整体法与隔离法的应用(详解)
整体法和隔离法的妙用(解析版)

整体法和隔离法的妙用学校:_________班级:___________姓名:_____________模型概述1.整体法:在研究物理问题时,把所研究的对象作为一个整体来处理的方法称为整体法。
采用整体法时不仅可以把几个物体作为整体,也可以把几个物理过程作为一个整体,采用整体法可以避免对整体内部进行繁锁的分析,常常使问题解答更简便、明了。
运用整体法解题的基本步骤:①明确研究的系统或运动的全过程.②画出系统的受力图和运动全过程的示意图.③寻找未知量与已知量之间的关系,选择适当的物理规律列方程求解2.隔离法:把所研究对象从整体中隔离出来进行研究,最终得出结论的方法称为隔离法。
可以把整个物体隔离成几个部分来处理,也可以把整个过程隔离成几个阶段来处理,还可以对同一个物体,同一过程中不同物理量的变化进行分别处理。
采用隔离物体法能排除与研究对象无关的因素,使事物的特征明显地显示出来,从而进行有效的处理。
运用隔离法解题的基本步骤:①明确研究对象或过程、状态,选择隔离对象.选择原则是:一要包含待求量,二是所选隔离对象和所列方程数尽可能少.②将研究对象从系统中隔离出来;或将研究的某状态、某过程从运动的全过程中隔离出来.③对隔离出的研究对象、过程、状态分析研究,画出某状态下的受力图或某阶段的运动过程示意图.④寻找未知量与已知量之间的关系,选择适当的物理规律列方程求解.3.整体法、隔离法的比较项目整体法隔离法概念将加速度相同的几个物体作为一个整体来分析的方法将研究对象与周围物体分隔开的方法选用原则研究系统外的物体对系统整体的作用力或系统整体的加速度研究系统内物体之间的相互作用力注意问题受力分析时不要再考虑系统内物体间的相互作用一般隔离受力较少的物体4.整体法和隔离法在平衡问题中的应用当系统处于平衡状态时,组成系统的每个物体都处于平衡状态,选取研究对象时要注意整体法和隔离法的结合.一般地,当求系统内部间的相互作用力时,用隔离法;求系统受到的外力时,用整体法,具体应用中,应将这两种方法结合起来灵活运用.典题攻破1.受力分析中的整体法与隔离法1.(2024·浙江高考)如图,在同一竖直平面内,小球A、B上系有轻质刚性细线a、b、c、d,其中a的上端悬挂于竖直固定的支架上,d跨过左侧光滑的定滑轮与物块P相连,c跨过右侧光滑的定滑轮与物块Q相连,调节左、右两侧定滑轮高度使系统达到静止状态。
第21讲 整体法和隔离法在平衡中的应用(解析版)

第21讲整体法和隔离法在平衡中的应用如图所示,质量为m的木块A放在质量为M的三角形斜劈上,现用大小均为F、方向相反的水平力分别推A和B,它们均静止不动,则(重力加速度取g)()A.A与B之间一定存在摩擦力B.B与地面之间可能存在摩擦力C.B对A的支持力可能小于mgD.地面对B的支持力为Mg【答案】C【解析】对A、B整体受力分析,如图所示,受到重力(M+m)g、支持力F N和已知的两个推力F,对于整体,由于两个推力刚好平衡,故整体与地面间没有摩擦力,且有F N=(M+m)g,故B、D错误;对A受力分析,A至少受重力mg、推力F、B对A的支持力F N′,当推力F沿斜面的分力大于重力沿斜面的分力时,摩擦力的方向沿斜面向下,当推力F沿斜面的分力小于重力沿斜面的分力时,摩擦力的方向沿斜面向上,当推力F沿斜面的分力等于重力沿斜面的分力时,摩擦力为零,A错误;在垂直斜面方向上,有F N′=mg cos θ+F sin θ(θ为斜劈倾角),故F N′可能小于mg,C正确。
一、整体法和隔离法在受力分析中的应用1.分析物体受力的方法(1)条件法:根据各性质力的产生条件进行判断.注意:①有质量的物体在地面附近一定受到重力的作用.②弹力的产生条件是相互接触且发生弹性形变.③摩擦力的产生条件是两物体相互接触、接触面粗糙、相互挤压、有相对运动或相对运动的趋势,以上几个条件缺一不可.(2)假设法:假设法是判断弹力和摩擦力有无的常用方法.(3)状态法:由物体所处的状态分析,若物体静止或做匀速直线运动,可根据平衡条件判断弹力、摩擦力存在与否.(4)相互作用法:若甲物体对乙物体有弹力或摩擦力的作用,则乙物体对甲物体一定有弹力或摩擦力的作用.2.整体法、隔离法的比较项目整体法隔离法概念将加速度相同的几个物体作为一个整体来分析的方法将研究对象与周围物体分隔开的方法选用原则研究系统外的物体对系统整体的作用力或系统整体的加速度研究系统内物体之间的相互作用力注意问题受力分析时不要再考虑系统内物体间的相互作用一般隔离受力较少的物体二、整体法和隔离法在平衡问题中的应用当系统处于平衡状态时,组成系统的每个物体都处于平衡状态,选取研究对象时要注意整体法和隔离法的结合.一般地,当求系统内部间的相互作用力时,用隔离法;求系统受到的外力时,用整体法,具体应用中,应将这两种方法结合起来灵活运用.例题1. 将重为4mg的均匀长方体物块切成相等的A、B两部分,切面与边面的夹角为45°,如图所示叠放并置于水平地面上,现用弹簧测力计竖直向上拉物块A的上端,弹簧测力计示数为mg,整个装置保持静止,则()A.地面与物块间可能存在静摩擦力B.物块对地面的压力大于3mgC.A对B的压力大小为mgD.A、B之间静摩擦力大小为22mg【答案】D【解析】对A、B整体受力分析,在水平方向上不受地面的摩擦力,否则不能平衡,在竖直方向上受力平衡,则有F N+F=4mg,解得F N=3mg,则物块对地面的压力等于3mg,故A、B 错误。
专题整体法和隔离法的应用

a=MFAA=MFBB=9-3 2t=3+6 2t 故分离前的运动时间为 t=2.5 s,则分离时的速度 v=at≈3.3 m/s. (3)位移 s=12at2≈4.2 m. 答案:(1)初速度为零的匀加速直线运动 (2)3.3 m/s,43 m/s2 (3)4.2 m
变式训练3-1 如右图所示,在劲度系数为k旳弹簧 下端挂有质量为m旳物体,开始用托盘托住物体,使弹簧 保持原长,然后托盘以加速度a匀加速下降(a<g),求经过 多长时间托盘与物体分离.
解析:当托盘以加速度a匀加速下降时,托盘与物体 具有相同旳加速度,在下降过程中,物体所受旳弹力逐渐 增大,支持力逐渐减小,当托盘与物体分离时,支持力为 零.设弹簧旳伸长量为x,以物体为研究对象,根据牛顿 第二定律,有:
(2)设分离前两物体之间的正压力为 F′ 由 a=9-2Mt-A F′=F′+M3B+2t,得 t=0,F′=5 N 由于 FA 随 t 的增加而减小,FB 随 t 的增加而增加,可以 断定,分离前随着时间的增加,两物体之间的正压力 F′逐 渐减小,分离时两者之间的正压力 F′为零. 分离时两者的速度和加速度相等,加速度仍为 a=43 m/s2. 此时两者之间的作用力为零,由加速度相等得:
变式训练1-1 质量分别为m1、m2、m3、m4旳四个 物体彼此用轻绳连接,放在光滑旳桌面上,拉力F1、F2分 别水平地加在m1、m4上,如图所示.求物体系旳加速度a 和连接m2、m3轻绳旳张力T.(F1>F2)
解析:由于物体系具有相同的向左加速度,所以可把 它们当成一个整体(或看作一个质点),整个系统在水平方向 受到外力F1、F2,有:
【解析】 当小球和斜面接触,但两者之间刚好无压 力时,设滑块旳加速度为a′,此时小球受力如图所示,由 水平和竖直方向状态可列方程分别为:
物体的平衡的整体法和隔离法

整体法和隔离法解决平衡问题:(1)整体法:把几个物体视为一个整体,只分析这一整体对象之外的物体对整体的作用力(外力),不考虑整体内部之间的相互作用力(内力。
(2)隔离法:对单个物体进行分析、研究。
使用原则:通常在分析外力对系统的作用时,用整体法,在分析系统内部物体间相互作用力时,用隔离法;有时候整体法和隔离法交替使用。
适用条件:两物体对地静止或作匀速直线运动,或两物体虽作加速运动但相对静止(即对地有共同的加速度)实战巩固练习:1 .如图所示,三个完全相同的物体叠放在水平面上,用大小相同、方向相反的两个水平力F分别拉物块A和B三物体均处于静止状态()A.A对B的摩擦力大小为F,方向向左B .水平面对C没有摩擦力作用C.B对A没有摩擦力作用D.C对B的摩擦力大小为F,方向向左2 .在粗糙水平面上有一个三角形木块a,在它的两个粗糙斜面上分别放着质量为mRD m2的两个木块b和c,如图所示,已知m1>m2,三木块均处于静止状态,则关于粗糙地面对三角形木块下列说法正确的是()A .有摩擦力作用,摩擦力的方向水平向右B .有摩擦力作用,摩擦力的方向水平向左C.有摩擦力作用,但摩擦力的方向不能确定D .没有摩擦力作用3 .如图,斜面放在光滑地板上并紧靠左边墙壁,两滑块叠放在一起沿斜面匀速下滑,则4 .如图所示,两只均匀光滑的相同小球,质量均为m ,置于静止的半径为R 的圆柱形容器, 已知小球的半径r(r<R),则以下说法正确的是:()5 .如图,质量为M 的楔形物块静置在水平地面上,其斜面的倾角为e .斜 面上有一质量为m 的小物块,小物块与斜面之间存在摩擦.用恒力F 沿斜 面向上拉小物块,使之匀速上滑.在小物块运动的过程中,楔形物块始终保持静止.地面对 楔形物块的支持力为:A.(M + m)gB.(M + m)g-FC.(M + m)g +Fsin0D.(M + m)g - Fsine 6 .如图,一物体静止在一倾角为e=30°的斜面上,斜面又静止在水平地面 上.若用竖直向上大小为5N 的力F 拉物体,物体仍然静止,则 A .物体受到的合外力减小5N B .斜面体受到的压力减小2.5NA .斜面受到墙壁的弹力.C .斜面受到M 滑块的压力. B .斜面受到滑块的摩擦力沿斜面向上D - M 受到N 的摩擦力沿斜面向上.①容器底部对球的弹力等于2mg②两球间的弹力大小可能大于、等于或小于mg ③容器两壁对球的弹力大小相等 ④容器壁对球的弹力可能大于、小于或等于2mgA .①②③B .①②④ C.①③④ D.②③④C .斜面受到的摩擦力减小2.5ND .地面受到的压力减小5N5N7 .如图所示,在一根水平的粗糙的直横梁上,套有两个质量均为m的铁环,两铁环系有等长的细绳,共同拴着质量为M的小球,两铁环与小球均保持静止。
整体法与隔离法的应用详解

再选取物体B为研究对象, 受力分析如图所示, 根据牛顿第二定律:
FN - F2 ma
F2
FN
FN
F2
ma
F2
m F1 F2 2m
F1
F2 2
.
变式1:物块m和M用轻绳连接,在M上施加恒力 F,使两
物块作匀加速直线运动,地面光滑。求绳中张力。
解:(1)由牛顿第二定律,
课程内容
一、整体法:在研究物理问题时,把所研究的 对象作为一个整体来处理的方法称为整体法。 采用整体法不需要考虑内力的影响,可以避免 对整体内部进行繁锁的分析,常常使问题解答 更简便、明了。
二、隔离法:把所研究对象从整体中隔离出来 进行研究,最终得出结论的方法称为隔离法。 采用隔离物体法一般用来求内力,能排除与研 究对象无关的因素,使事物的特征明显地显示 出来,从而进行有效的处理。
(2)在使用隔离法解题时,所选取的隔离对象可以使连接体 中的某一部分物体,也可以使连接体中的某一个物体(包含两 个或两个以上的单个物体),而这“某一部分”的选取,也应根 据问题的实际情况,灵活处理.
平面上,其质量为M,它的斜面是光滑的,
在它的斜面上有一质量为m的物体,在用
水平力推斜面体沿水平面向左运动过程中,
物体与斜面体恰能保持相对静止,则下列 说法中正确的是( )
m
F
A.斜面体对物体的弹力大小为mgcosθ
B.斜面体对物体的弹力大小为mg/cosθ C.物体的加速度大小为gsinθ
θ
M
D.水平推力大小为(M+m)gtanθ
[解析]隔离m,由平行四边形定则可得:
FN=mg/cosθ
FN
F合=mgtanθ
θ
应用整体法和隔离法的解题技巧—内力公式(解析版)

高中物理题型解题技巧之力学篇03内力公式一、必备知识1.连接体问题母模型如图1所示,光滑地面上质量分别为m 1、m 2的两物体通过轻绳连接,水平外力F 作用于m 2上,使两物体一起加速运动,此时轻上的拉力多大?整体由牛顿第二定律求加速度a =Fm 1+m 2−μg隔离求内力T -μm 1g =m 1a得T =m 1m 1+m 2F二:应用技巧(1).物理场景:轻绳或轻杆或轻弹簧等相连加速度相同的连接体,如下情形求m 2、m 3间作用力,将m 1和m 2看作整体F 23=m 1+m 2m 1+m 2+m 3F整体求加速度a =Fm 1+m 2−μg隔离求内力T -μm 1g =m 1a得T =m 1m 1+m 2F整体求加速度a =Fm 1+m 2−g (sin θ+μcos θ)隔离求内力T -m 1g (sin θ-μcos θ)=m 1a得T =m 1m 1+m 2F整体求加速度a =Fm 1+m 2−g隔离求内力T -m 1g =m 1a得T =m 1m 1+m 2Fa =F 2-F 1m 1+m 2−μg隔离T -F 1-μm 1g =m 1a得T =m 1F 2+m 2F 1m 1+m 2(2)方法总结:(内力公式)如上图所示,一起加速运动的物体系统,若力作用于m 1上,则m 1和m 2间的相互作用力为F 12=m 不m 1+m 2F (其中m 不即为外力不作用的物体的作用)此结论与有无摩擦无关(有摩擦,两物体与接触面的动摩擦因数必须相同),物体系统沿水平面、斜面、竖直方向运动时,此结论都成立。
两物体的连接物为轻弹簧、轻杆时,此结论不变。
注意:若整体受到多个外力时,可先将多点个外力分别应用内力公式a .两外力相反时,绳中的拉力为T =m 2m 1+m 2F 1+m 1m 1+m 2F2b .两外力相同时绳中的拉力为T =m 2m 1+m 2F 1-m 1m 1+m 2F2三、实战应用(应用技巧解题,提供解析仅供参考)一、单选题1如图,两物块P 、Q 置于水平地面上,其质量分别为m 、2m ,两者之间用水平轻绳连接。
整体法与隔离法及应用

隔离法与整体法及其应用1.隔离法的含义及其应用把所研究的事物从整体或系统中隔离出来进行研究,最终得出结论的方法称为隔离法。
应用隔离法能排除与事物无关的因素,使该事物的主要特征明确地显示出来,从而进行有效处理,使一些无法用整体来解决的问题得到满意的结论。
任何事物总是由各个部分组成的,事物的整体和局部之间既有联系又有区别。
在处理具体的物理问题时,可以根据不同的情况把整个物体系或整个物理过程分隔成几个部分,应用相应物理规律进行处理。
由于各物体在各种不同情况下会产生不同的结果,应用隔离法能为我们针对不同情况解决问题创造条件。
同时由于事物之间总是相互关联的,对局部事物问题的研究也有利于我们进一步了解局部之间的相互关系以及局部和整体之间的相互关系,往往能突破一点掌握全局,使问题得到顺利解决。
隔离法用于解决高中物理问题常见的有以下六种情况。
1.1(隔离物体)例1.如图(1)所示,质量为M 的木板上放一质量为m 的木块。
木块与木板间的动摩擦因数为μ1,木板与水平支持面间的摩擦因数为μ2。
问:加在木板上的水平力F 多大时,才能将木板从木块下抽出来?简解:分别对m 及M 作受力分析后,根据牛顿第二定律对m :μ1m g=ma 1……①,对M :F-μ1mg-μ2(m +M )g=M a 2……②,将M 从m 下抽出,应满足a 2>a 1……③,将①、②代入③可得F>(μ1+μ2)(M+m)g 说明:共点力平衡条件、牛顿第二定律、动量定理、动能定理等力学规律均适用于隔离物体,分别列式联合求解。
至于具体应用哪一条物理规律,要视物体的运动状态和问题设置的目标而定。
此外,对于有相互关联的几部分不同气体,分别对它们应用相关的气体实验定律或气态方程列式讨论,也属这类方法应用。
对于点光源同时经不同的光学元件成像,如果要确定像的个数及虚实,或光路图等,则需要隔离光学元件进行分析。
1.2隔离过程例2.如图(2)所示,用长为L 的轻绳,一端系质量为m 的小球,另一端固定在O 处。
整体法和隔离法

向由平衡条件可得
,得到木板对第 1 块砖和第 4 块砖的摩擦力均为
。
-2-/7
图3
(2)第 1 块和第 2 块砖看作整体隔离后进行受力分析,如图 4 所示,竖直方向,木板对第
1 块砖的摩擦力为 的摩擦力为零。
,由平衡条件可知此二力已经达到平衡,故第 3 块砖对第 2 块砖
图4
(3)将第 4 块砖单独从系统中隔离出来进行受力分析,如图 5 所示,竖直方向,由平衡条
问题涉及物体间的内力 3、连接体题型: 3.1、连接体整体运动状态相同:(这类问题可以采用整体法求解)
【例 1】A、B 两物体靠在一起,放在光滑水平面上,它们的质量分别为 mA 3kg , mB 6kg ,今用水
-5-/7
FA
FB
AB
平力 FA 6N 推 A,用水平力 FB 3N 拉 B,A、B 间的作用力有多大?
-4-/7
2. 质量相同的四木块叠放在一起,如图 11 所示,静止在水平地面上,现有大小相等、方向 相反的力 F 分别作用的第 2 块和第 4 块木块上,四木块仍然静止,则从上到下各层接触面间 的摩擦力多大?
图 11 3. 在图 12 中,吊篮重 300N,人重 500N,绳子质量及其与滑轮摩擦不计,要使吊篮离地上 升,则人的拉力至少多大?
,所以最低点的张力为
巩固练习 1. 如图 10 所示,人重 600N,木板重 400N,人与木板、木板与地面间的动摩擦因数皆为 0.2,今人用水平力拉绳,使他与木板一起向右匀速运动,则()
图 10 A. 人拉绳的力是 200N B. 人拉绳的力是 100N C. 人的脚对木板的摩擦力向右 D. 人的脚对木板的摩擦力向左
整体法和隔离法
一.整体法和隔离法在平衡中的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1
A. F1
a
B. F2
C. (F1+ F2) / 2
F1
D. (F1- F2) / 2
A
B
F2
分析:
物体A和B加速度相同, 求它们之间的相互作用力, 采取先整体后隔离的方法, 先求出它们共同的加速度, 然后再选取A或B为研究对象, 求出它们之间的相互作用力.
选取A和B整体为研究对象, 共同加速度a为:
m
θ M
F
[解析]隔离m,由平行四边形定则可得: FN=mg/cosθ F合=mgtanθ 由牛顿第二定律可得:a= F合/m =gtanθ 对整体,由牛顿第二定律可得: F合 F=(M+m)a=(M+m)gtanθ [答案]BD F
FN θ
Hale Waihona Puke mF Mmg
θ
课程小结 (1)解答问题时,决不能把整体法和隔离法对立起来, 而应该把这两种方法结合起来,从具体问题的实际 情况出发,灵活选取研究对象,恰当选择使用隔离和 整体法. (2)在使用隔离法解题时,所选取的隔离对象可以使连接 体中的某一部分物体,也可以使连接体中的某一个物体(包 含两个或两个以上的单个物体),而这“某一部分”的选取, 也应根据问题的实际情况,灵活处理.
解:(1)由牛顿第二定律,
对整体可得:F=(M+m)a
F
m
M
F
隔离m可得:T=ma 联立解得:T=mF/(M+m)
T
(2)已知内力求外力。 先隔离分析计算加速度,然后 整体分析,计算外力。 例2 如图所示, A、B、C三物体
的质量分别为m1、m2、m3 , 带有 滑轮的 C 放在光滑的水平面上, 细绳质量及一切摩擦均不计, 为 使三物体无相对运动, 试求水平 推力F的大小?
F2
F1
a
F1 F2 mm
再选取物体B为研究对象, 受力分析如图所示, 根据牛顿第二定律:
F2
FN
FN - F2 ma
FN F2 ma F2 m
F1 F2 F1 F2 . 2m 2
变式1:物块m和M用轻绳连接,在M上施加恒力 F,使两物
块作匀加速直线运动,地面光滑。求绳中张力。
m2 g. m1
变式:如图所示,倾角为θ的斜面体置于 水平面上,其质量为M,它的斜面是光滑 的,在它的斜面上有一质量为m的物体, 在用水平力推斜面体沿水平面向左运动过 程中,物体与斜面体恰能保持相对静止, 则下列说法中正确的是( ) A.斜面体对物体的弹力大小为mgcosθ B.斜面体对物体的弹力大小为mg/cosθ C.物体的加速度大小为gsinθ D.水平推力大小为(M+m)gtanθ
整体法与隔离法解连接体问题
高中物理 马小渔
知识点
1、整体法和隔离法的区别
2、应用整体法的条件(重点) 3、如何应用整体法隔离法解题(难点) 4、整体法隔离法应用的注意事项
课程内容
一、整体法:在研究物理问题时,把所研究的 对象作为一个整体来处理的方法称为整体法。 采用整体法不需要考虑内力的影响,可以避免 对整体内部进行繁锁的分析,常常使问题解答 更简便、明了。
A C B
F
解 :
设系统运动的加速度为a ,
绳的弹力为T, 先隔离分析. ①
T mg
对B, 由平衡条件得: T m2 g
对A, 由牛顿第二定律得: T m a 1 由 ① ②得:
②
T
a
m2 g. m1
F
再取整体研究, 由牛顿第二定律:
F (m 1 m 2 m 3 )a (m 1 m 2 m 3 )
二、隔离法:把所研究对象从整体中隔离出 来进行研究,最终得出结论的方法称为隔离法。 采用隔离物体法一般用来求内力,能排除与研 究对象无关的因素,使事物的特征明显地显示 出来,从而进行有效的处理。
三 .解题方法:当几个物体的加速度相同时可以看着一个整体, 可以用整体法解题。 (1)已知外力求内力。 先整体分析,计算加速度,然后隔离分析计算内力。 如图所示, 两个质量相同的物体A和B紧靠再一起, 放在 光滑的水平面上, 如果他们分别受到水平推力F1和F2, 而且F1> F2, 则A施于B的作用力大小为( )