整体法和隔离法讲义全

合集下载

整体法与隔离法总结知识点

整体法与隔离法总结知识点

整体法与隔离法总结知识点一、整体法整体法是一种财务报告编制方法,它适用于企业拥有多个经济实体,但这些实体之间相互依存、相互制衡,并且经营活动彼此密切相关的情况。

在整体法下,多个实体的会计核算被合并为一个整体,通过合并报表展示企业整体的财务状况和经营成果。

整体法的适用范围主要包括以下几个方面:1. 股权控制:母公司对子公司具有绝对控制,可以决定子公司的经营政策和财务决策。

2. 互为附属:母子公司之间存在着密切的业务关系和财务交易,彼此之间相互制约,共同为整个企业实体服务。

3. 总体经济实体:多个经济实体共同进行经营活动,具有相互合作、互相支持的特点。

在整体法下,多个经济实体的会计核算被合并为一个整体,通过合并报表展示企业整体的财务状况和经营成果。

整体法的核算方法主要包括以下几个步骤:1. 合并范围的确定:首先确定被合并的范围,包括哪些经济实体参与合并。

2. 资产负债表的合并:将合并范围内各经济实体的资产、负债、所有者权益合并为一个整体资产负债表。

3. 损益表的合并:将合并范围内各经济实体的收入、成本、费用、利润等合并为一个整体损益表。

4. 合并报表的编制:根据合并的资产负债表和损益表编制合并报表,反映企业整体的财务状况和经营成果。

整体法的优劣势:优势:能够全面、真实地反映企业整体的财务状况和经营成果,为外部利益相关方提供全面、客观的信息。

缺点:合并报表的编制复杂,需要耗费大量人力、物力和财力;合并范围内的财务数据可能存在重复计算或遗漏计算的情况。

二、隔离法隔离法是一种财务报告编制方法,它适用于企业拥有多个经济实体,但这些实体之间相互独立、相互独立经营的情况。

在隔离法下,每个实体按照独立的会计核算方法编制财务报告,反映各自的财务状况和经营成果。

隔离法的适用范围主要包括以下几个方面:1. 股权独立:母公司对子公司没有绝对控制,子公司可以自主制定经营政策和财务决策。

2. 互为独立:母子公司之间不存在业务关系和财务交易,各自独立经营,互不受彼此影响。

第二篇方法一隔离法和整体法

第二篇方法一隔离法和整体法
一、解答物理问题的常用方法
1.所谓隔离法,就是将物理问题的某些研究对象或某些过程、 状态从系统或全过程中隔离出来进行研究的方法.隔离法 的两种类型:
(1)对象隔离:即为寻求与某物体有关的所求量与已知量之间 的关系,将某物体从系统中隔离出来.
(2)过程隔离:物体往往参与几个运动过程,为求解涉及某 个过程中的物理量,就必须将这个过程从全过程中隔离出பைடு நூலகம்来.
[解析] 设绳子的拉力为 FT,水平面对球的支持力为 FN,选其 中某一个球为研究对象,发生滑动的临界条件是
FTsinα2=μFN

又 FTcosα2=12F

再取整体为研究对象,由平衡条件得
F+2FN=2G 联立①②③式得 F=ta2nμα2G+μ.

[答案]
2μG tanα2+μ
2.所谓整体法,是指对物理问题的整个系统或过程进行研究 的方法.也包括两种情况:
(1)整体研究物体体系:当所求的物理量不涉及系统中某个物体 的力和运动时常用.
(2)整体研究运动全过程:当所求的物理量只涉及运动的全过程 时常用.
此方法多用于与受力、运动有关的问题.
[例1] 如图1-1所示,两个完全相同的球, 重力大小均为G,两球与水平地面间的动摩 擦因数均为μ,一根轻绳两端固定在两个球 上,在绳的中点施加一个竖直向上的拉力, 当绳被拉直后,两绳间的夹角为α.问当F至少为多大时,两球 会发生滑动?

整体法与隔离法

整体法与隔离法
A.大小为700 N,方向竖直向上 B.大小为350 N,方向竖直向上 C.大小为200 N,方向竖直向下 D.大小为204 N,方向竖直向下
2、五个质量相等的物体置于光滑的水平面上,如 图所示.现向右施加大小为F、方向向右的水平恒力, 则第3个物体对第4个物体的作用力等于( B )
1
2ห้องสมุดไป่ตู้
A.5F
B.5F
考点二 整体法和隔离法
1、连接体与隔离体
两个或两个以上物体相互连接组成的系统称为连接体。
如果把其中某个物体隔离出来,该物体即为隔离体.
2、外力和内力
如果以系统为研究对象,受到系统以外的力,这些 力就是该系统受到的外力,而系统内相互作用的力则 称为内力。(举例)
应用牛顿第二定律求系统的加速度时,不考虑系统 的内力。如果把某物体隔离出来作为研究对象,则这 些力将转化为隔离体的外力。
3
4
C.5F
D.5F
3、如图所示,不计绳的质量及绳与滑轮的摩擦,物体A 的质量为M,水平面光滑,当在绳B端挂一质量为m的重物时, 物体A的加速度为a1.当在B端施以F=mg的竖直向下的拉力作 用时,A的加速度为a2.则a1与a2的大小关系是( C )
A.a1=a2 C.a1<a2
B.a1>a2 D.无法确定
5、如下图所示,用一根细线通过一只无摩擦、无 质量的滑轮,把静止在斜面上和悬挂在斜面边缘高 处的两块木块连接起来.悬挂木块的质量为M=16.0 kg,斜面上的木块的质量为m=8.0 kg.已知木块与斜 面间的动摩擦因数为μ=0.2.这两木块从静止释 放.(sin37°=0.6,cos37°=0.8,g=10 m/s2)
(1)木块的加速度为多大? (2)连接两木块的细线的张力为多大?

高中物理整体法、隔离法受力分析专题讲解

高中物理整体法、隔离法受力分析专题讲解

受力分析、物体的平衡1.隔离法:将某物体从周围物体中隔离出来,单独分析该物体所受到的各个力,称为隔离法。

隔离法的原则:把相连结的各个物体看成一个整体,如果要分析的是整体内物体间的相互作用力(即内力),就要把跟该力有关的某物体隔离出来。

当然,对隔离出来的物体而言,它受到的各个力就应视为外力了。

2.整体法:把相互连结的几个物体视为一个整体(系统),从而分析整体外的物体对整体中各个物体的作用力(外力),称为整体法。

整体法的基本原则:(1)当整体中各物体具有相同的加速度(加速度不相同的问题,中学阶段不建议采用整体法)或都处于平衡状态(即a =0)时,命题要研究的是外力,而非内力时,选整体为研究对象。

(2)整体法要分析的是外力,而不是分析整体中各物体间的相互作用力(内力)。

(3)整体法的运用原则是先避开次要矛盾(未知的内力)突出主要矛盾(要研究的外力)这样一种辨证的思想。

3.整体法、隔离法的交替运用对于连结体问题,多数情况既要分析外力,又要分析内力,这时我们可以采取先整体(解决外力)后隔离(解决内力)的交叉运用方法,当然个别情况也可先隔离(由已知内力解决未知外力)再整体的相反运用顺序。

考点二:共点力作用下物体的平衡1.平衡状态一个物体在力的作用下保持静止或匀速直线运动状态,就说这个物体处于平衡状态.如光滑水平面上做匀速直线滑动的物块、沿斜面匀速直线下滑的木箱、天花板上悬挂的吊灯等,这些物体都处于平衡状态.2.共点力的平衡条件 在共点力作用下物体的平衡条件是合力为零,即0F =合。

3.平衡条件的推论(1)如果物体在两个力的作用下处于平衡状态,这两个力必定大小相等、方向相反,为一对平衡力。

(2)如果物体在三个力的作用下处于平衡状态,其中任意两个力的合力一定与第三个力大小相等、方向相反。

(3)如果物体受多个力作用而处于平衡状态,其中任何一个力与其他力的合力大小相等、方向相反。

(4)当物体处于平衡状态时,沿任意方向物体所受的合力均为零。

小力学专题3 整体法与隔离法—2021届高三物理一轮复习讲义

小力学专题3  整体法与隔离法—2021届高三物理一轮复习讲义

专题3 整体法与隔离法1. 整体法和隔离法:连接体、叠加问题首先想到整体隔离法,尤其是求底层物体与地面、墙壁等接触的摩擦力与弹力问题时,优先选择整体法,对于力少的物体采用隔离法分析;①初级整体法:系统各个物体都处于平衡状态,例如一个物体匀速,一个静止,分析整体合力为0;②中级整体法:系统各个物体有共同的加速度,一般先隔离系统一部分求到加速度,再对整体用牛二;(牛顿定律中会详细分析)③一些物体是平衡的,一些物体有加速度;∑ F 外⋅⋅⋅+++= 332211a m a m a m或者∑ F 外x ⋅⋅⋅+++=3x 32x 21x 1a m a m a m , ∑F 外y ⋅⋅⋅+++= 3y 32y 21y 1a m a m a m 。

2.整体法的口诀整体法的三个层次:初级-中级-高级外力整体内隔离,优先分析简单体;初级整体都平衡,中级整体共加速;高级整体随意用,矢量性与系统性。

注意:内力与外力、天生的外力初级整体例1.如图所示,用完全相同的轻弹簧A、B、C将两个相同的小球连接并悬挂,小球处于静止状态,弹簧A与竖直方向的夹角为30°,弹簧C水平,则弹簧A、C的伸长量之比为()A.3∶4B.4∶3C.1∶2D.2∶1例2.质量均为m的a、b两木块叠放在水平面上,如图3所示,a受到斜向上与水平面成θ角的力F 作用,b受到斜向下与水平面成θ角等大的力F作用,两力在同一竖直平面内,此时两木块保持静止,则()A.b对a的支持力一定等于mgB.水平面对b的支持力可能大于2mgC.a、b之间一定存在静摩擦力D.b与水平面之间可能存在静摩擦力例3.a、b两个质量相同的球用线连接,a球用线挂在天花板上,b球放在光滑斜面上,系统保持静止,以下图示哪个是正确的()例4.(多选)如图所示,质量为m、顶角为α的直角劈和质量为M的正方体放在两竖直墙和一水平面间,处于静止状态。

若不计一切摩擦,则()A.水平面对正方体的弹力大小为(M+m)gB.墙面对正方体的弹力大小为mgtan αC.正方体对直角劈的弹力大小为mg cos αD.直角劈对墙面的弹力大小为mg sin α例5.如图所示,两个光滑金属球a、b置于一个桶形容器中,两球的质量m a>m b,对于图中的两种放置方式,下列说法正确的是()A.两种情况对于容器左壁的弹力大小相同B.两种情况对于容器右壁的弹力大小相同C.两种情况对于容器底部的弹力大小相同D.两种情况两球之间的弹力大小相同例6.如图所示,水平地面粗糙,竖直墙面光滑,A是一个光滑圆球,B是与A半径相等的半圆球,A、B均保持静止。

整体法与隔离法的应用详解

整体法与隔离法的应用详解
F2 mm
再选取物体B为研究对象, 受力分析如图所示, 根据牛顿第二定律:
FN - F2 ma
F2
FN
FN
F2
ma
F2
m F1 F2 2m
F1
F2 2
.
变式1:物块m和M用轻绳连接,在M上施加恒力 F,使两
物块作匀加速直线运动,地面光滑。求绳中张力。
解:(1)由牛顿第二定律,
课程内容
一、整体法:在研究物理问题时,把所研究的 对象作为一个整体来处理的方法称为整体法。 采用整体法不需要考虑内力的影响,可以避免 对整体内部进行繁锁的分析,常常使问题解答 更简便、明了。
二、隔离法:把所研究对象从整体中隔离出来 进行研究,最终得出结论的方法称为隔离法。 采用隔离物体法一般用来求内力,能排除与研 究对象无关的因素,使事物的特征明显地显示 出来,从而进行有效的处理。
(2)在使用隔离法解题时,所选取的隔离对象可以使连接体 中的某一部分物体,也可以使连接体中的某一个物体(包含两 个或两个以上的单个物体),而这“某一部分”的选取,也应根 据问题的实际情况,灵活处理.
平面上,其质量为M,它的斜面是光滑的,
在它的斜面上有一质量为m的物体,在用
水平力推斜面体沿水平面向左运动过程中,
物体与斜面体恰能保持相对静止,则下列 说法中正确的是( )
m
F
A.斜面体对物体的弹力大小为mgcosθ
B.斜面体对物体的弹力大小为mg/cosθ C.物体的加速度大小为gsinθ
θ
M
D.水平推力大小为(M+m)gtanθ
[解析]隔离m,由平行四边形定则可得:
FN=mg/cosθ
FN
F合=mgtanθ
θ

力与平衡,整体法与隔离法

力与平衡,整体法与隔离法

若物体在三个共点力的作用下处于平衡状态,且三力不平行,则三个力的图所受力变化为
杆AB所受压力变化为( )
A 变大,
B 变小,
C 不变,
D 先变小再变大。

m m, m
a >m,
量分别为a和b的两个小物体, a b,将弹簧与物块按图示方式悬挂起来,现要求两根弹簧的总长度最大,则应使
A.S在上a在上
B.S在上b在上
1
,1,
C.S2在上, a在上
D.S2在上,b在上不计,整个装置沿竖直方向处于静止状态,这时弹簧的弹力F=2N,则花板受的力地板受的力有能
则天花板受到的拉力和地板受到的压力有可能是()
A.1N和6N ;
B.5N和6N ;
C.1N和2N ;
D.5N和2N。

【例4】指出下列悬挂镜框的方案中可能实现的是(设墙壁光滑,亮点处为
镜框的重心位置)()μ1=0.2,人与A之间摩擦因素μ2=0.8,现人用水平力拉绳,使他与木块
一起向右做匀速直线运动,滑轮摩擦不计,求:
起向右做匀速直线动滑轮摩擦计求
(1)人对绳的拉力;
(2)人脚对A的摩擦力的方向和大小。

m C=3kg,物体A、B、C及C与地面间的动摩擦因数均为μ=0.1,轻绳
与滑轮间的摩擦可忽略不计.若要用力将C物拉动,则作用在C物上
轮间摩擦略若将物作在物
水平向左的拉力最小为?(取g=10m/s2)的变化情况是()。

18正交分解法整体法和隔离法 知识讲解 基础

18正交分解法整体法和隔离法 知识讲解 基础

物理总复习:正交分解法、整体法和隔离法【考纲要求】1、理解牛顿第二定律,并会解决应用问题;2、掌握应用整体法与隔离法解决牛顿第二定律问题的基本方法;3、掌握应用正交分解法解决牛顿第二定律问题的基本方法;4、掌握应用合成法解决牛顿第二定律问题的基本方法。

【考点梳理】要点一、整体法与隔离法1、连接体:由两个或两个以上的物体组成的物体系统称为连接体。

2、隔离体:把某个物体从系统中单独“隔离”出来,作为研究对象进行分析的方法叫做隔离法(称为“隔离审查对象”)。

3、整体法:把相互作用的多个物体视为一个系统、整体进行分析研究的方法称为整体法。

要点诠释: 处理连接体问题通常是整体法与隔离法配合使用。

作为连接体的整体,一般都是运动整体的加速度相同,可以由整体求解出加速度,然后应用于隔离后的每一部分;或者由隔离后的部分求解出加速度然后应用于整体。

处理连接体问题的关键是整体法与隔离法的配合使用。

隔离法和整体法是互相依存、互相补充的,两种方法互相配合交替使用,常能更有效地解决有关连接体问题。

要点二、正交分解法当物体受到两个以上的力作用而产生加速度时,常用正交分解法解题,多数情况下是把力正交分解在加速度方向和垂直加速度方向上,有:x F ma =(沿加速度方向) 0y F = (垂直于加速度方向)特殊情况下分解加速度比分解力更简单。

要点诠释:正确画出受力图;建立直角坐标系,特别要注意把力或加速度分解在x 轴和y 轴上;分别沿x 轴方向和y 轴方向应用牛顿第二定律列出方程。

一般沿x 轴方向(加速度方向)列出合外力等于ma 的方程,沿y 轴方向求出支持力,再列出f N μ=的方程,联立解这三个方程求出加速度。

要点三、合成法若物体只受两个力作用而产生加速度时,这是二力不平衡问题,通常应用合成法求解。

要点诠释:根据牛顿第二定律,利用平行四边形法则求出的两个力的合外力方向就是加速度方向。

特别是两个力相互垂直或相等时,应用力的合成法比较简单。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理总复习:正交分解法、整体法和隔离法编稿:李传安 审稿:张金虎【考纲要求】1、理解牛顿第二定律,并会解决应用问题;2、掌握应用整体法与隔离法解决牛顿第二定律问题的基本方法;3、掌握应用正交分解法解决牛顿第二定律问题的基本方法;4、掌握应用合成法解决牛顿第二定律问题的基本方法。

【考点梳理】要点一、整体法与隔离法1、连接体:由两个或两个以上的物体组成的物体系统称为连接体。

2、隔离体:把某个物体从系统中单独“隔离”出来,作为研究对象进行分析的方法叫做隔离法(称为“隔离审查对象”)。

3、整体法:把相互作用的多个物体视为一个系统、整体进行分析研究的方法称为整体法。

要点诠释: 处理连接体问题通常是整体法与隔离法配合使用。

作为连接体的整体,一般都是运动整体的加速度相同,可以由整体求解出加速度,然后应用于隔离后的每一部分;或者由隔离后的部分求解出加速度然后应用于整体。

处理连接体问题的关键是整体法与隔离法的配合使用。

隔离法和整体法是互相依存、互相补充的,两种方法互相配合交替使用,常能更有效地解决有关连接体问题。

要点二、正交分解法当物体受到两个以上的力作用而产生加速度时,常用正交分解法解题,多数情况下是把力正交分解在加速度方向和垂直加速度方向上,有:x F ma =(沿加速度方向) 0y F = (垂直于加速度方向)特殊情况下分解加速度比分解力更简单。

要点诠释:正确画出受力图;建立直角坐标系,特别要注意把力或加速度分解在x 轴和y 轴上;分别沿x 轴方向和y 轴方向应用牛顿第二定律列出方程。

一般沿x 轴方向(加速度方向)列出合外力等于ma 的方程,沿y 轴方向求出支持力,再列出f N μ=的方程,联立解这三个方程求出加速度。

要点三、合成法若物体只受两个力作用而产生加速度时,这是二力不平衡问题,通常应用合成法求解。

要点诠释:根据牛顿第二定律,利用平行四边形法则求出的两个力的合外力方向就是加速度方向。

特别是两个力相互垂直或相等时,应用力的合成法比较简单。

【典型例题】类型一、整体法和隔离法在牛顿第二定律中的应用【高清课堂:牛顿第二定律及其应用1例4】例1、如图所示,质量为2m 的物块A ,质量为m 的物块B ,A 、B 两物体与地面的摩擦不计,在已知水平力F 的作用下,A 、B 一起做加速运动,A 对B 的作用力为________。

【答案】3F 【解析】取A 、B 整体为研究对象,与地面的摩擦不计,根据牛顿第二定律=3F ma 3F a m= 由于A 、B 间的作用力是内力,所以必须用隔离法将其中的一个隔离出来,内力就变成外力了,就能应用牛顿第二定律了。

设A 对B 的作用力为N ,隔离B, B 只受这个力作用33F F N ma m m ==⋅=。

【总结升华】当几个物体在外力作用下具有相同的加速度时,就选择整体法,要求它们之间的相互作用力,就必须将其隔离出来,再应用牛顿第二定律求解。

此类问题一般隔离受力少的物体,计算简便一些。

可以隔离另外一个物体进行验证。

举一反三【变式1】如图所示,两个质量相同的物体A 和B 紧靠在一起放在光滑水平桌面上,如果它们分别受到水平推力1F 和2F ,且12F F >,则A 施于B 的作用力的大小为( )A . 1FB .2FC .121()2F F +D . 121()2F F -【答案】C 【解析】设两物体的质量均为m ,这两物体在1F 和2F 的作用下,具有相同的加速度为122F F a m-=,方向与1F 相同。

物体A 和B 之间存在着一对作用力和反作用力,设A 施于B 的作用力为N (方向与1F 方向相同)。

用隔离法分析物体B 在水平方向受力N 和2F ,根据牛顿第二定律有2N F ma -=2121()2N ma F F F ∴=+=+ 故选项C 正确。

【变式2】如图所示,A 、B 两物块叠放在一起,在粗糙的水平面上保持相对静止地向右做匀减速直线运动,运动过程中B 受到的摩擦力A .方向向左,大小不变B .方向向左,逐渐减小C .方向向右,大小不变D .方向向右,逐渐减小【答案】A【解析】考查牛顿运动定律处理连接体问题的基本方法。

对于多个物体组成的物体系统,若系统内各个物体具有相同的运动状态,应优先选取整体法分析,再采用隔离法求解。

取A 、B 系统整体分析有 ()()A B A B A f m m g m m a μ=+=+地, a g μ=B 与A 具有共同的运动状态,取B 为研究对象,由牛顿第二定律有:AB B B f m g m a μ===常数物体B 做速度方向向右的匀减速运动,故而加速度方向向左。

例2、质量为M 的拖拉机拉着耙来耙地,由静止开始做匀加速直线运动,在时间t 内前进的距离为s 。

耙地时,拖拉机受到的牵引力恒为F ,受到地面的阻力为自重的k 倍,所受阻力恒定,连接杆质量不计且与水平面的夹角θ保持不变。

求:(1)拖拉机的加速度大小。

(2)拖拉机对连接杆的拉力大小。

(3)时间t 内拖拉机对耙做的功。

【答案】(1)22s t (2)212[()]cos s F M kg t θ-+(3)22[()]s F M kg s t-+ 【解析】(1)拖拉机在时间t 内匀加速前进s ,根据位移公式212s at =①变形得22s a t=② (2)要求拖拉机对连接杆的拉力,必须隔离拖拉机,对拖拉机进行受力分析, 拖拉机受到牵引力、支持力、重力、地面阻力和连杆拉力T ,根据牛顿第二定律cos F kMg T Ma θ--=③联立②③变形得212[()]cos s T F M kg tθ=-+④ 根据牛顿第三定律连杆对耙的反作用力为212[()]cos s T T F M kg tθ'==-+⑤拖拉机对耙做的功:cos W T s θ'=⑥联立④⑤解得22[()]s W F M kg s t=-+⑦ 【总结升华】本题不需要用整体法求解,但在求拖拉机对连接杆的拉力时,必须将拖拉机与耙隔离开来,先求出耙对连杆的拉力,再根据牛顿第三定律说明拖拉机对连接杆的拉力。

类型二、正交分解在牛顿二定律中应用物体在受到三个或三个以上不同方向的力的作用时,一般都要用正交分解法,在建立直角坐标系时,不管选哪个方向为x 轴的正方向,所得的结果都是一样的,但在选坐标系时,为使解题方便,应使尽量多的力在坐标轴上,以减少矢量个数的分解。

例3、如图所示,质量为0. 5 kg 的物体在与水平面成30o角的拉力F 作用下,沿水平桌面向右做直线运动.经过0.5m ,速度由0. 6 m/s 变为0. 4 m/s ,已知物体与桌面间的动摩擦因数μ=0.1,求作用力F 的大小。

【答案】0.43F N B【解析】由运动学公式222v v ax -= 得 22200.2/2v v a m s x -==- 其中,负号表示物体加速度与速度方向相反,即方向向左。

对物体进行受力分析,如图所示,建立直角坐标系,把拉力F 沿x 轴、y 轴方向分解得cos30x F F =o sin30y F F =o在x 方向上,=cos30N F F F ma μ-=o 合①在y 方向上,=0F 合,即 sin 30N F F mg +=o ②联立①②式,消去N F 得 cos30(sin 30)F mg F ma μ--=o o所以 ()0.43cos30+sin 30m a g F N μμ+=o o B 【总结升华】对不在坐标轴方向的力要正确分解,牛顿第二定律要求的是合外力等于ma ,一定要把合外力写对。

不要认为正压力就等于重力,当斜向上拉物体时,正压力小于重力;当斜向下推物体时,正压力大于重力。

举一反三【变式1】如图所示,一个人用与水平方向成30θ=o角的斜向下的推力F 推一个质量为20 kg 的箱子匀速前进,如图(a )所示,箱子与水平地面间的动摩擦因数为μ=0.40.求:(1)推力F 的大小;(2)若该人不改变力F的大小,只把力的方向变为与水平方向成30o 角斜向上去拉这个静止的箱子,如图(b )所示,拉力作用2.0 s后撤去,箱子最多还能运动多长距离?(210/g m s =)。

【答案】(1)F=120 N (2)2.88m 【解析】(1)在图(a )情况下,对箱子有1sin F mg N θ+=cos F f θ=1f N μ= 由以上三式得F=120 N(2)在图(b )情况下,物体先以加速度1a 做匀加速运动,然后以加速度2a 做匀减速运动直到停止。

对匀加速阶段有 21cos F N ma θμ-=2sin N mg F θ=-111v a t =撤去拉力后匀减速阶段有32N ma μ=3N mg =2122v as = 解得 2 2.88s m =【变式2】质量为m 的物体放在倾角为α的斜面上,物体和斜面的动摩擦因数为μ,如沿水平方向加一个力F ,使物体沿斜面向上以加速度a 做匀加速直线运动(如图所示),则F 为多少?【答案】(sin cos )cos sin m a g g F αμααμα++=- 【解析】本题将力沿平行于斜面和垂直于斜面两个方向分解,分别利用两个方向的合力与加速度的关系列方程。

(1)受力分析:物体受四个力作用:推力F 、重力mg 、支持力N F ,摩擦力f F 。

(2)建立坐标:以加速度方向即沿斜向上为x 轴正向,分解F 和mg (如图所示):(3)建立方程并求解x 方向: cos sin f F mg F ma αα--=y 方向: cos sin 0N F mg F αα--=f N F F μ=三式联立求解得 (sin cos )cos sin m a g g F αμααμα++=- 【变式3】如图(a)质量m =1kg 的物体沿倾角θ=37︒的固定粗糙斜面由静止开始向下运动,风对物体的作用力沿水平方向向右,其大小与风速v 成正比,比例系数用k 表示,物体加速度a 与风速v 的关系如图(b)所示。

求:(1)物体与斜面间的动摩擦因数μ;(2)比例系数k 。

(210/g m s =sin 530.8=o ,cos530.6=o ) 【答案】(1)0.25μ=(2)0.84/k kg s =【解析】(1)对初始时刻:0sin cos mg mg ma θμθ-=○1 由图读出204/a m s = 代入○1式, 解得:0sin 0.25cos g ma g θμθ-==; (2)对末时刻加速度为零:sin cos 0mg N kv θμθ--=○2 又cos sin N mg kv θθ=+ 由图得出此时5/v m s =代入○2式解得: k =mg (sin θ-μcos θ)v (μsin θ+cos θ =0.84kg/s 。

相关文档
最新文档