考研线性代数知识点全面总结

合集下载

数学专业考研复习资料线性代数重点知识点整理

数学专业考研复习资料线性代数重点知识点整理

数学专业考研复习资料线性代数重点知识点整理数学专业考研复习资料:线性代数重点知识点整理一、向量与矩阵1. 向量的定义和性质- 向量的表示与运算- 单位向量和零向量- 向量的线性相关性2. 矩阵的定义和性质- 矩阵的基本运算- 矩阵的转置和逆矩阵- 矩阵的秩和行列式二、线性方程组1. 线性方程组的概念- 线性方程组的解和解的存在唯一性- 齐次线性方程组和非齐次线性方程组2. 线性方程组的解法- 列主元消元法- 矩阵的初等变换和阶梯形矩阵 - 高斯消元法和高斯约当法三、线性空间和子空间1. 线性空间的定义和性质- 线性空间的子空间和直和- 基和维数的概念- 线性空间的同构与等价2. 子空间的性质与判定- 线性子空间的交与和- 维数公式和秩-零化定理- 子空间的降维与升维四、线性变换和特征值1. 线性变换的定义和性质- 线性变换的表示和运算- 线性变换的核与像- 线性变换的矩阵表示和判定2. 特征值和特征向量- 特征方程和特征值的求解 - 特征空间和特征子空间- 相似矩阵和对角化矩阵五、内积空间和正交变换1. 内积的定义和性质- 内积的基本性质和判定- 正交向量和正交子空间- 构造内积空间2. 正交变换和正交矩阵- 正交变换的性质和表示- 正交矩阵的特点和运算- 正交矩阵的对角化和特征值六、二次型和正定矩阵1. 二次型的定义和性质- 二次型的标准形和规范形 - 二次型的正定性和负定性- 二次型的规约和降维2. 正定矩阵的定义和性质- 正定矩阵的判定和运算- 正定矩阵的特征值和特征向量- 正定矩阵及其应用总结:线性代数是数学专业考研中的重要内容之一。

通过对向量与矩阵、线性方程组、线性空间和子空间、线性变换和特征值、内积空间和正交变换、二次型和正定矩阵等知识点的学习和掌握,能够为考研复习提供有力的理论基础和解题方法。

在复习过程中,需要注重概念的理解、性质的掌握以及应用题的练习,同时注意归纳总结和思维方法的培养。

考研数学线性代数重点整理

考研数学线性代数重点整理

考研数学线性代数重点整理一、矢量空间矢量空间是线性代数的基础概念,它描述了一组对象(称为矢量)的性质及其之间的运算规则。

以下是矢量空间的一些重要性质和定义:1. 定义:矢量空间是满足以下8个条件的集合V,其中两个运算(加法和乘法)满足特定的性质。

2. 加法:对于任意的矢量u和v,它们的和u+v也是V中的一个矢量。

3. 加法交换律:对于任意的矢量u和v,有u+v = v+u。

4. 加法结合律:对于任意的矢量u、v和w,有(u+v)+w = u+(v+w)。

5. 加法单位元:存在一个称为零矢量的特殊矢量0,对于任意的矢量v,有v+0 = 0+v = v。

6. 加法逆元:对于任意的矢量v,存在一个称为负矢量的特殊矢量-u,使得v+(-u) = (-u)+v = 0。

7. 乘法定义:对于任意的矢量v和实数c,cv也是V中的一个矢量。

8. 乘法分配律:对于任意的矢量v和实数c和d,有c(dv) = (cd)v。

9. 乘法单位元:对于任意的矢量v,有1v = v。

二、矩阵与线性方程组矩阵是线性代数中另一个重要的概念,它可以用来表示线性方程组和线性变换。

以下是与矩阵和线性方程组相关的一些重要内容:1. 矩阵定义:将数按矩形排列成的矩形数表称为矩阵,其中行数和列数分别称为矩阵的行数和列数。

2. 矩阵运算:矩阵之间可以进行加法和乘法的运算,具体规则如下:- 矩阵加法:对应位置元素相加。

- 矩阵乘法:设A是一个m×n矩阵,B是一个n×p矩阵,那么它们的乘积AB是一个m×p矩阵,乘法规则为A的行乘以B的列。

3. 线性方程组:线性方程组是一组线性方程的集合,矩阵可以用来表示和求解线性方程组。

对于一个m×n矩阵A、一个n×1矩阵X和一个m×1矩阵B,线性方程组可以表示为AX=B。

4. 线性方程组的解:根据矩阵的性质,可以通过高斯消元法、矩阵求逆等方法求解线性方程组。

线性代数考研知识点总结

线性代数考研知识点总结

线性代数考研知识点总结线性代数是数学的一个重要分支,它研究向量空间及其上的线性变换。

在计算机科学、物理学、工程学等领域中,线性代数都有着广泛的应用。

在考研中,线性代数是一个必考的科目,以下是线性代数考研的一些重要知识点总结。

1. 向量空间:向量空间是线性代数的基础概念,它包括一组向量和一些满足特定条件的运算规则。

向量空间中的向量可以进行加法和数乘运算,满足交换律、结合律和分配律。

2. 向量的线性相关性和线性无关性:如果向量可以通过线性组合表示为另一组向量的形式,那么这组向量就是线性相关的;如果向量不满足线性相关的条件,那么它们就是线性无关的。

3. 矩阵:矩阵是线性代数中的另一个重要概念,它是一个由数字排列成的矩形阵列。

矩阵可以用于表示线性变换、解线性方程组等。

常见的矩阵类型有方阵、对称矩阵、对角矩阵、单位矩阵等。

4. 行列式:行列式是一个用于刻画矩阵性质的重要工具。

行列式可以用来计算线性变换的缩放因子,判断矩阵是否可逆,以及计算矩阵的逆等。

5. 矩阵的相似和对角化:两个矩阵A和B,如果存在一个非奇异矩阵P,使得PAP^(-1)=B,那么矩阵A和B就是相似的。

相似的矩阵有着相同的特征值和特征向量。

对角化是指将一个矩阵通过相似变换变成对角矩阵的过程。

6. 线性变换:线性变换是指一个向量空间到另一个向量空间的映射,它满足线性性质。

线性变换可以用矩阵表示,相应的矩阵称为线性变换的矩阵表示。

线性变换可以进行合成、求逆等操作。

7. 内积空间:内积空间是一个带有内积运算的向量空间。

内积运算满足对称性、线性性、正定性等性质。

内积空间可以用来定义向量的长度、夹角、正交性等概念。

8. 特征值和特征向量:对于一个线性变换,如果存在一个非零向量使得线性变换作用在该向量上等于该向量的某个常数倍,那么这个常数就是该线性变换的特征值,而对应的非零向量就是特征向量。

特征值和特征向量可以用来分析矩阵的性质,求解线性方程组等。

9. 奇异值分解:奇异值分解是矩阵分解的一种常用方法,它将一个矩阵分解为三个矩阵的乘积,其中一个矩阵是正交矩阵,另两个矩阵是对角矩阵。

考研数学之线性代数讲义(考点知识点+概念定理总结)

考研数学之线性代数讲义(考点知识点+概念定理总结)

考研数学之线性代数讲义(考点知识点+概念定理总结)线性代数讲义目录第一讲基本概念矩阵的初等变换与线性矩阵方程的消去完全展开式化零降阶法其它性质克莱姆法则第三讲矩阵乘积矩阵的列向量和行向量矩阵分解矩阵方程逆矩阵伴随矩阵第4讲向量组线性表示向量组的线性相关性向量组的极大无关组和秩矩阵的秩第五讲方程组解的性质解的判别基本解系统和通解第6讲特征向量和特征值的相似性和对角化特征向量与特征值―概念,计算与应用相似对角化―判断与实现附录一内积正交矩阵施密特正交化实对称矩阵的对角化第七讲二次型二次型及其矩阵可逆线性变量取代了实对称矩阵惯性指数正定二次型与正定矩阵的合同标准化与规范化附录二向量空间及其子空间附录III两个线性方程组的解集之间的关系附录四06,07年考题一第一讲基本概念1.线性方程组的基本概念。

线性方程组的一般形式是:a11x1+a12x2++a1nxn=b1,a21x1+a22x2+?+a2nxn=b2,????am1x1+am2x2+?+amnxn=bm,其中未知数的个数n和方程式的个数m不必相等.线性方程组的解是一个n维向量(k1,k2,k,kn)(称为解向量),它满足当每个方程中的未知数席被Ki替换时,它变成一个方程。

线性方程组的解的情况有三种:无解,唯一解,无穷多解.在线性方程组的讨论中有两个主要问题:(1)判断解(2)求解,特别是当存在无穷多个连接时求通解b1=b2=?=bm=0的线性方程组称为齐次线性方程组.n维零向量总是齐次线性方程组的解,称为零解。

因此,齐次线性方程组只有两种解:唯一解(即只要零解)和无限解(即非零解)把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组.2.矩阵和向量(1)基本概念矩阵和向量都是描写事物形态的数量形式的发展.是M吗?一张表有M行和N列,以N个数字排列,两边用括号或方括号括起来,就变成了M?例如N型矩阵2-101111102254-29333-18是4吗?5矩阵对于上述线性方程组,它被称为矩阵a11a12?a1na11a12?a1nb1a=a21a22?a2n和(a|?)=a21a22?a2nb2??????? am1am2?amnam1am2?amnbm为其系数矩阵和增广矩阵.增广矩阵体现了方程组的全部信息,而齐次方程组只用系数矩阵就体现其全部信息.矩阵中的数字称为其元素,第I行和第J列中的数字称为(I,J)位元素所有元素为0的矩阵称为零矩阵,通常记录为0两个矩阵a和b相等(记作a=b),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等.N个数的有序数组称为N维向量,这些数称为其分量书写中可用矩阵的形式来表示向量,例如分量依次是a1,a2,?,an的向量可表示成二a1(a1,a2,?,an)或a2,┆an请注意,作为向量它们并没有区别,但是作为矩阵,它们不一样(左边是1?n矩阵,右边是n?1矩阵).习惯上把它们分别称为行向量和列向量.(请注意与下面规定的矩阵的行向量和列向量概念的区别.)一个M?n的矩阵的每一行是一个n维向量,称为其行向量;每一列都是一个m维向量,称为它的列向量。

考研数学线性代数必背知识点

考研数学线性代数必背知识点

反对称矩阵 A = A 。

0 0 0 0 1 0 3 0 (A ) * 0 03 0 01 0 0* * *对称矩阵 A = A 。

考研数学知识点-线性代数第一讲 基本知识二.矩阵和向量1.线性运算与转置① A + B = B + A② (A + B ) + C = A + (B + C )③ c (A + B ) = cA + cB (c + d )A = cA + dA④ c (dA ) = (cd )A⑤ cA = 0 ™ c = 0 或 A = 0 。

向量组的线性组合〈 1 ,〈 2 ,⊄ ,〈 s ,T 三.矩阵的初等变换,阶梯形矩阵 ♣初等行变换 初等变换分 ♦ ♥初等列变换 三类初等行变换 ①交换两行的上下位置 A B ②用非零常数 c 乘某一行。

③把一行的倍数加到另一行上(倍加变换) 阶梯形矩阵 转置 c 1〈 1 + c 2〈 2 + ⊄ + c s 〈 s 。

A 的转置 A T (或 A 2 )4 1 0 1 0 2 0 0 25 2 0 0 1 2 1 4 3 T T= A①如果有零行,则都在下面。

②各非零行的第一个非 0 元素的列号自上而下严格 (A ± B )T = A T ± B T单调上升。

或各行左边连续出现的 0 的个数自上而下严格单调 (cA )T = c (A T )。

上升,直到全为 0 。

台角:各非零行第一个非 0 元素所在位置。

简单阶梯形矩阵: 3. n 阶矩阵3.台角位置的元素都为 1 n 行、 n 列的矩阵。

对角线,其上元素的行标、列标相等 a 11 , a 22 ,⊄对角矩阵 0 * 00 0 *4.台角正上方的元素都为 0。

每个矩阵都可用初等行变换化为阶梯形矩阵和简单 阶梯形矩阵。

如果 A 是一个 n 阶矩阵 A 是阶梯形矩阵 ® A 是上三角矩阵,反之不一定, 数量矩阵 0 3 0 = 3E0 0 3单位矩阵 0 1 0 E 或I0 0 1如 0 0 1 0 1 0 是上三角,但非阶梯形 0 0 1 四.线性方程组的矩阵消元法 用同解变换化简方程再求解 上(下)三角矩阵 0 * *0 0 *T 1 三种同解变换: ①交换两个方程的上下位置。

考研数学一详细知识点总结

考研数学一详细知识点总结

考研数学一详细知识点总结一、线性代数1. 行列式行列式是线性代数中的一个重要概念,它是一个具有特定数学性质的标量函数,它可以对矩阵进行某种代数计算,得到一个数。

通过行列式的性质和运算法则,我们可以求解线性方程组的解,判断矩阵的逆矩阵是否存在等。

行列式的基本定义、性质和运算法则是线性代数中的重要基础知识点。

2. 矩阵与向量空间矩阵是线性代数中的另一个重要概念,它是一个矩形数组,它是向量空间的一种表达形式。

矩阵的定义、运算法则、转置矩阵、伴随矩阵、特征值和特征向量等都是线性代数中的重要知识点。

3. 线性变换与矩阵的相似变换线性变换是线性代数中的一个重要概念,它是定义在向量空间上的一个运算,将一个向量空间中的一个向量映射到另一个向量空间中的一个向量。

线性变换与矩阵的相似变换在数学和工程中有着广泛的应用,对于理解线性代数的基本概念和运用都具有重要意义。

4. 线性方程组线性方程组是线性代数中的一个重要概念,它是由一系列线性方程构成的方程组。

通过行列式和矩阵的知识可以求解线性方程组的解,判断矩阵的逆矩阵是否存在等。

5. 向量的线性相关性向量的线性相关性是线性代数中的另一个重要概念,它是判断向量空间中向量之间的线性组合是否有零解的一个关键概念。

向量的线性相关性的性质、判断方法和应用是线性代数中的重要知识点之一。

6. 最小二乘法最小二乘法是线性代数中的另一个重要概念,它是一种用于数据拟合和参数估计的数学方法。

通过最小二乘法可以得到一个最优的拟合曲线或者参数估计,它在数学、统计学和工程领域中都有着广泛的应用。

二、概率统计1. 随机事件与概率随机事件是概率统计中的一个重要概念,它是指在一定条件下,结果是不确定的事件。

概率是描述随机事件发生可能性的一种数学方法,它是随机事件发生可能性的度量标准。

随机事件的基本性质和概率的基本性质是概率统计中的基础知识点。

2. 条件概率与独立性条件概率是指在已知一件事情发生的情况下,另一件事情发生的可能性。

考研数学线性代数必考的知识点

考研数学线性代数必考的知识点

考研数学线性代数必考的知识点一、行列式与矩阵第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练掌握。

行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算二、向量与线性方程组三、特征值与特征向量相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。

其原因是解决相关题目要用到线代中的大量内容,既有行列式、矩阵又有线性方程组和线性相关,“牵一发而动全身”。

四、二次型本章所讲的内容从根本上讲是第五章《特征值和特征向量》的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵A存在正交矩阵Q使得A可以相似对角化”,其过程就是上一章相似对角化在为实对称矩阵时的应用。

考研数学概率以大纲为本夯实基础从考试的角度,大家看看历年真题就发现比较明显的规律:概率的题型相对固定,哪考大题哪考小题非常清楚。

概率常考大题的地方是:随机变量函数的分布,多维分布(边缘分布和条件分布),矩估计和极大似然估计。

其它知识点考小题,如随机事件与概率,数字特征等。

从学科的角度,概率的知识结构与线性代数不同,不是网状知识结构,而是躺倒的树形结构。

第一章随机事件与概率是基础知识,在此基础上可以讨论随机变量,这就是第二章的内容。

随机变量之于概率正如矩阵之于线性代数。

考生也可以看看考研真题,数一、数三概率考五道题,这五题的第一句话为“设随机变量X……”,“设总体X……”,“设X1,X2,…,Xn为来自X的简单随机样本”,无论“随机变量”、“总体”和“样本”本质上都是随机变量。

所以随机变量的理解至关重要。

讨论完随机变量之后,讨论其描述方式。

分布即为描述随机变量的方式。

分布包括三种:分布函数、分布律和概率密度。

其中分布函数是通用的描述工具,适用于所有随机变量,分布律只针对离散型随机变量而概率密度只针对连续型随机变量。

之后讨论常见的离散型和连续性随机变量,考研范围内需要考生掌握七种常见分布。

介绍完一维随机变量之后,推广一下就得到了多维随机变量。

考研线性代数总结

考研线性代数总结

考研线性代数总结关键信息项:1、线性代数的基本概念行列式矩阵向量线性方程组2、线性代数的核心理论矩阵的秩线性相关性线性变换特征值与特征向量3、考研重点题型行列式的计算矩阵的运算与求逆向量组的线性表示与线性相关性判定线性方程组的求解与解的结构矩阵的特征值与特征向量的计算二次型的标准化与正定判定11 线性代数的基本概念111 行列式行列式是线性代数中的一个基本概念,它是一个数值。

行列式的定义基于排列的逆序数。

行列式的计算方法包括按行(列)展开、利用行列式的性质化简等。

行列式在求解线性方程组、判断矩阵可逆性等方面有重要应用。

112 矩阵矩阵是线性代数的核心概念之一,它是一个数表。

矩阵的运算包括加法、数乘、乘法、转置等。

矩阵的逆是一个重要概念,只有方阵且行列式不为 0 时可逆。

矩阵的秩反映了矩阵的内在结构和性质。

113 向量向量可以看作是具有方向和大小的量。

向量组的线性相关和线性无关是重要的性质。

向量空间是由向量构成的集合,具有特定的运算和性质。

114 线性方程组线性方程组可以用矩阵形式表示,通过系数矩阵和增广矩阵来研究。

线性方程组有解的条件、解的结构是重要的考点。

12 线性代数的核心理论121 矩阵的秩矩阵的秩是矩阵的一个重要指标,它表示矩阵中行向量或列向量的线性无关组数。

通过初等变换可以求矩阵的秩。

秩在判断线性方程组解的情况、向量组的线性相关性等方面起关键作用。

122 线性相关性向量组的线性相关性判断方法包括定义法、行列式法、秩法等。

线性相关和线性无关的性质和应用需要熟练掌握。

123 线性变换线性变换是将一个向量空间映射到另一个向量空间的函数,且保持线性运算。

可以通过矩阵来表示线性变换,研究其性质和作用。

124 特征值与特征向量特征值和特征向量反映了矩阵在特定方向上的缩放比例和方向。

求特征值和特征向量的方法和步骤需要熟练掌握,在矩阵对角化等方面有重要应用。

13 考研重点题型131 行列式的计算常见的行列式类型包括上(下)三角行列式、爪型行列式、范德蒙德行列式等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《线性代数》复习提纲第一章、行列式1.行列式的定义:用2n 个元素ij a 组成的记号称为n 阶行列式。

(1)它表示所有可能的取自不同行不同列的n 个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算一阶|α|=α行列式,二、三阶行列式有对角线法则; N 阶(n ≥3)行列式的计算:降阶法定理:n 阶行列式的值等于它的任意一行(列)的各元素和其对应的代数余子式乘积的和。

方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。

特殊情况:上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;◊行列式值为0的几种情况:Ⅰ 行列式某行(列)元素全为0; Ⅱ 行列式某行(列)的对应元素相同;Ⅲ 行列式某行(列)的元素对应成比例; Ⅳ 奇数阶的反对称行列式。

3.概念:全排列、排列的逆序数、奇排列、偶排列、余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:一个排列中任意两个元素对换,改变排列的奇偶性。

奇排列变为标准排列的对换次数为基数,偶排列为偶数。

n 阶行列式也可定义:n q q q na a a ⋯=∑21t211-D )(,t 为n q q q ⋯21的逆序数4.行列式性质:1、行列式和其转置行列式相等。

2、互换行列式两行或两列,行列式变号。

若有两行(列)相等或成比例,则为行列式0。

3、行列式某行(列)乘数k,等于k 乘此行列式。

行列式某行(列)的公因子可提到外面。

4、行列式某行(列)的元素都是两数之和,则此行列式等于两个行列式之和。

5、行列式某行(列)乘一个数加到另一行(列)上,行列式不变。

6、行列式等于他的任一行(列)的各元素和其对应代数余子式的乘积之和。

(按行、列展开法则)7、行列式某一行(列)和另一行(列)的对应元素的代数余子式乘积之和为0.5.克拉默法则::若线性方程组的系数行列式0D ≠,则方程有且仅有唯一解DD D Dx D D n =⋯==n 2211x ,x ,,。

:若线性方程组无解或有两个不同的解,则系数行列式D=0. :若齐次线性方程组的系数行列式0D ≠,则其没有非零解。

:若齐次线性方程组有非零解,则其系数行列式D=0。

6.112nr r r nr r r r ==∏,()11(1)221nr n n r r nr r r r -==-∏()n ababad bc c dcd=-, 1232222123111111231111()n n i j n i j n n n n nx x x x x x x x x x x x x x ≥>≥----=-∏,(两式要会计算)题型:Page21(例13)第二章、矩阵1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等); 2.矩阵的运算(1)加减、数乘、乘法运算的条件、结果; (2)关于乘法的几个结论:①矩阵乘法一般不满足交换律(若AB =BA ,称A 、B 是可交换矩阵); ②矩阵乘法一般不满足消去律、零因式不存在; ③若A 、B 为同阶方阵,则|AB|=|A|*|B|; ④|kA|=n k *|A|。

只有方阵才有幂运算。

(3)转置:(kA )T =kA T , ()TTA B AB T =(4)方阵的行列式:A A T =,A k kA n =,B A AB =(5)伴随矩阵:E A A A AA **==,-1)A(E A A *=,*A 的行元素是A 的列元素的代数余子式 (6)共轭矩阵:)=(Aij a ,A+B=A+B ,A k kA =,B A AB =(7)矩阵分块法:⎪⎪⎪⎭⎫⎝⎛++++=+sr sr s s r r B A BA B A B A11111111B A ,⎪⎪⎪⎭⎫ ⎝⎛=T sr r11s T11TA A A A AT T 3.对称阵:方阵A A T =。

对称阵特点:元素以对角线为对称轴对应相等。

3.矩阵的秩(1)定义:非零子式的最大阶数称为矩阵的秩; (2)秩的求法:一般不用定义求,而用下面结论:范德蒙德行列矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。

求秩:利用初等变换将矩阵化为阶梯阵得秩。

(3)0≤R(n m A ⨯)≤min{m,n} ; ()()A R A R T = ;若B ~A ,则R(A)=R(B) ;若P 、Q 可逆,则R(PAQ)=R(A) ; max{R(A),R(B)} ≤R(A,B) ≤R(A)+R(B) ; 若AB=C ,R(C)≤min{R(A),R(B)} 4.逆矩阵(1)定义:A 、B 为n 阶方阵,若AB =BA =I ,称A 可逆,B 是A 的逆矩阵(满足半边也成立); (2)性质:()111---=A B AB , ()()' A A'1-1-=;(A B 的逆矩阵,你懂的)(注意顺序) (3)可逆的条件:① |A|≠0; ②r(A)=n; ③A->I;(4)逆的求解:○1伴随矩阵法A*1-A A =;②初等变换法(A:I )->(施行初等变换)(I:1-A ) (5)方阵A 可逆的充要条件有:○1存在有限个初等矩阵1P ,…,l P ,使l P P P A 21= ○2E A ~ 第三章、初等变换和线性方程组1、 初等变换:○1()()B Aji−−→−↔,○2()()BAki−→−⨯,○3()()BAji+k−−→−⨯ 性质:初等变换可逆。

等价:若A 经初等变换成B ,则A和B等价,记作B ~A ,等价关系具有反身性、对称性、传递性。

初等矩阵:由单位阵E 经过一次初等变换得到的矩阵。

定理:对n m A ⨯施行一次初等行变换,相当于在A 的左边乘相应的m 阶初等矩阵;对n m A ⨯施行一次初等列变换,相当于在A 的右边乘相应的n 阶初等矩阵。

等价的充要条件:○1 R(A)=R(B)=R(A,B) ○2n m ⨯的矩阵A、B等价⇔存在m 阶可逆矩阵P 、n 阶可逆矩阵Q ,使得PAQ=B 。

线性方程组解的判定定理:(1) r(A,b)≠r(A) 无解;(2) r(A,b)=r(A)=n 有唯一解;(3)r(A,b)=r(A)<n 有无穷多组解;特别地:对齐次线性方程组AX=0,(1) r(A)=n 只有零解;(2) r(A)<n 有非零解; 再特别,若为方阵,(1)|A|≠0 只有零解;(2)|A|=0 有非零解 2.齐次线性方程组(1)解的情况:r(A)=n ⇔只有零解 ; r(A)<n ⇔有无穷多组非零解。

(2)解的结构:r n r n a c a c a c X --++= 2211。

(3)求解的方法和步骤:①将增广矩阵通过行初等变换化为最简阶梯阵;②写出对应同解方程组; ③移项,利用自由未知数表示所有未知数;④表示出基础解系;⑤写出通解。

(4)性质:○1若1ξ=x 和2ξ=x 是向量方程A*x=0的解,则21ξξ+=x 、1ξk x =也是该方程的解。

○2齐次线性方程组的解集的最大无关组是该齐次线性方程组的基础解系。

○3若r A n m =⨯)(R ,则n 元齐次线性方程组A*x=0的解集S 的秩r -=n R S 。

3.非齐次线性方程组(1)解的情况:○1有解⇔ R(A)=R(A,b)。

○2唯一解⇔ R(A)=R(A,b)=n 。

○3无限解⇔ R(A)=R(A,b)<n 。

(2)解的结构: X=u+r n r n a c a c a c --++ 2211。

(3)无穷多组解的求解方法和步骤:和齐次线性方程组相同。

(4)唯一解的解法:有克莱姆法则、逆矩阵法、消元法(初等变换法)。

(5)○1若1η=x 、2η=x 都是方程b Ax =的解,则21ηη-=x 是对应齐次方程0=Ax 的解○2η=x 是方程b Ax =的解,ξ=x 是0=Ax 的解,则ηξ+=x 也是b Ax =的解。

第四章、向量组的线性相关性1.N 维向量的定义(注:向量实际上就是特殊的矩阵——行矩阵和列矩阵;默认向量a 为列向量)。

2.向量的运算:(1)加减、数乘运算(和矩阵运算相同);(2)向量内积 α'β=a1b1+a2b2+…+anbn ; (3)向量长 22221a n a a a a a +++='=(4)向量单位化 (1/|α|)α;3.线性组合(1)定义:若m m a a a λλλ+++= 2211b ,则称b 是向量组1a ,2a ,…,n a 的一个线性组合,或称b 可以用向量组1a ,2a ,…,n a 的线性表示。

(2)判别方法:将向量组合成矩阵,记 A =(1a ,2a ,…,n a )○1 B=(1a ,2a ,…,n a ,β),则:r (A)=r (B) ⇔b 可以用向量组1a ,2a ,…,n a 线性表示。

○2B=(1b ,2b ,…,m b ),则: B 能由A 线性表示⇔R(A)=R(A,B) ⇔AX=B 有解⇒R(B)≤R(A). (3)求线性表示表达式的方法:矩阵B 施行行初等变换化为最简阶梯阵,则最后一列元素就是表示的系数。

注:求线性表示的系数既是求解Ax=b 4.向量组的线性相关性 (1)线性相关和线性无关的定义设 02211=+++n n a k a k a k ,若k1,k2,…,kn 不全为0,称线性相关;若全为0,称线性无关。

(2)判别方法:① r(α1,α 2,…,αn)<n ,线性相关; r(α1,α 2,…,αn)=n ,线性无关。

②若有n 个n 维向量,可用行列式判别: n 阶行列式|{ij a }|=0,线性相关(≠0无关)○3A:1a ,2a ,…,n a , B:1a ,2a ,…,n a ,1+n a ,若A 相关则B 一定相关,若B 相关A 不一定相关; 若A 无关,B 相关,则向量1+n a 必能由A 线性表示,且表示式唯一。

注:含零向量的向量组必定相关。

5.极大无关组和向量组的秩(1)定义:最大无关组所含向量个数称为向量组的秩(2)求法:设A =(1a ,2a ,…,n a ),将A 化为阶梯阵,则A 的秩即为向量组的秩,而每行的第一个非零元所在列的向量就构成了极大无关组。

(3)矩阵的秩等于它的行向量组的秩也等于它的列向量组的秩。

注:如何证明()()A R A A R T =,101P .第五章、相似矩阵及二次型1、向量内积:[]y x y x T =,。

内积性质:[][]x y y x ,,=,[][]x y y x ,,λλ=,[][][]x z x y y z x ,,,+=+;:当x=0时,[]0,=x x ,当x ≠0时,[]0,>x x2、向量长度:[]22221,n x x x x x x +⋯++==性质:非负性0≥x 、齐次性x x λλ=、三角不等式y x y x +≤+3、正交:[]0,=y x 称x 和y 正交。

相关文档
最新文档