电子衍射谱的标定

合集下载

单晶电子衍射谱标定入门朱玉亮

单晶电子衍射谱标定入门朱玉亮

钢铁研究总院特殊钢研究所不锈钢研究室单晶电子衍射谱标定入门编写:朱玉亮前言作为材料分析的重要手段,透射电镜电子显微分析具有能够将材料的晶体结构分析与其微观形貌观察相结合的优点,因而在材料的研究中得到了广泛的应用。

但也正是因为涉及到材料结构问题,使得电子衍射分析不同于常规的扫描电镜等材料微观形貌分析手段,研究者必须具备一定的理论基础知识。

电子衍射分析涉及到的基础理论涵盖晶体学、衍射学等内容,其中包括倒易点阵、结构因子等诸多概念。

对于初次接触电子衍射的研究者而言,这些理论往往难以在短时间内掌握。

但运用电子衍射的目的主要是为了确定某些物相,而确定物相的过程主要是对单晶电子衍射谱进行标定,相对而言这是较为容易掌握的。

并且掌握这一技能也有助于进一步理解电子衍射的基本理论。

电子衍射标定物相的依据在于,对于某种物相,其特定指数晶面具有特定的晶面间距;而不同的物相其同一晶面指数的晶面间距是不同的。

在标定单晶电子衍射谱之前,需要明确两点:1、衍射谱中每一个衍射斑代表晶体中的一个衍射晶面,衍射谱的中央最亮斑点为透射斑,其余斑点为衍射斑;2、衍射谱中由透射斑指向任一衍射斑构成一个向量,该向量的方向与其所对应的一组平行晶面的方向相同,其长度与该晶面组中相邻晶面的间距成反比。

本文适于作为初学电子衍射标定的基础参考资料。

对于电子衍射具体理论的学习,有大量可供参考的文献专著,本文在最后也列出了部分可供参考的相关文献及著作。

由于编者知识水平有限,对于文中出现的错误,敬请谅解。

图2 扫描仪扫描出来的透射照片 a 原始扫描照片;b 反相处理后图1 电子衍射花样形成原理 1. 电子衍射基本公式电子衍射花样形成原理图如1所示,图中OO*为电子入射方向,O 点为透射试样所在位置。

球O 是半径为1/λ的反射球(也叫爱瓦尔德球,Ewald Sphere )。

O*G*为满足布拉格方程的衍射面所对应的倒易矢量。

O’为照相底片中的透射斑,G’为OG*衍射线投影在底片上的衍射斑。

TEM分析中电子衍射花样的标定

TEM分析中电子衍射花样的标定

TEM分析中电⼦衍射花样的标定来源:科袖⽹。

1.1电⼦衍射谱的种类在透射电镜的衍射花样中,对于不同的试样,采⽤不同的衍射⽅式时,可以观察到多种形式的衍射结果。

如单晶电⼦衍射花样,多晶电⼦衍射花样,⾮晶电⼦衍射花样,会聚束电⼦衍射花样,菊池花样等。

⽽且由于晶体本⾝的结构特点也会在电⼦衍射花样中体现出来,如有序相的电⼦衍射花样会具有其本⾝的特点,另外,由于⼆次衍射等会使电⼦衍射花样变得更加复杂。

上图中,图a和d是简单的单晶电⼦衍射花样,图b是⼀种沿[111]p⽅向出现了六倍周期的有序钙钛矿的单晶电⼦衍射花样(有序相的电⼦衍射花样);图c是⾮晶的电⼦衍射结果,图e和g是多晶电⼦的衍射花样;图f是⼆次衍射花样,由于⼆次衍射的存在,使得每个斑点周围都出现了⼤量的卫星斑;图i和j是典型的菊池花样;图h和k是会聚束电⼦衍射花样。

在弄清楚为什么会出现上⾯那些不同的衍射结果之前,我们应该先搞清楚电⼦衍射的产⽣原理。

电⼦衍射花样产⽣的原理与X射线并没有本质的区别,但由于电⼦的波长⾮常短,使得电⼦衍射有其⾃⾝的特点。

1.2电⼦衍射谱的成像原理在⽤厄⽡尔德球讨论X射线或者电⼦衍射的成像⼏何原理时,我们其实是把样品当成了⼀个⼏何点,但实际的样品总是有⼤⼩的,因此从样品中出来的光线严格地讲不能当成是⼀⽀光线。

之所以我们能够⽤厄⽡尔德来讨论问题,完全是由于反射球⾜够⼤,存在⼀种近似关系。

如果要严格地理解电⼦衍射的形成原理,就有必要搞清楚两个概念:Fresnel(菲涅尔)衍射和Fraunhofer(夫朗和费)衍射。

所谓Fresnel(菲涅尔)衍射⼜称为近场衍射,⽽Fraunhofer(夫朗和费)衍射⼜称为远场衍射.在透射电⼦显微分析中,即有Fresnel(菲涅尔)衍射(近场衍射)现象,同时也有Fraunhofer(夫朗和费)衍射(远场衍射)。

Fresnel(菲涅尔)衍射(近场衍射)现象主要在图像模式下出现,⽽Fraunhofer(夫朗和费)衍射(远场衍射)主要是在衍射情况下出现。

电子衍射谱的标定

电子衍射谱的标定

第二章 电子衍射谱的标定2. 1透射电镜中的电子衍射透射电镜中的电子衍射基本公式为:λL Rd =R 为透射斑到衍射斑的距离(或衍射环半径),d 为晶面间距,λ为电子波长,L 为有效相机长度。

p i M M f L 0=0f 为物镜的焦距,i M 中间镜放大倍数,p M 投影镜的放大倍数,在透射电镜 的工作中,有效的相机长度L ,一般在照相底板中直接标出,各种类型的透射电镜标注方法不同,λ为电子波长,由工作电压决定,工作电压一般可由底板标注确定,对没有标注的早期透射电镜在拍摄电子衍射花样时,记录工作时的加速电压,由电压与波长对应表中查出λ。

K L =λK 为有效机相常数,单位A mm ,如加速电压U =200仟伏,则A 21051.2-⨯=λ,若有效相机长度mm L 800=,则A mm K 08.201051.28002=⨯⨯=-透射电镜的电子衍射有效相机常数确定方法: 电子衍射有效相机常数确定方法,一般有三种方法 ①按照相底片直接标注计算:H -800透射电镜的电子衍射底片下方有一列数字,如: 0.80 91543 4A 90.5.21;0.80表示有效相机长度mm M L 8008.0==,91543为片号,4A 其A 表示工作电压200千伏查表知电子波长A 21051.2-⨯=λ则有效相机常数K 为:A mm L K 08.201051.28002=⨯⨯==-λH -800透射电镜中,电子衍射底片第一个数字为相机长度如:0.80,0.40,……第三个数字为工作电压U ,分别为4A ,4b ,4c ,4d ,相对应的工作电压分别为200,175,150,100千伏,对应的电子波长分别为:22221070.3,1095.2,1071.2,1051.2----⨯⨯⨯⨯埃。

由电镜有关参数确定的相机常数是不精确的,常因电镜中电气参数变化而改变,产生一些误差,电镜工作者常要根据经验作些修正。

②用金Au 多晶环状花样校正相机常数例如喷金Au 多晶样品在H -800透射电镜下拍摄多晶环状花样,如照片上标注为0.40 92298 4A 90.11.21知有效相机长度L =0.4M =400mm工作电压为200仟伏 电子波长为:A 21051.2-⨯=λ由仪器确定的相机常数A mm L K 04.10==λ 测量底片上4个以上环半径K d R i =计算出相应的i d查面心立方Au 的d 值表,找出与上述i d 相近的d 及其晶面指数d i 2.231 1.912 1.385 1.181 d hkl 2.335 2.039 1.442 1.230 hkl1110020221.13按公式R i d hkl =K i 求相应的K iR i 4.5 5.25 7.25 8.5 d hkl 2.335 2.039 1.442 1.230 hkl10.6010.7010.5010.50精确的相机常数K 为K i 的平均值44321k k k k K +++==450.1050.1070.1060.10+++=A mm 58.10③已知晶体标准电子衍射谱确定相机常数铝单晶典型电子衍射花样,铝为面心立方,与标准电子衍射谱比较,对电子衍射班点标定分别为: h i k i l i 111 111 220R i 即中心斑点到最邻近衍射斑点距离分别为: R i 9.6 9.6 9.6 16 利用A 1的d 值表查出d hkl hkl 111 111 220d hkl 2.338 2.338 1.432按公式hkl i i d R K =求K i R i (mm ) 9.6 9.6 16)(A d hkl 2.238 2.238 1.432K i 22.8 22.8 22.9求K i 平均值 3321k k k K ++=39.228.228.22++=K )(mm R i 4.55.25 7.25 8.5 )(A d i2.2311.9121.3851.181=A mm 8.222.2多晶环状花样电子衍射分析多晶电子衍射环状花样的R 2比值规律: 立方晶系:K Rd = ∴dKR =K 为相机常数,d 为晶面间距,R 为环半径。

第112章电子衍射图的标定

第112章电子衍射图的标定
022γ 111γ
-111γ 000
1 1 1 1 11
0 2 20 2 2 0 -2 2
复合斑点
[011]γ
[001- ]α
022γ
011 // 001
-111γ
111γ
110α
000
020α
1-10α
011 // 001
111
//
110
三. 多晶电子衍射图的标定
多晶体是由随机任意排列的微晶或纳米晶组成.
磁转角的大小
若显微镜像相对于样品的磁转角为Φi 衍射斑点相对于样品的磁转角为Φd
• 则 Φ=Φi - Φd
• 用电子衍射确定相结构时,不需要效正磁转角. • 对样品微区进行显微组织和衍射图对应分析时(惯习 面,孪晶面,确定位向关系) 需要效正磁转角. • 效正方法,用外形特征反应晶体位向的MoO3做标样.
2g(hkl)=g(2h,2k,2l). 3g(hkl)=g(3h,3k,3l). g (h1,k1,l1)- g(h2,k2,l2) = g(h1-h2, k1-k2, l1-l1) g (h1,k1,l1)+g(h2,k2,l2) =g(h1+h2, k1+k2, l1+l1)
011
020
031
若s=3 3
3 6 不满足面心立方规律
Bcc 2, 4, 6, 8, 10, 12…… Fcc 3, 4, 8, 11, 12,16 …
α-Fe四方斑点的标定
[001- ]α
110α
000 020α
1- 10α
0 2 0 0 20
1 1 0 1 10 0 0 -2
应用例-菱方斑点奥氏体
菱方斑点

材料研究方法电子衍射花样与标定

材料研究方法电子衍射花样与标定

五、多晶体的电子衍射花样
多晶体的电子衍射花样等同于多晶体的X射线衍射花样,为系列同心圆。 其花样标定相对简单,同样分以下两种情况: 1.已知晶体结构 具体步骤如下: 1)测定各同心圆直径Di,算得各半径Ri; 2)由Ri/K(K为相机常数)算得1/di; 3)对照已知晶体PDF卡片上的di值,直接确定各环的晶面指数{hkl}。 2.未知晶体结构
电子衍射花样的标定:即衍射斑点指数化,并确定衍射花样所属的晶带轴指数[uvw], 对未知其结构的还包括确定点阵类型。 单晶体的电子衍射样有简单和复杂之分,简单衍射花样即电子衍射谱满足晶带定律
(hu+kv+lw=0),通常又有已知晶体结构和未知晶体结构两种情况。
1. 已知晶体结构的花样标定
标定步骤: 1)确定中心斑点,按距离由小到大依次排列:R1、R2、R3、R4…,
8)定其晶带轴。
四、单晶体电子衍射花样的标定
四、单晶体电子衍射花样的标定
已知:rA=7.1mm,rB=10mm, rC=12.3mm;夹角∠AOB=90 °, ∠AOC=55 °, Lλ=14.1mmÅ, 标定其花样。
1)由rA2:rB2:rC2=N1:N2:N3=2:4:6 初步定为体心立方结构。 2)由N=2,可得A点应为{1 1 0}。
四、单晶体电子衍射花样的标定
6)由确定了的两个斑点指数(h1k1l1)和(h2k2l2),通过矢量合成其它点
7)定出晶带轴。
u k1l 2 k 2l1
v
l1h2
l 2h1
w h1k 2 h2k1
8)系统核查各过程,算出晶格常数。
举例1已知纯镍(fcc)简单电子 衍射花样(a=0.3523nm),花样 见图,定谱。
未知晶体结构时,可由N规律,初步确定其结构,再定其晶面指数。 举例2 已知相机常数K=1.700mm.nm,各直径见表,确定物相。

电子衍射谱的标定

电子衍射谱的标定

第二章 电子衍射谱的标定2. 1透射电镜中的电子衍射透射电镜中的电子衍射基本公式为:λL Rd =R 为透射斑到衍射斑的距离(或衍射环半径),d 为晶面间距,λ为电子波长,L 为有效相机长度。

p i M M f L 0=0f 为物镜的焦距,i M 中间镜放大倍数,p M 投影镜的放大倍数,在透射电镜 的工作中,有效的相机长度L ,一般在照相底板中直接标出,各种类型的透射电镜标注方法不同,λ为电子波长,由工作电压决定,工作电压一般可由底板标注确定,对没有标注的早期透射电镜在拍摄电子衍射花样时,记录工作时的加速电压,由电压与波长对应表中查出λ。

K L =λK 为有效机相常数,单位A mm ,如加速电压U =200仟伏,则A 21051.2-⨯=λ,若有效相机长度mm L 800=,则A mm K 08.201051.28002=⨯⨯=-透射电镜的电子衍射有效相机常数确定方法: 电子衍射有效相机常数确定方法,一般有三种方法 ①按照相底片直接标注计算:H -800透射电镜的电子衍射底片下方有一列数字,如: 0.80 91543 4A 90.5.21; 0.80表示有效相机长度mm M L 8008.0==,91543为片号,4A 其A 表示工作电压200千伏查表知电子波长A 21051.2-⨯=λ则有效相机常数K 为:A mm L K 08.201051.28002=⨯⨯==-λH -800透射电镜中,电子衍射底片第一个数字为相机长度如:0.80,0.40,……第三个数字为工作电压U ,分别为4A ,4b ,4c ,4d ,相对应的工作电压分别为200,175,150,100千伏,对应的电子波长分别为:22221070.3,1095.2,1071.2,1051.2----⨯⨯⨯⨯埃。

由电镜有关参数确定的相机常数是不精确的,常因电镜中电气参数变化而改变,产生一些误差,电镜工作者常要根据经验作些修正。

②用金Au 多晶环状花样校正相机常数例如喷金Au 多晶样品在H -800透射电镜下拍摄多晶环状花样,如照片上标注为0.40 92298 4A 90.11.21知有效相机长度L =0.4M =400mm工作电压为200仟伏 电子波长为:A 21051.2-⨯=λ由仪器确定的相机常数A mm L K 04.10==λ测量底片上4个以上环半径K d R i =计算出相应的i d查面心立方Au 的d 值表,找出与上述i d 相近的d 及其晶面指数d i 2.231 1.912 1.385 1.181 d hkl 2.335 2.039 1.442 1.230 hkl1110020221.13按公式R i d hkl =K i 求相应的K iR i 4.5 5.25 7.25 8.5 d hkl 2.335 2.039 1.442 1.230 hkl10.6010.7010.5010.50精确的相机常数K 为K i 的平均值44321k k k k K +++==450.1050.1070.1060.10+++=A mm 58.10③已知晶体标准电子衍射谱确定相机常数铝单晶典型电子衍射花样,铝为面心立方,与标准电子衍射谱比较,对电子衍射班点标定分别为:h i k i l i 111 111 220R i 即中心斑点到最邻近衍射斑点距离分别为: R i 9.6 9.6 9.6 16 利用A 1的d 值表查出d hkl)(mm R i 4.55.25 7.25 8.5 )(A d i2.2311.9121.3851.181hkl 111 111 220d hkl 2.338 2.338 1.432按公式hkl i i d R K =求K i R i (mm ) 9.6 9.6 16)(A d hkl 2.238 2.238 1.432K i 22.8 22.8 22.9求K i 平均值 3321k k k K ++=39.228.228.22++=K=A mm 8.222.2多晶环状花样电子衍射分析多晶电子衍射环状花样的R 2比值规律: 立方晶系:K Rd = ∴dKR =K 为相机常数,d 为晶面间距,R 为环半径。

电子衍射标定

Miller指数的符号应满足右手螺旋法则,该法则决定了两基本 矢量与晶带轴之间的关系 两个基本矢量的线性组合,一定能标出属于相同Laue 区的所 有衍射斑点的指数
21

单晶体电子衍射花样
花样特征 规则排列的衍射斑点。它是过倒易点阵 原点的一个二维倒易面的放大像。 大量强度不等的衍射斑点。有些并不精 确落在Ewald球面上仍能发生衍射,只是 斑点强度较弱。倒易杆存在一个强度分布。
电子衍射标定
赵彪 2012,10,13
1
晶体结构与空间点阵
空间点阵+结构基元=晶体结构 晶面:(hkl),{hkl} 用面间距和晶面法向来 表示 晶向: [uvw], <uvw> 晶带:平行晶体空间同一晶向的所有晶面的 总称 ,[uvw]
2
q
q
A
反射面法线
q E B F
布拉格反射
2d sinq = n l, 2dHKL sinq =l , 选择反射,是产生衍射的必要条件,但不充分
30
A C B D
低碳合金钢基体的电子衍射花样
31
图是由某低碳合金钢薄膜样品的区域记录的单晶 花样,以些说明分析方法: 选中心附近A、B、C、D四斑点, 测得RA=7.1mm,RB=10.0mm,RC= 12.3mm,RD=21.5mm,同时用量角器测 得R之间的夹角分别为(RA, RB)=900, (RA, RC)=550, (RA, RD)=710, 求得R2比值为2:4:6:18, RB/RA=1.408, RC/RA=1.732, RB/RA=3.028, 表明样品该区为体心立方点阵,A斑N为2, {110},假定A为(1-10)。B斑点N为4,表明 属于{200}晶面族,选(200),代入晶面夹 角公式得f=450,不符,发现(002)相符

标定电子衍射图谱

标定电⼦衍射图谱绝⼤部分的材料⼈会在⼀些⽂献中看到⼀张张标记好的电⼦衍射图谱,如下图1。

在发表论⽂时测得的电⼦衍射谱,由于标定知识的缺乏,看到⼀排排点阵,⽆法进⾏相关标定。

所以作为⼀名材料研究⽣,掌握电⼦衍射花样的标定知识是⾮常重要的。

那么这样的图谱是如何标定的呢?原理⼜是什么呢?在此,且听⼩编来介绍相关理论和标定的⼀种简单⽅法。

图1 Au纳⽶⽚及电⼦衍射谱1、TEM成像原理:2、电⼦衍射⼏何的基本公式:3、多晶电⼦衍射谱标定:多晶电⼦衍射谱由⼀系列同⼼圆环组成。

每个环对应⼀组晶⾯根据 d = Lλ/R,可求得各衍射环对应的晶⾯间距d与JCPDF卡(多晶粉末衍射卡)中的d值对照⽐较便可标定每个衍射环的指数(hkl)。

4、单晶电⼦衍射谱标定4.1 主要有四种(1)标准图谱法(2)计算机辅助标定法(3)特征平⾏四边形法(4)d值⽐较法4.2 单晶电⼦衍射谱标定的d值⽐较法1、选择衍射斑A、B,使r1和r2为最短和次短长度,测量r1、r2和夹⾓值2、根据rd = Lλ,求A、B衍射斑对应的⾯间距d1和d2,与物样JCPDF数据⽐较,找出与d1、d2相吻合的⾯指数{hkl}1和{hkl}23、在{hkl}1中,任选(h1k1l1)为A点指数,从{hkl}2中,试探计算确定B点指数(h2k2l2),使(h1k1l1)和(h2k2l2)的夹⾓计算值与实测值相符.4、按⽮量叠加原理,标定其它衍射斑指数,并求出晶带轴指数[uvw].例:α-Fe电⼦衍射谱标定5、未知结构的衍射分析6、衍射图谱消光性讨论6.1 结构因⼦Bragg定律只是从⼏何的⾓度讨论了晶体对电⼦的散射,⽽没有考虑反射⾯上的原⼦位置和原⼦密度。

如果考虑这两个因素,满⾜Bragg条件并⾮⼀定产⽣衍射。

例如⾯⼼⽴⽅(FCC)晶体(100)⾯⼀级衍射就不存在。

这种情况称为系统消光。

定义:结构因⼦F是单胞内各原⼦对⼊射波散射的合成振幅。

它标志完整单胞对衍射强度的贡献。

电子衍射谱的形成原理与标定方法

《高分辨电子显微学》读书报告题目:电子衍射谱的形成原理与标定方法学院:专业:姓名:学号:简单电子衍射花样的形成与标定方法现代科学技术的迅速发展,要求材料科学工作者能够及时提供具有良好力学性能的结构材料及具有各种物理化学性能的功能材料。

而材料的性能往往取决于它的微观结构及成分分布。

因此,为了研究新的材料或改善传统材料,必须以尽可能高的分辨能力观测和分析材料在制备、加工及使用条件下(包括相变过程中,外加应力及各种环境因素作用下等)微观结构和微区成分的变化,并进而揭示材料成分—工艺—微观结构—性能之间关系的规律,建立和发展材料科学的基本理论。

透射电子显微镜(TEM)正是这样一种能够达到原子尺度的分辨能力,同时提供物理分析和化学分析所需全部功能的仪器。

特别是选区电子衍射技术的应用,使得微区形貌与微区晶体结构分析结合起来,再配以能谱或波谱进行微区成份分析,得到全面的信息。

一、TEM的成像原理电子显微镜成像原理符合阿贝成像理论,如图1所示:平行于光轴的光通过如同一个衍射的物面后,受到衍射而形成向各个方向传播的平面波。

如物镜的孔径足够大,以至可以接受由物面衍射的所有光,这些衍射光在后焦面上形成夫琅禾费衍射图样,焦平面上每一点又可以看成是相干的次波源,它们的光强度正比于各点振幅的平方,由这些次波源发出的光在像面上叠加而形成了物面的像。

透镜的成像作用可以分为两个过程:第一个过程是平行电子束遭到物的散射作用而分裂成为各级衍射谱,即由物变换到衍射的过程;第二个过程是各级衍射谱经过干涉重新在像平面上会聚成诸像点,即由衍射重新变换到物(像是放大了的物)的过程。

透射电子显微镜不仅能观察图像,如图2(a)所示,而且可以作为一个高分辨的电子衍射仪使用,通过减弱中间镜电流来增大其物距,使其物平面与物镜的后焦面相重,这样就可以把物镜产生的衍射谱透到中间镜的像平面上,得到一次放大了的电子衍射谱,再经过投影镜的放大作用,最后在荧光屏上得到二次放大的电子衍射谱,如图2(b)所示。

电子衍射谱标定[优质内容]


指向的方向为晶帯轴方向,晶帯轴的密勒指数[uvw](需约化为最小
公倍数)为:
h1 h2 k1l2 k2l 1
uvw r1 r2 k1 k2 l1h2 l2h1
7
l1 l2 h1k2 h2k1
晶带定律
hi u kiv li w 0
8
晶带定律反应了正倒空间一些有特定关系的矢量与平面指数间的关系:
Rhkl L tg2
(4)
ghkl

d hkl
2 sin
(5)
tg2 2 sin
L • Rhkl • dhkl
(6 )
公式(6)中,λ是电子波长,L是像机长度,Rhkl是荧光屏上衍射斑
到透射斑的距离,dhkl是衍射面的面间距,Lλ称为像机常数,单位
是mmÅ.
高级培训
12
单晶电子衍射标定
在标定单晶衍射谱时,需要将两类不同的情形分开,一类
G ——G 0 1 3
d
公式(3)的集合解释就是厄瓦德球,球的半径为1/λ,样品处为厄瓦
德球的球心,只要倒易矢能与厄瓦德球面有交点,就可以产生电子
衍射。
高级培训
9
反射面法线
A
E
F
B
布拉格衍射几何
高级培训
10
厄瓦德球的特征
1、电子的波长很短,相对于晶面间距的倒数,厄瓦德球的半径 很大,因此球面可以近似为平面,使得球面交截同层倒易点的机 会很大; 2、衍射物质总有一定大小和形状,倒易点不是一个几何点,具 有一定大小和形状,倒易点的线尺寸总是沿着试样几何尺寸最小 的方向拉长扩展;如试样为针状,则倒易点强度分布为盘状,试 样为片状,则倒易点强度分布为针状,实际试样中常包含有一定 取向差嵌镶组织,则倒易点被拉成弧状;这些都有利于厄瓦德球 与倒易点相截。 3、入射电子束并非严格平行的电子射线,有一定发散度,而且 不是理想的单色电子束,使厄瓦德球球面具有一定厚度,这对厄 瓦德球面和倒易点的交截是有利的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 电子衍射谱的标定2. 1透射电镜中的电子衍射透射电镜中的电子衍射基本公式为:R 为透射斑到衍射斑的距离(或衍射环半径),d 为晶面间距,λ为电子波长,L 为有效相机长度。

0f 为物镜的焦距,i M 中间镜放大倍数,p M 投影镜的放大倍数,在透射电镜 的工作中,有效的相机长度L ,一般在照相底板中直接标出,各种类型的透射电镜标注方法不同,λ为电子波长,由工作电压决定,工作电压一般可由底板标注确定,对没有标注的早期透射电镜在拍摄电子衍射花样时,记录工作时的加速电压,由电压与波长对应表中查出λ。

K 为有效机相常数,单位οA mm ,如加速电压U =200仟伏,则οA 21051.2-⨯=λ,若有效相机长度mm L 800=,则οA mm K 08.201051.28002=⨯⨯=-透射电镜的电子衍射有效相机常数确定方法: 电子衍射有效相机常数确定方法,一般有三种方法 ①按照相底片直接标注计算:H -800透射电镜的电子衍射底片下方有一列数字,如: 0.80 91543 4A ; 0.80表示有效相机长度mm M L 8008.0==,91543为片号,4A 其A 表示工作电压200千伏查表知电子波长οA 21051.2-⨯=λ则有效相机常数K 为:H -800透射电镜中,电子衍射底片第一个数字为相机长度如:0.80,0.40,……第三个数字为工作电压U ,分别为4A ,4b ,4c ,4d ,相对应的工作电压分别为200,175,150,100千伏,对应的电子波长分别为:22221070.3,1095.2,1071.2,1051.2----⨯⨯⨯⨯埃。

由电镜有关参数确定的相机常数是不精确的,常因电镜中电气参数变化而改变,产生一些误差,电镜工作者常要根据经验作些修正。

②用金Au 多晶环状花样校正相机常数例如喷金Au 多晶样品在H -800透射电镜下拍摄多晶环状花样,如照片上标注为0.40 92298 4A工作电压为200仟伏 电子波长为:οA 21051.2-⨯=λ由仪器确定的相机常数οA mm L K 04.10==λ测量底片上4个以上环半径K d R i =计算出相应的i d查面心立方Au 的d 值表,找出与上述i d 相近的d 及其晶面指数d i 2.231 1.912 1.385 1.181 d hkl 2.335 2.039 1.442 1.230 hkl111 002 022 1.13按公式R i d hkl =K i 求相应的K iR i 4.5 5.25 7.25 8.5 d hkl 2.335 2.039 1.442 1.230 hkl10.6010.7010.5010.50精确的相机常数K 为K i 的平均值 =450.1050.1070.1060.10+++=οA mm 58.10③已知晶体标准电子衍射谱确定相机常数铝单晶典型电子衍射花样,铝为面心立方,与标准电子衍射谱比较,对电子衍射班点标定分别为:h i k i l i 111 111 220R i 即中心斑点到最邻近衍射斑点距离分别为: R i 9.6 9.6 9.6 16 利用A 1的d 值表查出d hkl hkl 111 111 220d hkl 2.338 2.338 1.432按公式hkl i i d R K =求K i R i (mm ) 9.6 9.6 16)(οA d hkl 2.238 2.238 1.432K i 22.8 22.8 22.9求K i 平均值 3321k k k K ++==οA mm 8.222.2多晶环状花样电子衍射分析4.55.25 7.25 8.5 2.231 1.912 1.385 1.181多晶电子衍射环状花样的R 2比值规律: 立方晶系:K Rd = ∴dKR =K 为相机常数,d 为晶面间距,R 为环半径。

2222221a N a l k h d =++= 而222dK R = 222l k h N ++=321232221::::N N N R R R =ΛΛ N 为整数立方晶系电子衍射环状花样的特征是环半径的平方比为整数比, 立方晶系三种不同的点了N 的可能值为:简单立方为:1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16…没有7, 15, 23… 体心立方为:2, 4, 6, 8, 10, 12…没有奇数,k+k+l =偶数面心立方为:3, 4, 8, 11, 12, 16, 19, 20…k,k,l 为全奇数或全偶数 四方晶系四方晶系的单胞有两个点阵常数a 3,c 晶面间距关系为: 一般说R 2比值不为简单整数比,若l =0则N =h 2+k 2 对(hk0)晶面族R 2比可为整数比 对简单四方点阵,N 的可能值为: 0,1,2,4,5,8,9,10,13,16,17 体心方点阵,N 的可能值为即N 必为偶数 0,2,4,8,10,16,… 其比值仍为:0,1,2,4,5,8,…四方晶系,R 2比不为整数比,但对(hk0)来说,R 2比为整数比,其低指数时N 的特征值为2,5,8等(六方晶系的特征值是3,7,……见后)当N 的比值中出现这些数值,而晶系又不属于立方晶系,据此就可以肯定它属于四方晶系,其倒易矢量为hk0。

六角(三角晶系) 六角晶系的特征是具有一个六次旋转对称轴(C 轴),其它两个轴(a 1与a 2)长度相等又都与C 轴正交,呈六次对称分布,夹角120°。

六角点阵的单胞有两个点阵常数a 、c ,晶面间距的关系式是:与四方晶系一样,h 与k 可以互换,但不能与l 互换 一般说R 2比值不为简单整数比,若l =0则22k hk h N ++=N 的可能值为0,1,3,4,7,9,12,13,16,19……其中3,7是六角晶系的低指特征,当出现N =3,又不属于立方晶,可以按六解晶系求解一般情况下多晶电子衍射花分析,较单晶电子衍射花样分析简单,可以由衍射环R 2比来确定,也可以由d 值比较法去标定。

若R 2比为简单整数比则可初步确定为立方晶系,若是R 2比不为整数比,可基本确定为非立方晶系,初步确定后,再按六方及四方及其它晶系的R 2比的规律逐一排除最后确定分析样品中有关相的晶体结构。

多晶电子衍射花样分析例例1,Zn S C C n r u ---合金多晶电子衍射花样。

方法1,比值分析法测量多晶环状花样的环直径,计算出半径 计算2i RC u 基合金多晶环状花样查R 2比值规律知:面心立方R 2比值规律为3 4 8 11 12……上述数据据知,多晶电子衍射属面心立方,据此可标定如下:测量计算知:212/3R R i ⨯3 4.26 8.3 11.4 12.6 接近比值规律为 3 4 8 11 12 指数标定为hkl111200220311222校正:经验相机常数οA mm K 00.22= i i R k d /=R imm 10.5 12.5 17.5 20.5 21.52.0951.76 1.257 1.073 1.023 查表C u d hkl d hkl2.087 1.808 1.278 1.090 1.044hkl111200220311222以上计算标定正确例2铁粉末多晶电子衍射花样分析: 铁粉电子衍射花 方法1测锐环 D imm 22.0 32.0 39.045.0 50.0 54.0 59.0 计算R I R imm 11.0 16.0 18.5 22.5 25.0 27.0 28.5 121.0 256.0 342.3 506.3 625.0 729 812.312.12.834.185.166.026.72D imm 21.0 25.0 35.0 41.0 43.0 R imm 10.5 12.5 17.5 20.5 21.5110.25 156.25 306.25 402.25 462.5 1.00 1.42 2.77 3.81 4.234.268.311.412.624.25.78.310.312.013.4体心立方R 2比值规律为:2:4:6:8:10:12故 2×R i 2/R 12 2 4.2 5.7 8.3 10.3 12.0 13.4 接近 2 4 6 8 10 12 14 hkl 为 110 200 112 220 031 222 123 方法2 οA mm K 00.22= i i i R K d = 比较查表d hkl ,标注hkl R imm 11.000 16.000 18.500 22.500 25.000 27.000 28.500οA d i 2.000 1.375 1.189 0.977 .0880 0.814 0.772d hkl 2.027 1.433 1.170 1.012 0.906 0.828 0.766 hkl 110 200 112 220 031 222 123 单晶电子衍射花样的对称性电子衍射谱是放大的二维倒易点列,研究电子衍射谱的对称性,只研究倒易平面对称性就可以了。

晶体是由原子或原子群按三维周期性排列而成,总可以在晶体中找到一个最小重复单元,按三个不共面的基本平移把整个晶体重复出来。

晶体除有平移对称外还有旋转对称,反演对称和反映对称。

但无论再有什么对称操作者必须与平移对称操作相协调。

换句话说,晶体的周期性限制了晶体还能有的对称操作。

晶体所含有的对称性操作,可以看成是一种基本对称操作的组合这种组合又有相互制约性,经理论证明,二维晶体的对称只能有10种。

由于正空间与倒空间有相同的点群,故二维点群共有十种,即:1 2 3 4 6 m 2mm 3mm 4mm 6mm1,2,3,4,6表示旋转轴旋转对称次数,m 表示平行此轴的镜面反映mm 表示有两套这样的镜面反映。

平面晶面可能有对称操作如下图示1 2 3 4 6 m 2mm 3mm 4mm 6mm二维晶体的对称只有10种,倒易点阵还应有一个对称中心处于倒易原点,这相当于在衍射花样上加一个二次轴,这样一来上面10种对称类型,归并成6种对称型,这6种对称型的零层倒易面斑点分布,衍射花样对称型及相应晶系可列表如下:电子衍射谱的对称性表对确定晶体的点阵类型是很有用的,倒易点阵平面的对称性越高,晶系的对称性越高,四方形点列只可能属于四方和立方晶系,六角形点列只可能属于六角。

三角和立方晶系,一个四方点列电子衍射谱与一个六角点列电子衍射谱结合起来,就能确定待测晶体属于立方晶系。

如果排除了立方晶系的可能性,一个四方点列电子衍射谱就能确定待测晶体属于四方晶系,一个六角点列电子衍射谱就能确定待测晶体属于六角或三角晶系。

应当指出:有些人往往过分依靠测量c b a ρρρ,,来决定晶体的对称性,鉴定物相,这会出错误的。

相关文档
最新文档