广东省珠海市2021届高三上学期摸底考试 数学(word版含答案)

合集下载

广东省珠海市2021届高三上学期摸底考试 数学(含答案)

广东省珠海市2021届高三上学期摸底考试 数学(含答案)

a 不能去甲医院,则不同的选派方式共有
A.280 种
B.350 种
C.70 种
D.80 种
4.一球 内接一圆锥,圆锥的轴截面为正三⻆形
,过 作与球 相切的平面,则直线 与平面所
成的⻆为
A.30°
B.45°
C.15°
D.60°
5.现有 8 位同学参加音乐节演出,每位同学会拉小提琴或会吹⻓笛,已知 5 人会拉小提琴,5 人会吹⻓笛,
,过 作与球 相切的平面,则直线 与所成的
⻆为 D
A.30°
B.45°
C.15°
D.60°
5.现有 8 位同学参加音乐节演出,每位同学会拉小提琴或会吹⻓笛,已知 5 人会拉小提琴,5 人会吹⻓笛,
现从这 8 人中随机选一人上场演出,恰好选中两种乐器都会演奏的同学的概率是 A
A.
B.
C.
D.
6.若定义在上的奇函数 f(x)在
(2)求二面⻆
的正切值.

,平面PBC⊥ 底面ABC,,
(第19题图)
20.(12分)某药企对加工设备进行升级,现从设备升级前、后生产的大量产品中各抽取了100件产品作为
样本检测某项质量指标值: 该项质量指标值落在
内的产品为优等品,每件售价240元;质量指标值
落在

内的为一等品,每件售价为180元;质量指标值落在
(第 10 题图)
A.
B.
C.
D.
11.已知
,则
A.
B.
C.
D.
12.已知随机变量的取值为不大于
的非负整数,它的概率分布列为


其中
满足
,且
.定义由生成的函数

广东省珠海市2021届高三一模数学试题(解析版)

广东省珠海市2021届高三一模数学试题(解析版)
(1)熟练掌握利用正余弦定理进行角化边或边化角;
(2)利用余弦定理结合基本不等式求最值.
16.若以函数 的图像上任意一点 为切点作切线 , 图像上总存在异于 点的点 ,使得以 为切点的直线 与 平行,则称函数 为“美函数”,下面四个函数中是“美函数”的是_________.




【答案】②③
【解析】
【答案】
【解析】
【分析】根据等式,左边 ,
右边 ,所以 ,由正弦定理得 ,带入余弦定理利用基本不等式即可得解.
【详解】 ,


所以 ,
由正弦定理得, ,
由余弦定理得, ,
当且仅当 时取等号,此时 .
故答案为: .
【点睛】本题考查了解三角形,考查了恒等变换化简求值,同时考查了基本不等式求最值,有一定的计算量,属于中档题.本题的关键有:
则 ,
由约束条件作出可行域如图,
联立 ,解得 , ,
由 ,得 ,由图可得,当直线 过 时,
直线在 轴上的截距最大, 有最大值为 ,即 .
故选:B.
7.下列四个叙述中,错误的是()
A.“ 为真”是“ 为真”的必要不充分条件
B.命题 :“ 且 , 的值域是 ”,则 :“ 且 ,使得 ”
C.已知 且 ,原命 平面 ;
(2)求直线 与平面 所成角的正切值.
【答案】(1)证明见解析;(2)
【解析】
【分析】(1)要证明线面平行,需证明线线平行,通过作辅助线,连接 设与 交于 ,连接 ,即可证明 ;(2)过 作 交 于 ,连接 ,根据线面角的定义, 即为所求.
【详解】(1)证明:连接 设与 交于 ,连接 ,
则第1行到第44行末一共有990个奇数,第1行到第45行末一共有1035个数,

2021届广东省珠海市高三上学期第一次摸底数学试题(解析版)

2021届广东省珠海市高三上学期第一次摸底数学试题(解析版)

2021届广东省珠海市高三上学期第一次摸底数学试题一、单选题1.设集合{}2|4A x x =>,{}2|30B x x x =-<,则AB =( )A .(5,2)(2,6)--B .(2,2)-C .(,5)(6,)-∞-+∞D .(,2)(2,)-∞-+∞【答案】A【解析】本题首先可以通过对不等式24x >、230x x -<进行计算得出集合A 和集合B 中所包含的元素,然后通过交集的相关性质即可得出结果. 【详解】24x >,即2x >或2x <-,则集合()(),22,A =-∞-⋃+∞,230x x -<,即650x x ,解得56x ,则集合()5,6B =-,故(5,2)(2,6)A B ⋂=--⋃, 故选:A. 【点睛】本题考查集合的相关运算,主要考查交集的相关运算,考查一元二次不等式的解法,考查计算能力,是简单题.2.27(1)i i-=( ) A .1 B .2C .−iD .−2i【答案】B【解析】利用复数的四则运算,计算结果即可. 【详解】化简得2732(1)22221i i i i i ----====-. 故选:B. 【点睛】本题考查了复数的四则运算和虚数单位的幂运算,属于基础题.3.8名医生去甲、乙、丙三个单位做核酸检测,甲、乙两个单位各需三名医生,丙需两名医生,其中医生a 不能去甲医院,则不同的选派方式共有( )A .280种B .350种C .70种D .80种【答案】B【解析】对医生a 去乙、丙医院进行讨论,分别按要求选派,即得结果. 【详解】若医生a 去乙医院,再依次为甲、乙、丙三个单位选派得322742210C C C =; 若医生a 去丙医院,再依次为甲、乙、丙三个单位选派得331741140C C C =;所以不同的选派方式共有210140350+=种. 故选:B. 【点睛】本题考查了组合的应用,分类加法计数原理和分步乘法计数原理,属于基础题. 4.一球O 内接一圆锥,圆锥的轴截面为正三角形ABC ,过C 作与球O 相切的平面α,则直线AC 与平面α所成的角为( ) A .30° B .45°C .15°D .60°【答案】D【解析】分析得平面α与圆锥底面平行,求直线AC 与圆锥底面所成的角,即得结果. 【详解】如图所示截面为正三角形的三棱锥中,,,A B C 在球O 上,过C 作与球O 相切的平面α必然与圆锥底面平行,则直线AC 与平面α所成的角,即直线AC 与圆锥底面所成的角,即60CAB ∠=︒, 故选:D. 【点睛】本题考查了球内接圆锥,直线与平面所成的角,属于基础题.5.现有8位同学参加音乐节演出,每位同学会拉小提琴或会吹长笛,已知5人会拉小提琴,5人会吹长笛,现从这8人中随机选一人上场演出,恰好选中两种乐器都会演奏的同学的概率是( )A .14B .12C .38D .58【答案】A【解析】根据题意:8位同学会拉小提琴或会吹长笛,已知5人会拉小提琴,5人会吹长笛即可知有2位同学两种乐器都会演奏,利用古典概型的概率公式求概率即可; 【详解】由题意知,8位同学中有2位同学两种乐器都会演奏∴从8人中随机选一人上场演出,恰好选中两种乐器都会演奏的同学的概率为:(P 两种乐器都会演奏的同学12181)4C C ==故选:A 【点睛】本题考查了古典概型,首先根据已知判断两种乐器都会演奏的学生人数,然后利用古典概型的概率公式求概率;6.若定义在R 上的奇函数()f x 在()0,∞+单调递增,且()50f -=,则满足()0xf x <的解集是( ) A .()(),55,-∞-+∞ B .()(),50,5-∞- C .()()5,05,-+∞D .()()5,00,5-【答案】D【解析】分析出函数()f x 在(),0-∞单调递增,可得出()50f =,然后分0x >、0x =、0x <三种情况解不等式()0xf x <,综合可得出原不等式的解集.【详解】由于定义在R 上的奇函数()f x 在()0,∞+单调递增,则该函数在(),0-∞单调递增, 且()00f =,()()550f f =--=. 显然当0x =时,()000f ⨯=;当0x >时,由()0xf x <可得()()05f x f <=,解得05x <<; 当0x <时,由()0xf x <可得()()05f x f >=-,解得5x 0-<<. 因此,不等式()0xf x <的解集为()()5,00,5-.【点睛】本题考查利用函数的奇偶性与单调性解函数不等式,考查分析问题和解决问题的能力,属于中等题.7.已知P 是边长为1的正方形ABCD 边上或正方形内的一点,则AP BP ⋅的最大值是( ) A .14B .2C .1D .12【答案】C【解析】构建A 为原点,AB 为x 轴,AD 为y 轴的直角坐标系用坐标表示各顶点,设(,)P x y 则可用坐标表示22AP BP x x y ⋅=-+,由于,x y 是两个相互独立的变量,即可将代数式中含x 和y 的部分分别作为独立函数求最大值,它们的和即为AP BP ⋅的最大值 【详解】构建以A 为原点,AB 为x 轴,AD 为y 轴的直角坐标系,如下图示:由正方形ABCD 边长为1,知:(1,0),(1,1),(0,1)B C D , 若令(,)P x y ,即(,)AP x y =,(1,)BP x y =-; ∴22AP BP x x y ⋅=-+,而01x ≤≤,01y ≤≤,则2211()()24f x x x x =-=--在01x ≤≤上0x =或1x =有最大值为0,2()g y y =在01y ≤≤上1y =有最大值为1;∴AP BP ⋅的最大值为1 故选:C本题考查了利用坐标表示向量数量积求最值,首先构建直角坐标系将目标向量用坐标表示,根据数量积的坐标公式得到函数式,进而求最大值8.直线:l y kx b =+是曲线()()ln 1f x x =+和曲线()()2ln g x e x =的公切线,则b =( ) A .2 B .12C .ln2e D .()ln 2e【答案】C【解析】由()f x k '=可求得直线l 与曲线()()ln 1f x x =+的切点的坐标,由()g x k '=可求得直线l 与曲线()()2ln g x e x =的切点坐标,再将两个切点坐标代入直线l 的方程,可得出关于k 、b 的方程组,进而可求得实数b 的值. 【详解】设直线l 与曲线()()ln 1f x x =+相切于点()11,A x y ,直线l 与曲线()()2ln g x e x =相切于点()22,B x y ,()()ln 1f x x =+,则()11f x x '=+,由()1111f x k x '==+,可得11k x k-=, 则()()111ln 1ln y f x x k ==+=-,即点1,ln k A k k -⎛⎫-⎪⎝⎭, 将点A 的坐标代入直线l 的方程可得1ln kk k b k--=⋅+,可得ln 1b k k =--,① ()()2ln 2ln g x e x x ==+,则()1g x x '=,由()221g x k x '==,可得21x k =, ()222ln y g x k ==-,即点1,2ln B k k ⎛⎫- ⎪⎝⎭,将点B 的坐标代入直线l 的方程可得12ln 1k k b b k-=⋅+=+,1ln b k ∴=-,② 联立①②可得2k =,1ln 2ln 2e b =-=. 故选:C. 【点睛】本题考查利用两曲线的公切线求参数,要结合切点以及切线的斜率列方程组求解,考查计算能力,属于中等题.二、多选题9.已知双曲线E 的中心在原点,对称轴为坐标轴,渐近线方程为2y x =±,则双曲线E 的离心率为( )A .5 B .5C .53D .35【答案】AB【解析】对双曲线的焦点位置进行讨论,得,a b 关系,再计算离心率即可. 【详解】若双曲线焦点在x 轴上,因为渐近线方程为2y x =±,故2ba=,215c b e a a ⎛⎫∴==+= ⎪⎝⎭;若双曲线焦点在y 轴上,由渐近线方程为2y x =±,得2ab=,251c b e a a ⎛⎫∴==+= ⎪⎝⎭. 故选:AB. 【点睛】本题考查了双曲线的离心率,考查了分类讨论思想,属于基础题. 10.如图是函数()()()sin 0f x A x ωϕω=+>的部分图象,则( )A .()12sin 24f x x π⎛⎫=+⎪⎝⎭B .()12sin 22f x x π⎛⎫=+⎪⎝⎭C .()12sin 22f x x π⎛⎫=-- ⎪⎝⎭D .()12cos 2f x x ⎛⎫=⎪⎝⎭【答案】BCD【解析】由图象可求得函数()y f x =的振幅A 以及最小正周期T ,可求得ω的值,再将点()0,2的坐标代入函数()y f x =的解析式可求得ϕ的值,结合诱导公式可得出合【详解】由图象可得()max 2f x A ==,该函数的最小正周期T 满足122T π=,可得4T π=,212T πω∴==,所以,()12sin 2ϕ⎛⎫=+ ⎪⎝⎭f x x , 又()02sin 2f ϕ==,可得sin 1ϕ=,()22k k Z πϕπ∴=+∈,()1112sin 22sin 2cos 22222f x x k x x πππ⎛⎫⎛⎫⎛⎫∴=++=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,B 、D 选项合乎要求;对于A 选项,()112sin 2sin 2422f x x x ππ⎛⎫⎛⎫=+≠+ ⎪ ⎪⎝⎭⎝⎭,不合乎要求;对于C 选项,()1112sin 2sin 2cos 22222f x x x x ππ⎛⎫⎛⎫⎛⎫=--=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,C 选项合乎要求. 故选:BCD. 【点睛】本题考查利用图象求正弦型函数的解析式,同时也考查了诱导公式的应用,考查计算能力,属于中等题.11.已知0ab <,则( ) A .222a b ab +≥ B .222a b ab +<C .()0a a b ->D .2b aa b+≥ 【答案】ACD【解析】由,a b 异号,利用不等式性质以及基本不等式即可判断各选项的正误; 【详解】0ab <即,a b 异号;∴222a b ab +≥成立,故A 正确,而B 错误; 又2()0a a b =a ab -->,故C 正确;||()()2b a b a a b a b +=-+-≥=当且仅当=-a b 时等号成立,故D 正确 故选:ACD本题考查了不等式,根据两数异号,结合不等式性质以及基本不等式判断正误,属于简单题;12.已知随机变量X 的取值为不大于()n n N *∈的非负整数,它的概率分布列为其中(0,1,2,3,,)i p i n =满足[0,1]i p ∈,且0121n p p p p ++++=.定义由X 生成的函数230123()i n i n f x p p x p x p x p x p x =+++++++,()g x 为函数()f x 的导函数,()E X 为随机变量X 的期望.现有一枚质地均匀的正四面体型骰子,四个面分别标有1,2,3,4个点数,这枚骰子连续抛掷两次,向下点数之和为X ,此时由X 生成的函数为1()f x ,则( ) A .()(2)E X g = B .115(2)2f =C .()(1)E X g =D .1225(2)4f = 【答案】CD【解析】先求出1211123()'()23i n i n g x f x p p x p x ip x np x --==++++++和123()23i n E X p p p ip np =++++++,并判断123()23(1)i n E X p p p ip np g =++++++=,则排除选项A ,判断选项C 正确;再求出X 的分布列和1()f x 的解析式,最后求出1225(2)4f =,则排除选项B ;判断选项D 正确. 【详解】解:因为230123()i n i n f x p p x p x p x p x p x =+++++++,则1211123()'()23i n i n g x f x p p x p x ip x np x --==++++++,123()23i n E X p p p ip np =++++++, 令1x =时,123()23(1)i n E X p p p ip np g =++++++=,故选项A 错误,选项C 正确;连续抛掷两次骰子,向下点数之和为X ,则X 的分布列为:234567811234321()16161616161616f x x x x x x x x =++++++ 234567811234321225(2)2222222161616161616164f =⨯+⨯+⨯+⨯+⨯+⨯+⨯=故选项B 错误;选项D 正确. 故选:CD. 【点睛】本题考查导数的运算、由X 生成的函数求数学期望、求随机变量生成的函数与函数值,是基础题.三、填空题13.椭圆22:143x y E +=的左、右焦点分别为1F 、2F ,过原点的直线l 与E 交于A ,B两点,1AF 、2BF 都与x 轴垂直,则||AB =________.【解析】根据题中所给的椭圆方程,以及椭圆中,,a b c 三者之间的关系,可以求得21c =,设出()()111,,1,A y B y --,由两点间距离公式可以求得AB =据点在椭圆上点的坐标满足椭圆方程,求得2194y =,之后代入求得AB ==. 【详解】在已知椭圆中,222431c a b =-=-=, 因为直线l 过原点,交椭圆于,A B 两点, 则A 与B 关于原点对称, 又1AF 、2BF 都与x 轴垂直,设()()111,,1,A y B y --,则AB ==又A 在椭圆上,则211143y +=,得2194y =,则AB ==,【点睛】该题考查的是有关椭圆的问题,涉及到的知识点有椭圆中,,a b c 三者之间的关系,椭圆上点的坐标的特征,两点间距离公式,属于基础题目. 14.将数列{}2n与{}2n 的公共项从小到大排列得到数列{}n a ,则{}na 的前10项和为________(用数字作答). 【答案】2046【解析】本题首先可以根据题意确定数列{}n a 的前10项,然后通过等比数列求和公式即可得出结果. 【详解】因为数列{}n a 是由数列{}2n与{}2n 的公共项从小到大排列得到,所以数列{}n a 的前10项为2、22、32、42、、102,则{}n a 的前10项和为101121222204612,故答案为:2046. 【点睛】本题考查数列的项以及等比数列求和公式的应用,能否根据题意确定数列中的项是解决本题的关键,考查计算能力,是简单题.15.已知α、β为锐角三角形的两个内角,sin α=sin()αβ+=,则cos 2β=____.【答案】12-【解析】由条件利用同角三角函数的基本关系式得到cos α、cos()αβ+,再用凑角得到cos β,最后利用二倍角公式得到答案.【详解】因为α、β为锐角三角形的两个内角, 所以0<,022ππαβ,<2παβπ,因为sin α=,sin()αβ+=,所以1cos 7α===,11cos()14αβ+===-, 所以cos cos()cos()cos sin()sin ββαααβααβα=+-=+++11111477142=-⨯+=, 则211cos 22cos12142ββ=-=⨯-=-, 故答案为:12-. 【点睛】 本题主要考查同角三角函数的基本关系式,两角差的三角公式、倍角公式,属于基础题. 16.一半径为R 的球的表面积为64π,球一内接长方体的过球心的对角截面为正方形,则该长方体体积的最大值为_____.【答案】【解析】由球体的表面积公式求出半径R ,根据其内接长方体的过球心的对角截面为正方形,设内接长方体的长、宽、高分别为,,a b c 即有222+=a b c 、2232a b +=,最后利用长方体的体积公式有V =【详解】由半径为R 的球的表面积为64π,知:2464R ππ=,有4R =;由题意,若设内接长方体的长、宽、高分别为,,a b c ,则222+=a b c ,2222464a b c R ++==;∴2232a b +=,而长方体体积V abc ==∴3222()2a b V +=≤=当且仅当4a b ==时等号成立故答案为:【点睛】本题考查了空间几何体的表面积和体积,根据球体表面积公式得到其半径,由内接长方体的对角截面为正方形即可得长、宽、高的等量关系,利用长方体的体积公式结合基本不等式求最值四、解答题17.在①1cos 2B =,②1cos 2C =,③cos 2C = 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在非直角△ABC ,它的内角,,A B C 的对边分别为,,a b c ,且sin (12cos )2sin cos cos sin B C A C A C +=+,1b =,________?注:如果选择多个条件分别解答,按第一个解答计分.【答案】答案见解析.【解析】利用两角和正弦公式化简三角函数式,得到(2sin sin )cos 0B A C -=,结合题设可知2a b =且1b =、2a =,进而利用①或②或③求得相关结论,判断是否与题设矛盾即可;若不矛盾,利用正余弦定理即可求c 的值;【详解】△ABC 中,由sin (12cos )2sin cos cos sin B C A C A C +=+,得sin 2sin cos sin cos cos sin sin cos B B C A C A C A C +=++sin sin cos B A C =+∴(2sin sin )cos 0B A C -=;∵△ABC 不是直角三角形;∴cos 0C ≠,则有2sin sin B A =,即2a b =,而1b =,即有2a =; 选①:由1cos 2B =,及0B π<< 得3B π=;由sin sin b a B A= 得sin 1A =>不合理,故△ABC 不存在.选②:由1cos 2C =得:c ==222b c a +=; ∴A 为直角,不合题设,故△ABC 不存在.选③:由cos 2C =得:c ==. 【点睛】 本题考查了解三角形及三角恒等变换等相关知识,利用三角恒等变换中两角和正弦公式化简已知函数式,进而得到相关结果,再结合所给条件得到相关结论并判断是否与题设矛盾;18.已知数列{}n a 是正项等比数列,满足3452a a a +=,121a a +=.(1)求{}n a 的通项公式;(2)设2log (3)n n t a =,求数列121n n t t ++⎧⎫⎨⎬⎩⎭的前n 项和n T . 【答案】(1)123n n a -=;(2)1n n T n =+. 【解析】(1)本题首先可设数列{}n a 的公比为q ,然后根据题意得出2341111121a q a q a q a a q ⎧+=⎨+=⎩,通过计算求出1a 和q 的值,最后根据等比数列通项公式即可得出结果;(2)本题首先可根据123n n a -=得出1n t n =-,然后根据1n t n =-得出121111n n t t n n ++=-+,最后通过裂项相消法求和即可得出结果. 【详解】(1)设正项等比数列{}n a 的公比为0q >,因为3452a a a +=,121a a +=,所以2341111121a q a q a q a a q ⎧+=⎨+=⎩,解得1132a q ⎧=⎪⎨⎪=⎩, 故{}n a 的通项公式123n n a -=. (2)因为123n n a -=,所以122log (3)log 21n n n t a n -===-,则121111(1)1n n t t n n n n ++==-++, 故数列121n n t t ++⎧⎫⎨⎬⎩⎭的前n 项和为: 1111111(1)()()()2233411n n T n n n =-+-+-++-=++. 【点睛】本题考查等比数列通项公式的求法以及裂项相消法求和,常见的裂项有:111(1)1n n n n =-++、11(1)1k n n n n k 、1111()n n a a n n a ⎛⎫=- ⎪++⎝⎭等,考查计算能力,是中档题. 19.如图,三棱锥P ABC -中,2AC BC PC PB ====,120ACB ∠=,平面PBC ⊥底面ABC ,D 、E 分别是BC 、AB 的中点.(1)证明:PD ⊥平面ABC ;(2)求二面角P CE B --的正切值.【答案】(1)证明见解析;(2)2.【解析】(1)利用等腰三角形三线合一可得PD BC ⊥,由面面垂直的性质定理可得出PD ⊥平面ABC ;(2)取CE 中点F ,连接DF 、PF ,证明出CE ⊥平面PDF ,可得出二面角P CE B --的平面角为PFD ∠,通过解PDF 可求得tan PFD ∠,进而得解.【详解】(1)证明:PC PB =,D 是BC 中点,PD BC ∴⊥,平面PBC ⊥底面ABC ,平面PBC底面ABC BC =, PD ⊂平面PBC , PD ∴⊥平面ABC ;(2)如图,取CE 的中点F ,连接DF 、PF ,则//DF AB ,2AC BC PC PB ====,E 是AB 的中点,120ACB ∠=,则30CBE ∠=, CE AB ∴⊥,DF CE ∴⊥,cos303BE BC ==,223PD PD BD -=132DF BE ==, PD ⊥平面ABC ,CE ⊂平面ABC ,CE PD ∴⊥,PD DF D =,CE ∴⊥平面PDF ,PF ⊂平面PDF ,CE PF ∴⊥,PFD ∴∠为二面角P CE B --的平面角. 在Rt PDF 中,3tan 232PD PFD DF ∠===,因此,二面角P CE B --的正切值为2. 【点睛】本题考查利用面面垂直证明线面垂直,同时也考查了利用定义求解二面角的正切值,考查推理能力与计算能力,属于中等题.20.某药企对加工设备进行升级,现从设备升级前、后生产的大量产品中各抽取了100件产品作为样本检测某项质量指标值: 该项质量指标值落在[25,30)内的产品为优等品,每件售价240元;质量指标值落在[20,25)和[30,35)内的为一等品,每件售价为180元;质量指标值落在[35,40)内的为二等品,每件售价为120元;其余为不合格品,全部销毁.每件产品生产销售全部成本50元.下图是设备升级前100个样本的质量指标值的频率分布直方图下表是设备升级后100个样本的质量指标值的频数分布表质量[15,20)[20,25)[25,30)[30,35)[35,40)[40,45)指标值频2184814162数(1)以样本估计总体,若生产的合格品全部在当年内可以销售出去,计算设备升级前一件产品的利润X(元)的期望的估计值.(2)以样本估计总体,若某位患者从升级后生产的合格产品中随机购买两件,设其支付的费用为ξ(单位:元),求ξ(元)的分布列.【答案】(1)118元;(2)答案见解析.【解析】(1)根据产品等级得X取值,利用频数分布表计算频率,得到分布列并计算期望即可;(2)先列出患者购买一件合格品费用η的分布列,再写患者随机购买两件时的分布列即可.【详解】解:(1)由题设知,产品等级分为不合格、品二等品,一等品,优等品,则X=-,根据频数分布表得到X的分布列为:50,70,130,190-70130190X50设备升级前利润的期望值为:()0.14(50)0.18700.281300.4190118E X =⨯-+⨯+⨯+⨯=∴升级前一件产品的利润的期望估计值为118元.(2) 升级后设患者购买一件合格品的费用为η(元)则120,180,240η=,患者购买一件合格品的费用η的分布列为故患者随机购买两件时240,300,360,420,480ξ= 111(240)6636P ξ==⨯= 111(300)339P ξ==⨯= 11115(360)2263318P ξ==⨯⨯+⨯= 111(420)2323P ξ==⨯⨯= 111(480)224P ξ==⨯= 则升级后患者购买两件合格品的费用的分布列为【点睛】本题考查了频率分布直方图和频率分布表的应用,以及分布列和期望的计算,属于中档题.21.已知函数2()e 2()x xf x x ax e ax a =+-++,0a ≥.(1)讨论函数()f x 的单调性;(2)讨论()f x 的零点的个数.【答案】(1)减区间是(,1)-∞,增区间是(1,)+∞;(2)0a >时,()f x 有两个零点;0a =时, ()f x 只有一个零点.【解析】(1)利用函数求导,判断导数符号确定()f x 的单调性即可;(2)对a 进行分类讨论,利用零点存在定理确定零点即可.【详解】解:(1)∵2()e 2()x xf x x ax e ax a =+-++∴()(1)(e 2)x f x x a '=-+ 0a ≥时20x e a +>,故1x <时()0f x '<,1x >时()0f x '>.∴0a ≥时,()f x 的减区间是(,1)-∞,增区间是(1,)+∞;(2)①0a >时,∵()01f '=且()f x 的减区间是(,1)-∞,增区间是(1,)+∞ ∴(1)0f e =-<是()f x 的极小值,也是最小值,(2)0f a =>,取0b <且ln 2a b <则22()(2)(1)(2)(1)(23)022b a a f b b e a b b a b b b =-+->-+-=-> ∴()f x 在(,1)b 和(1,2)上各一个零点;②0a =时,()(2)x f x x e =-,只一个零点2x =,综上,0a >时,()f x 有两个零点;0a =时,()f x 一个零点.【点睛】本题考查了函数的单调性和导数的应用,函数零点问题,属于中档题.22.已知抛物线E 的顶点在原点,焦点(0,)2p F (0)p >到直线:2l y x =-的距离为2,00(,)P x y 为直线l 上的点,过P 作抛物线E 的切线PM 、PN ,切点为M N 、. (1)求抛物线E 的方程;(2)若(3,1)P ,求直线MN 的方程;(3)若P 为直线l 上的动点,求||||MF NF ⋅的最小值.【答案】(1)2:4E x y =;(2):3220MN x y --=;(3)92. 【解析】(1)利用点到直线的距离公式直接求解p 的值,便可确定抛物线方程;(2)利用求导的思路确定抛物线的两条切线,借助均过点p ,得到直线方程;(3)通过直线与抛物线联立,借助韦达定理将||||MF NF ⋅进行转化处理,通过参数的消减得到函数关系式是解题的关键,然后利用二次函数求最小值.【详解】(1)由(0,)2pF 到直线:20l x y --=的距离为2|2|2p+=得2p =或10p =-∵0p >∴2p =∴抛物线2:4E x y =(2) 由2:4E x y =知214y x = ∴2xy '=设切点11(,)M x y ,22(,)N x y 则21111111:()22222x x x x PM y y x x x x y -=-=-=- 即11:2x PM y x y =-22:2x PN y x y =-∵P PM ∈,P PN ∈ ∴112231023102x y x y ⎧--=⎪⎪⎨⎪--=⎪⎩即112232203220x y x y --=⎧⎨--=⎩∴:3220MN x y --=.(3)若P 为直线l 上的动点,设00(,)P x y ,则002x y =+由(2)知∵P PM ∈,P PN ∈∴011002200202x x y y x x y y ⎧--=⎪⎪⎨⎪--=⎪⎩ ∴00:02x MN x y y --=与2:4E x y =联立消x 得 222000(24)0y y y y y -+++=…………“”则1y ,2y 是“”的二根∴21200212024y y y y y y y ⎧+=++⎨=⎩ 121212||||(1)(1)1MF NF y y y y y y ⋅=++=+++200225y y =++ 当012y =-时,||||MF NF ⋅得到最小值为92. 【点睛】 本题是一道抛物线与直线的综合性应用问题,解题的关键是掌握抛物线的简单性质.。

广东省珠海市2021届高三数学三模试题 文

广东省珠海市2021届高三数学三模试题 文

广东省珠海市2021届高三数学三模试题 文第I 卷(选择题)一、单选题(本大题共12小题,每小题5分,共60分,在每小题列出的四个选项中,选出符合题目要求的一项.)1.已知集合{}{}21,0,1,21A B x x =-=≥,,则A B ⋂=( )A .{}1,0,1-B .{}1,2C .{}1,1-D .{}1,1,2-2.已知复数Z 在复平面上对应的点为()1,1-,则()A .1Z +是实数B .1Z +是纯虚数C .Z i +是实数D .Z i +是纯虚数 3.不等式1x x>的解集为( ) A .{}|1x x > B .{}|110x x x -<<≠且 C .{}|1x x >- D .{|1x x >或}10x -<< 4.某同学用如下方式估算圆周率,他向图中的正方形中随机撒豆子100次,其中落入正方形的内切圆内有68次,则他估算的圆周率约为( ) A .3.15B .2.72C .1.47D .3.845.函数()sin f x x x =-的零点个数为( ) A .1B .2C .3D .46.设11111++++2612(1)S n n =++,则S =( )A .211n n ++ B .21n n - C .1n n + D .21n n ++ 7.已知点()2,2P 和圆22:420C x y x y k ++++=,过P 作C 的切线有两条,则k 的取值范围是( )A .05k <<B .20k >-C .5k <D .205k -<<8.如图,正方体1111ABCD A B C D -,点P 为对角线11A C 上的点,当点P 由点1A 向点1C 运动过程中,下列说法正确的是( ) A .BPD ∆的面积始终不变 B .BPD ∆始终是等腰三角形C .BPD ∆在面11ABB A 内的投影的面积先变小再变大第4题图第8题图D .点A 到面BPD 的距离一直变大 9.函数2cos ()ln(2)xf x x 的图象可能是( )A .B .C .D .10.已知F 是双曲线22:2C xy 的一个焦点,点P 在C 上,过点P 作FP 的垂线与x 轴交于点Q ,若FPQ △为等腰直角三角形,则FPQ △的面积为( ) A .14B .54C 2D 311.天干地支纪年法,源于中国.中国自古便有十天干与十二地支.十天干即甲、乙、丙、丁、戊、己、庚、辛、壬、癸,十二地支即子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如说第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”… …依此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”“乙亥”,之后地支回到“子”重新开始,即“丙子”… …依此类推.1911年中国爆发推翻清朝专制帝制、建立共和政体的全国性革命,这一年是辛亥年,史称“辛亥革命”.1949新中国成立,请推算新中国成立的年份为( )A .己丑年B .己酉年C .丙寅年D .甲寅年 12.设函数()22()xee f x x ax =--.若只存在唯一非负整数0x ,使得()00f x <,则实数a取值范围为( ) A .(2,0e e ⎤-⎦B .()2,1e -C .(],0-∞D .()2,e e e -第II 卷(非选择题)二、填空题(本大题共4小题,每题5分,满分20分,将答案填在答题纸上) 13.函数ln ()1xf x x =+在1x =处的切线方程为____________. 14.在三棱锥P ABC -中,平面PAB ⊥平面ABC ,ABC △是边长为2的正三角形,PAB △是以AB 为斜边的直角三角形,则该三棱锥外接球的表面积为_______. 15.已知正项等比数列{}n a 的前n 项和为n S ,639S S =,23a=,则5a =_______.16.等腰直角三角形ABC ,2AB AC ==,90BAC ∠=︒.E ,F 分别为边AB ,AC 上的动点,设AE mAB =,AF nAC =,其中,(0,1)m n,且满足221m n ,M ,N分别是EF ,BC 的中点,则||MN 的最小值为_____.三、解答题.解答应写出文字说明、证明过程或演算步骤.第17〜21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题17.(本题12分)随机调查某城市80名有子女在读小学的成年人,以研究晚上八点至十点时间段辅导子女作业与性别的关系,得到下面的数据表:(1)请将表中数据补充完整;(2)用样本的频率估计总体的概率,估计这个城市有子女在读小学的成人女性晚上八点至十点辅导子女作业的概率;(3)根据以上数据,能否有99%以上的把握认为“晚上八点至十点时间段是否辅导子女作业与性别有关?”.参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:()20P K k ≥0.15 0.10 0.05 0.025 0.010 0.0050k2.072 2.7063.841 5.024 6.635 7.87918.(本题12分)如图所示,在ABD ∆中,点C 在线段AB 上,3AD =,1BC =,14BD =,2cos 3DAB ∠=. (1)求sin ABD ∠的值;(2)判断ACD ∆是否为等腰三角形.19.(本题12分)如图所示,梯形ABCD 中,//AD BC ,平面CDEF ⊥平面ABCD ,且四边形CDEF 为矩形,22BC AD ==,23CF =,13AB =,26BE =. (1)求证:AD ⊥平面BDE ; (2)求点D 到平面BEF 的距离.第18题图第19题图20.(本题12分)已知抛物线C 的顶点为坐标原点O ,对称轴为y 轴,其准线为1y =-. (1)求抛物线C 的方程;(2)设直线:l y kx n =+,对任意的k R ∈抛物线C 上都存在四个点到直线l 的距离为4,求n 的取值范围.21.(本题12分)设函数()(1)xf x e a x =--. (1)求函数()f x 的单调区间和极值;(2)若存在,m n R ∈满足m ne e a m n-=-,证明2ln m n a +<成立.(二)选考题请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本题10分)在平面直角坐标内,直线l 过点()2,3P,且倾斜角6=πα.以坐标原点O为极点,x 轴的非负半轴为极轴建立极坐标系,已知圆C 的极坐标方程为=4sin ρθ. (1)求圆C 的直角坐标方程; (2)设直线l 与圆C 交于A B ,两点,求PA PB +的值.23.(本题10分)已知函数()1f x x =-.(1)解不等式()(1)4f x f x ++≥;(2)当0x ≠,x ∈R 时,证明:1()()2f x f x-+≥.珠海市2021-2022度第二学期学业质量监测高三文科数学试题 第I 卷(选择题)一、单选题(本大题共12小题,每小题5分,共60分,在每小题列出的四个选项中,选出符合题目要求的一项.) 1.已知集合{}{}21,0,1,21A B x x =-=≥,,则A B ⋂=( )A .{}1,0,1-B .{}1,2C .{}1,1-D .{}1,1,2-【答案】D 由{}11B x x x ≥=≤或,所以A B ⋂={}1,1,2- 2.已知复数Z 在复平面上对应的点为()1,1-,则( )A .1Z +是实数B .1Z +是纯虚数C .Z i +是实数D .Z i +是纯虚数【答案】C由题意可知z =1-i, 所以z +i 是实数,故选C. 3.不等式1x x>的解集为( ) A .{}|1x x > B .{}|110x x x -<<≠且 C .{}|1x x >-D .{|1x x >或}10x -<<【答案】D 不等式1x x >⇔()221100100x x x x x x x-->⇔>⇔->≠且得解集{|1x x >或}10x -<<4.某同学用如下方式估算圆周率,他向图中的正方形中随机撒豆子100次,其中落入正方形的内切圆内有68次,则他估算的圆周率约为( ) A .3.15 B .2.72 C .1.47D .3.84【答案】B 根据几何概型226844100S r S r ππ==≈圆正得π≈2.72 5.函数()sin f x x x =-的零点个数为( ) A .1B .2C .3D .4【答案】A 由()sin f x x x =-的零点转化为方程sin x x =的根,由y x =与sin y x =的图象只有一个交点,可得()sin f x x x =-只有一个零点6.设11111++++2612(1)S n n =++,则S =( )A .211n n ++ B .21n n - C .1n n+ D .21n n ++ 【答案】A 由11111++++2612(1)S n n =++得11111++++122334(1)S n n =+⨯⨯⨯+111111112111++++222334111n S n n n n +=+-==+++----7.已知点()2,2P 和圆22:420C x y x y k ++++=,过P 作C 的切线有两条,则k 的取值范围是( )A .05k <<B .20k >-C .5k <D .205k -<<【答案】D 由22:420C x y x y k ++++=得()()22:+2+15C x y k +=-,则50k ->得5k <,要使过P 作C 的切线有两条,则点P 在圆外,从而5PC k >-得20k >-,所以205k -<<.8.如图,正方体1111ABCD A B C D -,点P 为对角线11A C 上的点,当点P 由点1A 向点1C 运动过程中,下列说法正确的是( ) A .BPD ∆的面积始终不变 B .BPD ∆始终是等腰三角形C .BPD ∆在面11ABB A 内的投影的面积先变小再变大 D .点A 到面BPD 的距离一直变大【答案】B BPD ∆的面积始终不变先变小再变大,A不对;由于=BP DP ,BPD ∆始终是等腰三角形所以B正确;BPD ∆在面11ABB A 内投影的面积不变,所以C不对;点A 到面BPD 的距离先变大再变小,所以D不对。

广东省珠海市2021-2021学年高三上学期摸底数学试卷(文科) Word

广东省珠海市2021-2021学年高三上学期摸底数学试卷(文科) Word

广东省珠海市2021-2021学年高三上学期摸底数学试卷(文科)Word广东省珠海市2021-2021学年高三上学期摸底数学试卷(文科)最新试卷十年寒窗苦,踏上高考路,心态放平和,信心要十足,面对考试卷,下笔如有神,短信送祝福,愿你能高中,马到功自成,金榜定题名。

最新试卷多少汗水曾洒下,多少期待曾播种,终是在高考交卷的一刹尘埃落地,多少记忆梦中惦记,多少青春付与流水,人生,总有一次这样的成败,才算长大。

一、选择题(共10小题,每小题0分,满分0分)1.已知集合M={2,3,4},N={0,2,3,4,5},则?NM=() A. {2,3,4} B. {0,2,3,4,5} C. {0,5} D.{3,5}2.为了解72名学生的学习情况,采用系统抽样的方法,从中抽取容量为8的样本,则分段的间隔为() A. 9 B. 8 C. 10 D.73.在等比数列{an}中,有a1a5=4,则a3的值为() A.±2 B.��2 C. 24.已知复数z满足(1��i)z=2,则z=() A.��1��i B.��1+i C. 1��i5.下列函数中,定义域是R且为增函数的是() A. y=e B. y=x C. y=lnx6.如图为某几何体的三视图,则其体积为()��xD.4D.1+iD.y=|x|A. 2B. 4C.7.设a,b∈R,则“a+b>4”是“a>2且b>2”的() A.充分非必要条件B.必要非充分条件 C.充要条件 D.既非充分又非必要条件8.对任意的[��,]时,不等式x+2x��a≤0恒成立,则实数a的取值范围是()A.(��∞,0]B.(��∞,3]C. [0,+∞)D.[,+∞)29.若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是()A.10.设点M(x0,1),若在圆O:x+y=1上存在点N,使得∠OMN=30°,则x0的取值范围是() A. [��,]B. [��,]C. [��2,2]D.[��,]2B. C. D.二、填空题(共5小题,每小题0分,满分0分) 11.不等式组12.在△ABC中,a=1,b=2,cosC=,则c=.13.若曲线y=xlnx上点P处的切线平行于直线x��y+1=0,则点P的坐标是. 14.在平面直角坐标系中,曲线C的参数方程为15.如图,已知=,|F2F4|=��1是圆O的两条弦,C2,F1,C1,则圆O的半径等于.(t为参数)的普通方程为.表示的平面区域的面积为.三、解答题(共5小题,满分0分) 16.已知函数f(x)=Asin(x+),x∈R,且f()=(1)求A的值;(2)若角θ的终边与单位圆的交于点P(,),求f(��θ).17.甲、乙两位学生参加数学竞赛培训,在培训期间,他们参加的4次预赛成绩记录如下:甲 82 84 79 95 乙 95 75 80 90(1)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;(2)①求甲、乙两人的成绩的平均数与方差,②若现要从中选派一人参加数学竞赛,根据你的计算结果,你认为选派哪位学生参加合适?18.在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形.(1)若A C⊥BC,证明:直线BC⊥平面ACC1A1;(2)是否存在过A1C的平面α,使得直线BC1∥α平行,若存在请作出平面α并证明,若不存在请说明理由.19.设F1,F2分别是椭圆E:+=1(a>b>0)的左、右焦点,过点F1的直线交椭圆E于A,B两点,|AF1|=3|BF1|,且|AB|=4,△ABF2的周长为16 (1)求|AF2|;(2)若直线AB的斜率为1,求椭圆E的方程.20.设函数f(x)=x��(1+a)x+ax,其中a>1 (1)求f(x)在的单调区间;(2)当x∈[1,3]时,求f(x)最小值及取得时的x的值.32广东省珠海市2021-2021学年高三上学期摸底数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题0分,满分0分)1.已知集合M={2,3,4},N={0,2,3,4,5},则?NM=() A. {2,3,4} B. {0,2,3,4,5} C. {0,5} D.{3,5}考点:补集及其运算.专题:集合.分析:根据集合补集的定义即可得到结论.解答:解:∵M={2,3,4},N={0,2,3,4,5},∴?NM={0,5},故选:C点评:本题主要考查集合的基本运算,比较基础.2.为了解72名学生的学习情况,采用系统抽样的方法,从中抽取容量为8的样本,则分段的间隔为() A. 9 B. 8 C. 10 D.7考点:系统抽样方法.专题:概率与统计.分析:根据系统抽样的定义,即可得到结论.解答:解:从72人,从中抽取容量为8的样本,则分段的间隔为72÷8=9,故选:A点评:本题主要考查系统抽样的应用,比较基础.3.在等比数列{an}中,有a1a5=4,则a3的值为() A.±2 B.��2 C. 2考点:等比数列的通项公式.专题:等差数列与等比数列.D.4分析:由等比数列的性质得=4,由此能求出a3=±2.解答:解:∵在等比数列{an}中,有a1a5=4,∴=4,解得a3=±2.故选:A.点评:本题考查等比数列的等3项的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.4.已知复数z满足(1��i)z=2,则z=() A.��1��i B.��1+i C. 1��i D.1+i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的运算法则即可得出.解答:解:z=,故选:D.点评:本题考查了复数的运算法则,属于基础题.5.下列函数中,定义域是R且为增函数的是()A. y=e B. y=x C. y=lnx D.y=|x|考点:函数单调性的判断与证明.专题:函数的性质及应用.分析:根据函数单调性的性质和函数成立的条件,即可得到结论.解答:解:A.函数的定义域为R,但函数为减函数,不满足条件. B.函数的定义域为R,函数增函数,满足条件. C.函数的定义域为(0,+∞),函数为增函数,不满足条件.D.函数的定义域为R,在(0,+∞)上函数是增函数,在(��∞,0)上是减函数,不满足条件.故选:B.点评:本题主要考查函数定义域和单调性的判断,比较基础.6.如图为某几何体的三视图,则其体积为()��xA. 2B. 4C.D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:由三视图可知几何体是:底面为直角三角形一条侧棱垂直底面直角顶点的三棱锥,列出体积表达式,可求几何体的体积.解答:解:几何体是:底面为直角三角形一条侧棱垂直底面直角顶点的三棱锥,感谢您的阅读,祝您生活愉快。

2021珠海一模(理数)含答案--全WORD--精心排版

2021珠海一模(理数)含答案--全WORD--精心排版

2021珠海一模(理数)含答案--全WORD--精心排版珠海市2021--2021学年度第一学期期末学生学业质量监测高三理科数学试题一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卡上填涂相应选项.x1.已知全集U?R,集合A?yy?2,x?R,则CUA=()??A.? B.(0,+∞) C. (-∞,0] D.R 2.已知a,b是实数,则“??a?2”是“a?b?5”的()?b?3A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件3.若某程序框图如图所示,则该程序运行后输出的值是() A.4 B.5 C.6 D.7 4. 已知直线l,m和平面?,则下列命题正确的是()A.若l//m,m??,则l//? B.若l//?,m??,则l//m C.若l?m,l??,则m//? D.若l??,m??,则l?m 5.已知是虚数单位,复数i=() 3?i13131313A.?i B.??i C.??i D.??i8810101010886.函数y?sin?2x? A.向左平移?????的图象可由函数y?sin2x的图象()4?ππ个单位长度而得到 B.向右平移个单位长度而得到88ππ C.向左平移个单位长度而得到 D.向右平移个单位长度而得到44?x?y?5?0?7.若实数x,y满足不等式组?x?y?0 则2x?4y的最小值是()?x?3?A.6 B.4 C.?2 D.?68.对于直角坐标平面内的任意两点A(x1,y1)、B(x2,y2),定义它们之间的一种“距离”:‖AB‖=x1?x2?y1?y2,给出下列三个命题:①若点C在线段AB上,则‖AC‖+‖CB‖=‖AB‖;②在△ABC中,若∠C=90°,则‖AC‖+‖CB‖=‖AB‖;③在△ABC中,‖AC‖+‖CB‖>‖AB‖. 其中真命题的个数为() A. 0 B. 1 C. 2 D.3二、填空题:本大题共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题,两题全答的,只计算前一题得分.请将答案填在答题卡相应位置. (一)必做题(9-13题)19.函数y?sinx的导函数y?? . x10.在递增等比数列?an?中,a2?2,a4?a3?4,则公比q=.11.某学校三个社团的人员分布如下表(每名同学只参加一个社团):合唱社粤曲社武术社a 45 30 高一15 10 20 高二学校要对这三个社团的活动效果进行抽样调查,按分层抽样的方法从社团成员中抽取30人,结果合唱社被抽出12人,则这三个社团人数共有_______________. 12.在△ABC中,内角A,B,C的对边分别为a,b,c,已知C=?3,b?3,若△ABC的面积为33 ,则c= . 2x2y213.如图,F1,F2是双曲线C:2?2?1?a?0,b?0?的左、右焦点,过F1ab的直线与C的左、右两支分别交于A,B两点.若| AB | : | BF2 | : | AF2 |=3 : 4 : 5,则双曲线的离心率为 . (二)选做题(14-15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在直角坐标系xoy中,已知曲线C1:??x?t?2(t为参数)与曲线C2:?y?1?2t?x?3cos?(?为参数)相交于两个点A、B,则线段AB的长为 . ?y?3sin??15.(几何证明选讲选做题)如图,PAB、PCD为⊙O的两条割线,若PA=5, AB=7,CD=11,AC=2,则BD等于 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.??16.(本小题满分12分)设向量a??2,sin??,b??1,cos??,?为锐角.??13b?,求sin??cos?的值;(1)若a?6?????(2)若a//b,求sin?2???的值.3??17.(本小题满分12分)某中学校本课程共开设了A,B,C,D共4门选修课,每个学生必须且只能选修1门选修课,现有该校的甲、乙、丙3名学生:(1)求这3名学生选修课所有选法的总数;(2)求恰有2门选修课没有被这3名学生选择的概率;(3)求A选修课被这3名学生选择的人数的数学期望.18.(本小题满分14分)已知某几何体的直观图和三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.(1)求证:BC//平面C1B1N;2(2)求证:BN?平面C1B1N;(3)设M为AB中点,在BC边上找一点P,使MP//平面CNB1,并求BP的值. PCx2y219.(本题满分14分) 已知椭圆C:2?2?1(a?b?0),左、右两个焦点分别为F1、F2,上顶点A(0,b),ab?AF1F2为正三角形且周长为6.(1)求椭圆C的标准方程及离心率;(2)O为坐标原点,P是直线F1A上的一个动点,求|PF2|?|PO|的最小值,并求出此时点P的坐标.12ax?2x,g(x)?lnx. 2(1)如果函数y?f(x)在[1,??)上是单调减函数,求a的取值范围;g(x)1(2)是否存在实数a?0,使得方程?f?(x)?(2a?1)在区间(,e)内有且只有两个不相等的实数根?若xe存在,请求出a的取值范围;若不存在,请说明理由.20.(本小题满分14分)已知函数f(x)?21.(本题满分14分)已知正项数列?an?的前n项和为Sn,且Sn?(1)求a1的值及数列?an?的通项公式;an(an?2)* (n?N). 411115(n?N*); ??????3333a1a2a3an32?an?11111(3)是否存在非零整数?,使不等式?(1?)(1?)???(1?)cos对一切n?N*都成立??a1a2an2an?1(2)求证:若存在,求出?的值;若不存在,说明理由.珠海市2021~2021学年第一学期普通高中学生学业质量监测高三理科数学试题参考答案及评分标准一、选择题:CABD AADB 二、填空题:9、三、解答题:xcosx?sinx 10、2 11、150 12、x27 13、13 14、 4 15、 63??131b?2?sin?cos??,?sin?cos??…………… 3分 16.解:(1)因为?a?66??sin??cos???1?2sin?cos??2423,又??为锐角,?sin??cos??.………… 6分33??2sin?cos?2tan?4??(2)解法一:?a//b,?tan??2…… 8分,?sin2??2sin?cos??,sin2??cos2?tan2??15cos2??sin2?1?tan2?3cos2??cos??sin?????………… 10分sin2??cos2?tan2??1522??13143?3?4?33? (12)分 ?sin?2????sin2??cos2?????????3?22252?5?10???255解法二:?a//b,?tan??2 (8)分,?sin??, ,cos??55?sin2??2sin?cos??4322,cos2??cos??sin???…………… 10分55??13143?3?4?33?………… 12分 ?sin?2????sin2??cos2?????????3?22252?5?10?17. 解:(Ⅰ)每个学生有四个不同选择,根据乘法法则,选法总数N=4?4?4?64 …… 3分222C4C3A22?3?3?29??………… 7分(Ⅱ) 恰有2门选修课这3名学生都没选择的概率为P2?4?4?41643(Ⅲ) 设A选修课被这3名学生选择的人数为?,则?=0,1,2,3113C3?32273?C3C3332791P(?=0)=3?,P(?=1)=,P(=2)=,P(=3)= (9)分 ?????464436443644364?的分布列是2727913?1??2??3?? ………… 12分 64646464418. 解:(1)证明:E??0? 4?该几何体的正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形,?BA,BC,BB1两两互相垂直。

珠海市2021届第一学期高三摸底测试(数学)

珠海市2021届第一学期高三摸底测试(数学)

B. f (x) = 2sin(1 x + ) 22
D. f (x) = 2 cos(1 x) 2
A. a2 + b2 2ab
B. a2 + b2 2ab
C. a(a − b) 0
D. b + a 2 ab
12.已知随机变量 X 的取值为不大于 n(n N ) 的非负整数,它的概率分布列为
X 0 1 2 3 …n
p p0 p1 p2 p3
… pn
其中 pi (i = 0,1, 2,3, , n) 满足 pi [0,1] ,且 p0 + p1 + p2 +
+ pn = 1.定义由 X 生成的
函数 f (x) = p0 + p1x + p2x2 + p3x3 + + pi xi + + pnxn , g (x) 为函数 f (x) 的导函数,
B. 5
C. 5 3 3
D. 3 5 5
10.如图是函数 f (x) = Asin(x + ) ( 0) 的部分图象,则
A. f (x) = 2sin(1 x + ) 24
C. f (x) = −2sin(1 x − ) 22
11.已知 ab 0 ,则
(第 10 题图)
B. f (x) = 2sin(1 x + ) 22
M、N

(1)求抛物线 E 的方程;
(2) 若 P(3,1) ,求直线 MN 的方程;
(3)若 P 为直线 l 上的动点,求| MF | | NF | 的最小值.
6
数学参考答案
一、选择题:本题共 8 小题,每小题 5 分,共 40 分。在每小题给出的四个选项中,只有一 项是符合题目要求的。

广东省珠海市2021届高三上学期9月摸底测试数学试题

广东省珠海市2021届高三上学期9月摸底测试数学试题

珠海市2020-2021学年度第一学期高三摸底考试 数学 2020.9一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|4A x x =>, {}2|30B x x x =-<,则A B =A .(5,2)(26)--,B .(22)-,C .(,5)(6)-∞-+∞,D .(,2)(2)-∞-+∞, 2.27(1)i i-= A .1 B . 2 C . i - D .2i -3.8名医生去甲、乙、丙三个单位做核酸检测,甲、乙两个单位各需三名医生,丙需两名医生,其中医生a 不能去甲医院,则不同的选派方法共有A .280种B .350种C .70种D .80种4.一球O 内接一圆锥,圆锥的轴截面为正三角形ABC ,过C 作球O 相切的平面α,则直线AC 与平面α所成的角为A . 30︒B .45︒C .15︒D . 60︒5.现有8位同学参加音乐节演出,每位同学会拉小提琴或会吹长笛,已知5人会拉小提琴,5人会吹长笛,现从这8人中随机选一人上场演出,恰好选中两种乐器都会斗演奏的同学的概率是A .14B .12C ..38D .586.若定义在R 上的奇函数()f x 在(0)+∞,单调递增,且(-5)=0f ,则满足()0xf x <的解集是A .(,5)(5)-∞-+∞,B .(,5)(05)-∞-,C .(50)(5)-+∞,, D .(50)(05)-,, 7.已经P 是边长为1的正方形ABCD 上或正方形内的一点,则AP BP ⋅的最大值为A .14B .2C .1D .128.直线:l y kx b =+是曲线()ln(1)f x x =+和曲线2()ln()g x e x =的公切线,则b =A .2B .12 C .ln 2e D .ln 2e ()二、选择题:本小题共4题,每小题5分,共20分,在每小题给出的选项中有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的,得3分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

珠海市2020-2021学年度第一学期高三摸底测试数 学2020.9一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合错误!未找到引用源。

,错误!未找到引用源。

,则错误!未找到引用源。

A .错误!未找到引用源。

B .错误!未找到引用源。

C .错误!未找到引用源。

D .错误!未找到引用源。

2.错误!未找到引用源。

A .1B .2C .−iD .−2i3.8名医生去甲、乙、丙三个单位做核酸检测,甲、乙两个单位各需三名医生,丙需两名医生,其中医生a 不能去甲医院,则不同的选派方式共有 A .280种B .350种C .70种D .80种4.一球错误!未找到引用源。

内接一圆锥,圆锥的轴截面为正三角形错误!未找到引用源。

,过错误!未找到引用源。

作与球错误!未找到引用源。

相切的平面错误!未找到引用源。

,则直线错误!未找到引用源。

与平面错误!未找到引用源。

所成的角为 A .30°B .45°C .15°D .60°5.现有8位同学参加音乐节演出,每位同学会拉小提琴或会吹长笛,已知5人会拉小提琴,5人会吹长笛,现从这8人中随机选一人上场演出,恰好选中两种乐器都会演奏的同学的概率是 A .错误!未找到引用源。

B .错误!未找到引用源。

C .错误!未找到引用源。

D .错误!未找到引用源。

6.若定义在错误!未找到引用源。

上的奇函数f (x )在错误!未找到引用源。

单调递增,且错误!未找到引用源。

,则满足错误!未找到引用源。

的解集是A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

7.已知P是边长为1的正方形ABCD边上或正方形内的一点,则错误!未找到引用源。

的最大值是A.错误!未找到引用源。

B.2 C.错误!未找到引用源。

D.错误!未找到引用源。

8.直线错误!未找到引用源。

是曲线错误!未找到引用源。

和曲线错误!未找到引用源。

的公切线,则错误!未找到引用源。

A.2 B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

二、选择题:本题共4小题,每小题5分,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,有选错的得0分,部分选对的得3分。

9.已知双曲线错误!未找到引用源。

的中心在原点,对称轴为坐标轴,渐近线方程为错误!未找到引用源。

,则双曲线错误!未找到引用源。

的离心率为A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

10.如图是函数错误!未找到引用源。

错误!未找到引用源。

的部分图象,则(第10题图)A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

11.已知错误!未找到引用源。

,则A .错误!未找到引用源。

B .错误!未找到引用源。

C .错误!未找到引用源。

D .错误!未找到引用源。

12.已知随机变量错误!未找到引用源。

的取值为不大于错误!未找到引用源。

的非负整数,它的概率分布列为其中错误!未找到引用源。

满足错误!未找到引用源。

,且错误!未找到引用源。

.定义由错误!未找到引用源。

生成的函数错误!未找到引用源。

,错误!未找到引用源。

为函数错误!未找到引用源。

的导函数,错误!未找到引用源。

为随机变量错误!未找到引用源。

的期望.现有一枚质地均匀的正四面体型骰子,四个面分别标有1,2,3,4个点数,这枚骰子连续抛掷两次,向下点数之和为错误!未找到引用源。

,此时由错误!未找到引用源。

生成的函数为错误!未找到引用源。

,则A .错误!未找到引用源。

B .错误!未找到引用源。

C .错误!未找到引用源。

D .错误!未找到引用源。

三、填空题:本题共4小题,每小题5分,共20分。

13.椭圆错误!未找到引用源。

的左、右焦点分别为错误!未找到引用源。

、错误!未找到引用源。

,过原点的直线错误!未找到引用源。

与错误!未找到引用源。

交于A ,B 两点,错误!未找到引用源。

、错误!未找到引用源。

都与错误!未找到引用源。

轴垂直,则错误!未找到引用源。

=________.14.将数列错误!未找到引用源。

与错误!未找到引用源。

的公共项从小到大排列得到数列{a n },则{a n }的前10项和为________(用数字作答).15.已知错误!未找到引用源。

、错误!未找到引用源。

为锐角三角形的两个内角,错误!未找到引用源。

,错误!未找到引用源。

,则错误!未找到引用源。

.16.一半径为错误!未找到引用源。

的球的表面积为错误!未找到引用源。

,球一内接长方体的过球心的对角截面为正方形,则该长方体体积的最大值为 .四、解答题:本题共6小题,共70分。

解答应写出文字说明、证明过程或演算步骤。

17.(10分)在①错误!未找到引用源。

, ②错误!未找到引用源。

, ③错误!未找到引用源。

这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求的值;若问题中的三角形不存在,说明理由.问题:是否存在非直角错误!未找到引用源。

,它的内角错误!未找到引用源。

的对边分别为错误!未找到引用源。

,且错误!未找到引用源。

,错误!未找到引用源。

,________?注:如果选择多个条件分别解答,按第一个解答计分.18.(12分)已知数列错误!未找到引用源。

是正项等比数列,满足错误!未找到引用源。

,错误!未找到引用源。

. (1)求错误!未找到引用源。

的通项公式;(2)设错误!未找到引用源。

,求数列错误!未找到引用源。

的前错误!未找到引用源。

项和错误!未找到引用源。

.19.(12分)如图,三棱锥错误!未找到引用源。

中,错误!未找到引用源。

,错误!未找到引用源。

,平面PBC ⊥底面ABC ,错误!未找到引用源。

,错误!未找到引用源。

分别是错误!未找到引用源。

,错误!未找到引用源。

的中点.(1)证明:PD ⊥平面ABC ;(2)求二面角错误!未找到引用源。

的正切值.(第19题图)20.(12分)某药企对加工设备进行升级,现从设备升级前、后生产的大量产品中各抽取了100件产品作为样本检测某项质量指标值: 该项质量指标值落在错误!未找到引用源。

内的产品为优等品,每PEDCBA件售价240元;质量指标值落在错误!未找到引用源。

和错误!未找到引用源。

内的为一等品,每件售价为180元;质量指标值落在错误!未找到引用源。

内的为二等品,每件售价为120元;其余为不合格品,全部销毁.每件产品生产销售全部成本50元.下图是设备升级前100个样本的质量指标值的频率分布直方图(第20题图)下表是设备升级后100个样本的质量指标值的频数分布表(1) 以样本估计总体,若生产的合格品全部在当年内可以销售出去,计算设备升级前一件产品的利润错误!未找到引用源。

(元)的期望的估计值.(2)以样本估计总体,若某位患者从升级后生产的合格产品中随机购买两件,设其支付的费用为错误!未找到引用源。

(单位:元),求错误!未找到引用源。

(元)的分布列.21.(12分)已知函数错误!未找到引用源。

,错误!未找到引用源。

.(1)讨论函数错误!未找到引用源。

的单调性;(2)讨论错误!未找到引用源。

的零点的个数.22.(12分)已知抛物线错误!未找到引用源。

的顶点在原点,焦点错误!未找到引用源。

错误!未找到引用源。

到直线错误!未找到引用源。

的距离为错误!未找到引用源。

,错误!未找到引用源。

为直线错误!未找到引用源。

上的点,过错误!未找到引用源。

作抛物线错误!未找到引用源。

的切线错误!未找到引用源。

、错误!未找到引用源。

,切点为错误!未找到引用源。

.(1)求抛物线错误!未找到引用源。

的方程;(2) 若错误!未找到引用源。

,求直线错误!未找到引用源。

的方程;(3)若错误!未找到引用源。

为直线错误!未找到引用源。

上的动点,求错误!未找到引用源。

的最小值.珠海市2020-2021学年度第一学期高三摸底测试数学 2020.9解析及评分参考一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合错误!未找到引用源。

,错误!未找到引用源。

,则错误!未找到引用源。

AA .错误!未找到引用源。

B .错误!未找到引用源。

C .错误!未找到引用源。

D .错误!未找到引用源。

2.错误!未找到引用源。

B A .1B .2C .−iD .−2i3.8名医生去甲、乙、丙三个单位做核酸检测,甲、乙两个单位各需三名医生,丙需两名医生,其中医生a 不能去甲医院,则不同的选派方式共有 B A .280种B .350种C .70种D .80种4.一球错误!未找到引用源。

内接一圆锥,圆锥的轴截面为正三角形错误!未找到引用源。

,过错误!未找到引用源。

作与球错误!未找到引用源。

相切的平面错误!未找到引用源。

,则直线错误!未找到引用源。

与错误!未找到引用源。

所成的角为 D A .30°B .45°C .15°D .60°5.现有8位同学参加音乐节演出,每位同学会拉小提琴或会吹长笛,已知5人会拉小提琴,5人会吹长笛,现从这8人中随机选一人上场演出,恰好选中两种乐器都会演奏的同学的概率是 A A .错误!未找到引用源。

B .错误!未找到引用源。

C .错误!未找到引用源。

D .错误!未找到引用源。

6.若定义在错误!未找到引用源。

上的奇函数f (x )在错误!未找到引用源。

单调递增,且错误!未找到引用源。

,则满足错误!未找到引用源。

的解集是 D A .错误!未找到引用源。

B .错误!未找到引用源。

C .错误!未找到引用源。

D .错误!未找到引用源。

7.已知P是边长为1的正方形ABCD边上或正方形内的一点,则错误!未找到引用源。

的最大值是 CA.错误!未找到引用源。

B.2 C.错误!未找到引用源。

D.错误!未找到引用源。

8.直线错误!未找到引用源。

是曲线错误!未找到引用源。

和曲线错误!未找到引用源。

的公切线,则错误!未找到引用源。

CA.2 B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

二、选择题:本题共4小题,每小题5分,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,有选错的得0分,部分选对的得3分。

9.已知双曲线错误!未找到引用源。

的中心在原点,对称轴为坐标轴,渐近线方程为错误!未找到引用源。

,则双曲线错误!未找到引用源。

的离心率为ABA.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

10.如图是函数错误!未找到引用源。

错误!未找到引用源。

的部分图象,则BCDA.错误!未找到引用源。

相关文档
最新文档