(3)设抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时.满足S =8,并求出此时P点的坐标.△PAB27.已知抛物线y=﹣x2+2kx﹣k2+k+3(k为常数)的顶点纵坐标为4.(1)求k的值;(2)设抛物线与直线y=﹣(x﹣3)(m≠0)两交点的横坐标为x1,x2,n=x1+x2﹣2,若A(1,a),B(b,)两点在动点M(m,n)所形成的曲线上,求直线AB的解析式;(3)将(2)中的直线AB绕点(3,0)顺时针旋转45°,与抛物线x轴上方的部分相交于点C,请直接写出点C的坐标.28.如图,抛物线y=ax2+bx+c与x轴交于A,B(1,0)两点,与y轴交于点C,直线y=x﹣2经过A,C两点,抛物线的顶点为D.(1)求抛物线的解析式及顶点D的坐标;(2)在直线AC上方的抛物线上存在一点P,使△PAC的面积最大,请直接写出P点坐标及△PAC面积的最大值;(3)在y轴上是否存在一点G,使得GD+GB的值最小?若存在,求出点G的坐标;若不存在,请说明理由.29.如图,抛物线y=ax2+2x﹣3a经过A(1,0)、B(b,0)、C(0,c)三点.(1)求b,c的值;(2)在抛物对称轴上找一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.30.在平面直角坐标系xOy中,抛物线y=mx2﹣4mx+4m+5的顶点为A.(1)求点A的坐标;(2)将线段OA沿x轴向右平移2个单位得到线段OˊAˊ.①直接写出点Oˊ和Aˊ的坐标;②若抛物线y=mx2﹣4mx+4m+5与四边形AOOˊAˊ有且只有两个公共点,结合函数的图象,求m的取值范围.31.如图(1),抛物线y=ax2+bx+c与x轴交于A(﹣1,0)、B(t,0)(t>0)两点,与y轴交于点C(0,﹣3),若抛物线的对称轴为直线x=1,(1)求抛物线的函数解析式;(2)若点D是抛物线BC段上的动点,且点D到直线BC的距离为,求点D 的坐标;(3)如图(2),若直线y=mx+n经过点A,交y轴于点E(0,﹣1),点P是直线AE下方抛物线上一点,过点P作x轴的垂线交直线AE于点M,点N在线段AM延长线上,且PM=PN,是否存在点P,使△PMN的周长有最大值?若存在,求出点P的坐标及△PMN的周长的最大值;若不存在,请说明理由.32.如图所示,已知抛物线y=ax2+bx+c(a≠0)经过点A(﹣2,0)、B(4,0)、C(0,﹣8),与直线y=x﹣4交于B,D两点(1)求抛物线的解析式并直接写出D点的坐标;(2)点P为直线BD下方抛物线上的一个动点,试求出△BDP面积的最大值及此时点P的坐标;(3)点Q是线段BD上异于B、D的动点,过点Q作QF⊥x轴于点F,交抛物线于点G,当△QDG为直角三角形时,直接写出点Q的坐标.33.已知抛物线y=ax2+bx+2过点A(5,0)和点B(﹣3,﹣4),与y轴交于点C.(1)求抛物线y=ax2+bx+2的函数表达式;(2)求直线BC的函数表达式及直线BC与x轴的交点D的坐标;(3)点E是点B关于y轴的对称点,连接AE、BE,点P是折线EB﹣BC上的一个动点,①当点P在线段BC上时,连接EP,若EP⊥BC,请直接写出线段BP与线段AE的关系;②过点P作x轴的垂线与过点C作的y轴的垂线交于点M,当点M不与点C重合时,点M关于直线PC的对称点为点M′,如果点M′恰好在坐标轴上,请直接写出此时点P的坐标.34.如图1,在平面直角坐标系中,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求直线AC的解析式;(2)如图2,点E(a,b)是对称轴右侧抛物线上一点,过点E垂直于y轴的直线与AC交于点D(m,n).点P是x轴上的一点,点Q是该抛物线对称轴上的一点,当a+m最大时,求点E的坐标,并直接写出EQ+PQ+PB的最小值;(3)如图3,在(2)的条件下,连结OD,将△AOD沿x轴翻折得到△AOM,再将△AOM沿射线CB的方向以每秒3个单位的速度沿平移,记平移后的△AOM为△A′O'M',同时抛物线以每秒1个单位的速度沿x轴正方向平移,点B 的对应点为B'.△A'B'M'能否为等腰三角形?若能,请求出所有符合条件的点M'的坐标;若不能,请说明理由.35.如图1所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒,设P、Q同时出发t秒时,△BPQ的面积为ycm2,已知y与t的函数关系图象如图2所示,请回答:(1)线段BC的长为cm.(2)当运动时间t=2.5秒时,P、Q之间的距离是cm.36.如图,已知抛物线y=ax2+x+4的对称轴是直线x=3,且与轴相交于A、B两点(B点在A点的右侧),与轴交于C点.(1)A点的坐标是;B点坐标是;(2)直线BC的解析式是:;(3)点P是直线BC上方的抛物线上的一动点(不与B、C重合),是否存在点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积,若不存在,试说明理由;(4)若点M在x轴上,点N在抛物线上,以A、C、M、N为顶点的四边形是平行四边形时,请直接写出点M点坐标.37.如图,抛物线y=x2+bx+c经过点A(﹣1,0),B(0,﹣2),并与x轴交于点C,点M是抛物线对称轴l上任意一点(点M,B,C三点不在同一直线上)(1)求该抛物线所表示的二次函数的表达式;(2)若△MCB为直角三角形,请求出点M的坐标;(3)在抛物线上找出点P,使得以M、C、B、P为顶点的四边形为平行四边形,并直接写出点P的坐标.38.如图1,抛物线y=x2+bx+c与x轴交于A(1,0)、B(4,0),与y轴交于点C(1)求抛物线的解析式;(2)抛物线上一点D,满足S=S△OAC,求点D的坐标;△DAC(3)如图2,已知N(0,1),将抛物线在点A、B之间部分(含点A、B)沿x轴向上翻折,得到图T(虚线部分),点M为图象T的顶点.现将图象保持其顶点在直线MN上平移,得到的图象T1与线段BC至少有一个交点,求图象T1的顶点横坐标的取值范围.39.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0)和点B,与y 轴交于点C,点C关于抛物线对称轴的对称点为点D,抛物线顶点为H(1,2).(1)求抛物线的解析式;=3,(2)点P为直线AD上方抛物线的对称轴上一动点,连接PA,PD.当S△PAD 若在x轴上存在一动点Q,使PQ+QB最小,求此时点Q的坐标及PQ+QB的最小值;(3)若点E为抛物线上的动点,点G,F为平面内的点,以BE为边构造以B,E,F,G为顶点的正方形,当顶点F或者G恰好落在y轴上时,求点E的横坐标.40.在平面直角坐标系中,抛物线y=ax2+bx﹣3与x轴交于A,B两点(A在B 的左侧),与y轴交于点C,点B的坐标为(3,0),且CO=3OA.(1)求抛物线的解析式;(2)P点为对称轴右侧第四象限抛物线上的点连接BC、PC、PB,设P的横坐标为t,△PBC的面积为S求S与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,线段BP绕B顺时针旋转90°,得到对应线段BN,点P 的对应点为点N,在对称轴左侧的抛物线上取一点Q,射线BQ与射线PC交于点H,若点N在y轴上,且HQ=PQ,求点Q的坐标.41.抛物线y=x2+mx+n过点(﹣1,8)和点(4,3)且与x轴交于A,B两点,与y轴交于点C(1)求抛物线的解析式;(2)如图1,AD交抛物线于D,交直线BC于点G,且AG=GD,求点D的坐标;(3)如图2,过点M(3,2)的直线交抛物线于P,Q,AP交y轴于点E,AQ 交y轴于点F,求OE•OF的值.42.如图,二次函数y=x2﹣m2(m>0且为常数)的图象与x轴交于点A、B(A 在B左侧),与y轴交于C.(1)求A,B,C三点的坐标(用含m的式子表示);(2)若∠ACB=90°,求m的值.43.阅读下列材料:某同学遇到这样一个问题:在平面直角坐标系xOy中,已知直线l:y=﹣x,点A (1,t)在抛物线y=x2﹣4x+5上,求点A到直线l的距离d.如图1,他过点A作AB⊥l于点B,AD∥y轴分别交x轴于点C,交直线l于点D.他发现OC=CD,∠ADB=45°,可求出AD的长,再利用Rt△ABD求出AB的长,即为点A到直线l的距离d.请回答:(1)图1中,AD=,点A到直线l的距离d=.参考该同学思考问题的方法,解决下列问题:在平面直角坐标系xOy中,点M是抛物线y=x2﹣4x+5上的一动点,设点M到直线l的距离为d.(2)如图2,①l:y=﹣x,d=,则点M的坐标为;②l:y=﹣x,在点M运动的过程中,求d的最小值;(3)如图3,l:y=2x﹣7,在点M运动的过程中,d的最小值是.44.如图1,已知抛物线y=﹣x2+mx+m﹣2的顶点为A,且经过点B(3,﹣3).(1)求顶点A的坐标(2)若P是抛物线上且位于直线OB上方的一个动点,求△OPB的面积的最大值及比时点P的坐标;(3)如图2,将原抛物线沿射线OA方向进行平移得到新的抛物线,新抛物线与射线OA交于C,D两点,请问:在抛物线平移的过程中,线段CD的长度是否为定值?若是,请求出这个定值;若不是,请说明理由.45.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B 两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式;(2)求出四边形ABPC的面积最大时的P点坐标和四边形ABPC的最大面积;(3)在直线BC找一点Q,使得△QOC为等腰三角形,写出Q点坐标.46.如图①,作法平面直角坐标系中,二次函数y=ax2﹣6ax的图象经过点D(2,1).(1)求该函数表达式及顶点坐标;(2)将该二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个如图②所示的新图象,请补全新图象对应的函数表达式:y=,(x<0或),y=,(0≤x≤6)(3)已知点E的坐标为(4,1),P是图②图象上一点,其横坐标为m,连接PD、PE,当△PDE的面积为1时,直接写出m的值.47.已知函数y=a n x2+b n x(a n<0,b n>0,n为正整数)的图象的顶点为B n,与x 轴的一个交点为A n,点O为坐标原点.(1)当n=1时,函数y=a1x2+b1x的图象的对称轴与函数y=﹣x2的图象交于点C1,且四边形OB1A1C1为正方形,求a1、b1的值.(2)当n=2时,函数y=a2x2+b2x的图象的对称轴与函数y=a1x2+b1x的图象交于点C2,且四边形OB2A2C2为正方形,求a2、b2的值.(3)以此类推,可得a3=﹣,b3=2,一般地,若函数y=a n x2+b n x的对称轴与函x2+b n﹣1x的图象交于点C n,且四边形OB n A n C n为正方形,求a n、b n的值.数a n﹣148.已知抛物线C1:y=ax2过点(2,2)(1)直接写出抛物线的解析式;(2)如图,△ABC的三个顶点都在抛物线C1上,且边AC所在的直线解析式为y=x+b,若AC边上的中线BD平行于y轴,求的值;(3)如图,点P的坐标为(0,2),点Q为抛物线上C1上一动点,以PQ为直径作⊙M,直线y=t与⊙M相交于H、K两点是否存在实数t,使得HK的长度为定值?若存在,求出HK的长度;若不存在,请说明理由.49.如图所示,已知二次函数y=ax2+bx+c(a≠0)的顶点是(1,4),且图象过点A(3,0),与y轴交于点B.(1)求二次函数y=ax2+bx+c的解析式;(2)求直线AB的解析式;(3)在直线AB上方的抛物线上是否存在一点C,使得S=.如果存在,请△ABC求出C点的坐标;如果不存在,请说明理由.50.已知直线l:y=﹣2,抛物线C:y=ax2﹣1经过点(2,0)(1)求a的值;(2)如图①,点P是抛物线C上任意一点,过点P作直线l的垂线,垂足为Q.求证:PO=PQ;(3)请你参考(2)中的结论解决下列问题1.如图②,过原点作直线交抛物线C于A,B两点,过此两点作直线l的垂线,垂足分别为M,N,连接ON,OM,求证:OM⊥ON;2.如图③,点D(1,1),使探究在抛物线C上是否存在点F,使得FD+FO取得最小值?若存在,求出点F的坐标,若不存在,请说明理由.二次函数最新综合题练习50道参考答案与试题解析一.解答题(共50小题)1.如图,已知二次函数y=﹣x2+bx+c的图象经过点C(0,3),与x轴分别交于点A、点B(3,0).点D(n,y1)、E(n+t,y2)、F(n+4,y3)都在这个二次函数的图象上,其中0<t<4,连接DE、DF、EF,记△DEF的面积为S.(1)求二次函数y=﹣x2+bx+c的表达式;(2)若n=0,求S的最大值,并求此时t的值;(3)若t=2,当n不同数值时,S的值是否变化?如不变,求该定值;如变化,试用含n的代数式表示S.【解答】解:(1)将点B(3,0),C(0,3)代入y=﹣x2+bx+c,得:,解得:,∴二次函数的表达式为y=﹣x2+2x+3.(2)当n=0时,点D的坐标为(0,3),点E的坐标为(t,﹣t2+2t+3),点F 的坐标为(4,﹣5).设直线DF的函数表达式为y=kx+a(k≠0),将D(0,3),F(4,﹣5)代入y=kx+a,得:,解得:,∴直线DF的函数表达式为y=﹣2x+3.过点E作EQ∥y轴,交直线DF于点Q,如图1所示.∵点E的坐标为(t,﹣t2+2t+3),∴点Q的坐标为(t,﹣2t+3),∴EQ=﹣t2+2t+3﹣(﹣2t+3)=﹣t2+4t,∴S=EQ•(x F﹣x D)=﹣2t2+8t=﹣2(t﹣2)2+8.∵﹣2<0,∴当t=2时,S取最大值,最大值为8.(3)当n取不同数值时,S的值不变.过点DM∥y轴,过点F作FM∥x轴,交直线DM于点M,过点E作EN⊥FM于点N,交直线DF于点G,如图2所示.当t=2时,点D的坐标为(n,﹣n2+2n+3),点E的坐标为(n+2,﹣n2﹣2n+3),点F的坐标为(n+4,﹣n2﹣6n﹣5),∴点M的坐标为(n,﹣n2﹣6n﹣5),点N的坐标为(n+2,﹣n2﹣6n﹣5),∴DM=8n+8,EN=4n+8,MN=2,NF=2,∴S=S梯形DMNE +S△ENF﹣S△DMF,=MN•(DM+EN)+NF•EN﹣DM•MF,=12n+16+4n+8﹣16n﹣16,=8.∴当n取不同数值时,S的值永远为8.2.抛物线y=x2+(2t﹣2)x+t2﹣2t﹣3与x轴交于A、B两点(A在B左侧),与y轴交于点C.(1)如图1,当t=0时,连接AC、BC,求△ABC的面积;(2)如图2,在(1)的条件下,若点P为在第四象限的抛物线上的一点,且∠PCB+∠CAB=135°,求P点坐标;(3)如图3,当﹣1<t<3时,若Q是抛物线上A、C之间的一点(不与A、C 重合),直线QA、QB分别交y轴于D、E两点.在Q点运动过程中,是否存在固定的t值,使得CE=2CD.若存在,求出t值;若不存在,请说明理由.【解答】解:(1)将t=0代入抛物线解析式得:y=x2﹣2x﹣3.当x=0时,y=x2﹣2x﹣3=﹣3,∴点C的坐标为(0,﹣3);当y=0时,有x2﹣2x﹣3=0,解得:x1=3,x2=﹣1,∴点B的坐标为(3,0),点A的坐标为(﹣1,0).=AB•OC=×[3﹣(﹣1)]×3=6.∴S△ABC(2)由(1)知:B(3,0),C(0,﹣3),∴OB=OC,∴∠ABC=45°,∴∠ACB+∠CAB=135°.又∵∠PCB+∠CAB=135°,∴∠ACB=∠PCB.在图2中,过B作BM∥y轴,交CP延长线于M.∴∠ABC=∠MBC.在△ABC和△MBC中,,∴△ABC≌△MBC(ASA),∴AB=MB=4,∴点M的坐标为(3,﹣4),∴直线CM解析式为:y=﹣x﹣3(利用待定系数法可求出该解析式).联立直线CM及抛物线的解析式成方程组,得:,解得:(舍去),,∴点P的坐标为(,﹣).(3)当y=0时,有x2+(2t﹣2)x+t2﹣2t﹣3=0,即[x+(t﹣3)]•[x+(t+1)]=0,解得:x1=﹣t+3,x2=﹣t﹣1,∴点A的坐标为(﹣t﹣1,0),点B的坐标为(﹣t+3,0).当x=0时,y=x2+(2t﹣2)x+t2﹣2t﹣3=t2﹣2t﹣3,∴点C的坐标为(0,t2﹣2t﹣3).设直线AQ的解析式为:y=k1x+b1,直线BQ的解析式为:y=k1x+b2.∴点D的坐标为(0,b1),点E的坐标为(0,b2),∴CD=(t2﹣2t﹣3)﹣b1,CE=b2﹣(t2﹣2t﹣3).∵y=k1x+b1,y=x2+(2t﹣2)x+t2﹣2t﹣3,∴x2+(2t﹣2﹣k1)x+t2﹣2t﹣3﹣b1=0,∴x A•x Q=t2﹣2t﹣3﹣b1①.同理:x B•x Q=t2﹣2t﹣3﹣b2②.由②÷①,得:==﹣,∴=﹣=2,∴=﹣2,∴t=.3.如图,在平面直角坐标系中,直线y=﹣x+3与x轴,y轴分别交于点A,点B,抛物线y=ax2+bx+c(a≠0)经过A,B与点C(﹣1,0).(1)求抛物线的解析式;(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x 轴的垂线,垂足为D,交线段AB于点E.设点P的横坐标为m.①求△PAB的面积y关于m的函数关系式,当m为何值时,y有最大值,最大值是多少?②若点E是垂线段PD的三等分点,求点P的坐标.【解答】解:(1)∵直线y=﹣x+3与x轴,y轴分别交于点A,点B,∴A(3,0),B(0,3),把A(3,0),B(0,3),C(﹣1,0)代入y=ax2+bx+c得,,解得:,∴抛物线的解析式为:y=﹣x2+2x+3;(2)①∵点P的横坐标为m,∴P(m,﹣m2+2m+3),∵PD⊥x轴,∴E(m,﹣m+3),∴PE=﹣m2+2m+3+m﹣3=﹣m2+3m,∴y=(﹣m2+3m)•m+(﹣m2+3m)(3﹣m),∴y关于m的函数关系式为:y=﹣3m2+6m,∵y=﹣3m2+6m=﹣3(m﹣1)2+3,∴当m=1时,y有最大值,最大值是3;②当PE=2ED时,即﹣m2+3m=2(﹣m+3),解得:m=2或m=3(不会题意舍去),当2PE=ED时,即﹣2m2+6m=﹣m+3,整理得,2m2﹣7m+3=0,此方程无实数根,∴P(2,3).4.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(m,2m﹣5);(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.【解答】解:(1)∵y=ax2﹣2amx+am2+2m﹣5=a(x﹣m)2+2m﹣5,∴抛物线的顶点坐标为(m,2m﹣5).故答案为:(m,2m﹣5).(2)过点C作直线AB的垂线,交线段AB的延长线于点D,如图所示.∵AB∥x轴,且AB=4,∴点B的坐标为(m+2,4a+2m﹣5).∵∠ABC=135°,∴设BD=t,则CD=t,∴点C的坐标为(m+2+t,4a+2m﹣5﹣t).∵点C在抛物线y=a(x﹣m)2+2m﹣5上,∴4a+2m﹣5﹣t=a(2+t)2+2m﹣5,整理,得:at2+(4a+1)t=0,解得:t1=0(舍去),t2=﹣,=AB•CD=﹣.∴S△ABC(3)∵△ABC的面积为2,∴﹣=2,解得:a=﹣,∴抛物线的解析式为y=﹣(x﹣m)2+2m﹣5.分三种情况考虑:①当m>2m﹣2,即m<2时,有﹣(2m﹣2﹣m)2+2m﹣5=2,整理,得:m2﹣14m+39=0,解得:m1=7﹣(舍去),m2=7+(舍去);②当2m﹣5≤m≤2m﹣2,即2≤m≤5时,有2m﹣5=2,解得:m=;③当m<2m﹣5,即m>5时,有﹣(2m﹣5﹣m)2+2m﹣5=2,整理,得:m2﹣20m+60=0,解得:m3=10﹣2(舍去),m4=10+2.综上所述:m的值为或10+2.5.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y 轴交于点A(0,5),与x轴交于点E,B.(1)求二次函数y=ax2+bx+c的解析式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P 在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A,E,N,M为顶点的四边形是平行四边形,且AE为其一边,求点M,N的坐标.【解答】解:(1)设抛物线解析式为y=a(x﹣2)2+9,∵抛物线与y轴交于点A(0,5),∴4a+9=5,∴a=﹣1,y=﹣(x﹣2)2+9=﹣x2+4x+5,(2)当y=0时,﹣x2+4x+5=0,∴x1=﹣1,x2=5,∴E(﹣1,0),B(5,0),设直线AB的解析式为y=mx+n,∵A(0,5),B(5,0),∴m=﹣1,n=5,∴直线AB的解析式为y=﹣x+5;设P(x,﹣x2+4x+5),∴D(x,﹣x+5),∴PD=﹣x2+4x+5+x﹣5=﹣x2+5x,∵AC=4,=×AC×PD=2(﹣x2+5x)=﹣2x2+10x,∴S四边形APCD∴当x=﹣=时,∴即:点P(,)时,S=,四边形APCD最大(3)如图,过M作MH垂直于对称轴,垂足为H,∵MN∥AE,MN=AE,∴△HMN≌△AOE,∴HM=OE=1,∴M点的横坐标为x=3或x=1,当x=1时,M点纵坐标为8,当x=3时,M点纵坐标为8,∴M点的坐标为M1(1,8)或M2(3,8),∵A(0,5),E(﹣1,0),∴直线AE解析式为y=5x+5,∵MN∥AE,∴MN的解析式为y=5x+b,∵点N在抛物线对称轴x=2上,∴N(2,10+b),∵AE2=OA2+OE2=26∵MN=AE∴MN2=AE2,∴MN2=(2﹣1)2+[8﹣(10+b)]2=1+(b+2)2∵M点的坐标为M1(1,8)或M2(3,8),∴点M1,M2关于抛物线对称轴x=2对称,∵点N在抛物线对称轴上,∴M1N=M2N,∴1+(b+2)2=26,∴b=3,或b=﹣7,∴10+b=13或10+b=3∴当M点的坐标为(1,8)时,N点坐标为(2,13),当M点的坐标为(3,8)时,N点坐标为(2,3).6.如图①,直线y=kx+2与坐标轴交于A、B两点,OA=4,点C是x轴正半轴上的点,且OC=OB,过点C作AB的垂线,交y轴于点D,抛物线y=ax2+bx+c 过A、B、C三点.(1)求抛物线函数关系式;(2)如图②,点P是射线BA上一动点(不与点B重合),连接OP,过点O作OP的垂线交直线CD于点Q.求证:OP=OQ;(3)如图③,在(2)的条件下,分别过P、Q两点作x轴的垂线,分别交x轴于点E、F,交抛物线于点M、N,是否存在点P的位置,使以P、Q、M、N 为顶点的四边形为平行四边形?如果存在,求出点P的坐标;如果不存在,请说明理由.【解答】解:(1)∵OA=4∴点A(﹣4,0)∵直线y=kx+2与坐标轴交于A、B两点,。

初中数学二次函数综合复习基础题(含答案)

初中数学二次函数综合复习基础题(含答案)

初中数学二次函数综合复习基础题一、单选题(共13道,每道8分)1.若二次函数的图象经过原点,则a的值必为()A.1或2B.0C.1D.2答案:D试题难度:三颗星知识点:二次函数表达式2.在同一坐标系中,作,,的图象,它们的共同特点是()A.抛物线的开口方向向上B.都是关于x轴对称的抛物线,且y随x的增大而增大C.都是关于y轴对称的抛物线,且y随x的增大而减小D.都是关于y轴对称的抛物线,有公共的顶点答案:D试题难度:三颗星知识点:二次函数图象特征3.对于反比例函数,当x>0时,y随x的增大而增大,则二次函数的大致图象是()A. B.C. D.答案:C试题难度:三颗星知识点:二次函数图象初步判定4.抛物线可以由抛物线平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位答案:B试题难度:三颗星知识点:二次函数图像平移5.已知二次函数,当x=-1时有最大值,把x=-5,-2,1时对应函数值分别记为y1,y2,y3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y1>y2>y3C.y2>y1>y3D.y2>y3>y1答案:D试题难度:三颗星知识点:二次函数图像增减性、对称轴固定6.若二次函数,当时,y随x的增大而减小,则m的取值范围是()A. B.C. D.答案:C试题难度:三颗星知识点:二次函数图像增减性、对称轴固定7.(2011四川雅安)已知二次函数的图象如图,其对称轴为直线x=-1,给出下列结果:①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a-b+c<0.则正确的结论是()A.①②③④B.②④⑤C.②③④D.①④⑤答案:D试题难度:三颗星知识点:二次函数数形结合8.二次函数的图象经过点A(0,-3),B(2,-3),C(-1,0).则此二次函数的表达式为()A. B.C. D.答案:A试题难度:三颗星知识点:二次函数一般式9.有一条抛物线,三位学生分别说出了它的一些性质:甲说:对称轴是直线x=2;乙说:与x轴的两个交点距离为6;丙说:抛物线与x轴的交点和其顶点围成的三角形面积等于9,请选出一个满足上述全部条件的一条抛物线的解析式:()A. B.C. D.答案:B试题难度:三颗星知识点:二次函数顶点式10.二次函数图象过A、C、B三点,点A的坐标为(-1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC.求二次函数的解析式()A. B.C. D.答案:A试题难度:三颗星知识点:二次函数交点式11.若直线与二次函数的图象交于A、B两点,求以A、B及原点O为顶点的三角形的面积().A. B.C. D.无法计算答案:C试题难度:三颗星知识点:二次函数初步综合12.设一元二次方程的两根分别为,,且,则,满足()A. B.C. D.且答案:D试题难度:三颗星知识点:二次函数图象与方程、不等式13.设一元二次方程的两根分别为,,且,则二次函数的函数值y>m时自变量x的取值范围是()A. B.C. D.答案:B试题难度:三颗星知识点:二次函数图象与方程、不等式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

—1 0
1
A1 B 2
C3
D4
y
7、函数 y=ax 2-bx+c ( a≠ 0)的图象过点( -1, 0),则
a
b
c
=
=
的值是( )
bc ac ab
-1 0
x
A -1
B1
1
C
2
1
D-
2
8、已知一次函数 y= ax+c 与二次函数 y=ax2+bx+c ( a≠ 0),它们在同一坐标系内的大致图象是图中的(
B 我国人中自然增长率为 1%,这样我国总人口数随年份变化的关系
C 矩形周长一定时,矩形面积和矩形边长之间的关系
D 圆的周长与半径之间的关系
4、将一抛物线向下向右各平移
2
A y= —( x-2) +2 C y=— ( x+2) 2+2
2 个单位得到的抛物线是
2
B y= —( x+2) +2 D y= —( x-2) 2— 2
y
y
y
y
x
A
B
x
x
x
C
D
x )
二填空题: 13、无论 m 为任何实数,总在抛物线 y=x 2+2mx + m 上的点的坐标是 ————————————。 16、若抛物线 y=ax 2+bx+c ( a≠ 0)的对称轴为直线 x=2,最小值为-2,则关于方程
———————————。
17、抛物线 y= ( k+1) x 2+k 2-9 开口向下,且经过原点,则 解答题:(二次函数与三角形)
7、已知抛物线 y ax2 2ax 3a ( a 0) 与 x 轴交于 A、 B 两点(点 A 在点 B 的左侧),与 y 轴交于点 C,点 D 为抛物线的
5、抛物线 y= 1 x2-6x+24 的顶点坐标是(

2
y=-x 2,则抛物线的解析式是(
) y
A (— 6,— 6) B (— 6, 6)
C ( 6, 6)
D (6,— 6)
6、已知函数 y=ax 2+bx+c, 图象如图所示,则下列结论中正确的有(
)个
① abc〈0 ② a+ c〈b
③ a+b+c 〉0 ④ 2 c〈3 b
y=
4 3
x2+
bx+
c 的图象经过 A、 C 两点,且与 x 轴交于点 B. ( 1)求抛物线的函数表达式;
( 2)设抛物线的顶点为 D,求四边形 ABDC 的面积;
( 3)作直线 MN 平行于 x 轴,分别交线段 AC、BC 于点 M 、N.问在 x 轴上是否存在点 P,使
得△ PMN 是等腰直角三角形?如果存在, 求出所有满足条件的 P 点的坐标; 如果不存在,
2、如图,在平面直角坐标系中,抛物线与 x 轴交于 A、B 两点( A 在 B 的左侧),与 y 轴交于点 C (0,4),顶点为( 1, 9).
2 ( 1)求抛物线的函数表达式; ( 2)设抛物线的对称轴与轴交于点 D,试在对称轴上找出点 P,使△ CDP 为等腰三角
形,请直接写出满足条件的所有点 P 的坐标. ( 3)若点 E 是线段 AB 上的一个动点(与 A、 B 不重合),分别连接 AC、 BC,过点 E
的中点, A 、B、D 三点的坐标分别是 A( 1 ,0 ),B( 1 ,2 ),D(3,0).连接 DM ,并把线段 DM 沿 DA 方向平移到 ON.若
抛物线 y ax2 bx c经过点 D、 M 、N .
( 1)求抛物线的解析式. ( 2)抛物线上是否存在点 P,使得 PA=PC,若存在,求出点 P 的坐标;若 不存在,请说明理由. ( 3)设抛物线与 x 轴的另一个交点为 E,点 Q 是抛物线的对称轴上的一个 动点,当点 Q 在什么位置时有 |QE-QC|最大?并求出最大值.
且交点 M 始终位于抛物线上 A、C 两点之间时,试探究:当 n 为何值时,四边形 AMCN 的面积取得最大值,并求出这个最大
值.
y
y l: x= n
M
A
A
O
B
D
C
O
B
C
x
N
x
D
6、如图所示,在平面直角坐标系中,四边形
ABCD 是直角梯形, BC∥ AD ,∠ BAD=90 °, BC 与 y 轴相交于点 M ,且 M 是 BC
启东教育学科教师辅导讲义
ቤተ መጻሕፍቲ ባይዱ
二次函数试题
选择题: 1、 y=(m-2)x m2- m 是关于 x 的二次函数,则 m=(

A -1 B 2 C -1 或 2 D m 不存在
2、下列函数关系中,可以看作二次函数
y=ax 2+bx+c(a ≠0) 模型的是(

A 在一定距离内,汽车行驶的速度与行驶的时间的关系
( 1)填空: OB=_ ▲ ,OC = _ ▲ ;
( 2)连接 OA,将△ OAC 沿 x 轴翻折后得△ ODC,当四边形 OACD 是菱形时,求此时抛物线的解析式;
( 3)如图 2,设垂直于 x 轴的直线 l: x=n 与( 2)中所求的抛物线交于点 M,与 CD 交于点 N,若直线 l 沿 x 轴方向左右平移,
k = —————————
ax2+bx+c =-2的根为 —
1、已知:二次函数 y= x 2+bx+c ,其图象对称轴为直线 x=1,且经过点( 2,﹣ ).
( 1)求此二次函数的解析式. ( 2)设该图象与 x 轴交于 B、C 两点( B 点在 C 点的左侧),请在此二次函数 x 轴下方的图象上确定一点 E,使△ EBC的面积最大, 并求出最大面积.
①抛物线上是否存在一点 P 使得四边形 ACPD 是正方形?若存在,求出点 P 的坐标;若不存在,说明理由;
②平移直线 CD ,交直线 AB 于点 M,交抛物线于点 N,通过怎样的平移能使得 C、D、 M、N 为顶点的四边形是平行四边形.
5、如图,抛物线 y= mx2-11mx+24m ( m<0) 与 x 轴交于 B、C 两点(点 B 在点 C 的左侧),抛物线另有一点 A 在第一象限内,且 ∠ BAC= 90°.
作 EF∥ AC 交线段 BC 于点 F ,连接 CE,记△ CEF 的面积为 S,S 是否存在最大值? 若存在,求出 S 的最大值及此时 E 点的坐标;若不存在,请说明理由.
y C
AO D
Bx
(第 2 题图 )
3、如图,一次函数
y=- 4x- 4 的图象与 x 轴、y 轴分别交于
A 、C 两点,抛物线
请说明理由.
y AO
B
x
C (第 3 题图 )
(二次函数与四边形) 4、 已知抛物线 y 1 x2 mx 2m 2
(1)试说明:无论 m 为何实数,该抛物线与 x 轴总有两个不同的交点;
7

2
(2) 如图,当该抛物线的对称轴为直线 点 D.
x=3 时,抛物线的顶点为点 C,直线 y=x- 1 与抛物线交于 A、B 两点,并与它的对称轴交于
相关文档
最新文档