物质代谢的相互关系
生物化学:第十三章 代谢调节

• 代谢调节普遍存在于生物界
单细胞生物
通过细胞内代谢物浓度的变 化,影响酶活性及含量,从而调 节代谢
——原始调节/细胞水平调节
高 等 生 细胞水平代谢调节 物
激素水平代谢调节
整体水平代谢调节
细胞水平代谢调节
细胞的膜结构及酶分布 在代谢的调节作用
酶活性的调节
多酶体系的 区域化分布
同工酶在调 节中的作用
GTP
已糖激酶
6-P-G
磷酸果糖激酶
6-P-F
磷酸果糖激酶1
6-磷酸果糖
1,6-二磷酸果糖
各种腺苷酸对磷酸果糖激酶的变构调节
变构调节的机制和特点
➢多数变构酶由多亚基构成,所以存在四级结构。 它们的变构调节一般体现在亚基的解聚和聚合上。 ➢多数变构酶由两种亚基组成:催化亚基和调节亚 基。 ➢变构酶有两种构象。 ➢变构剂与调节亚基以非共价键结合,两者的结合 程度取决于变构剂的浓度。 ➢变构调节快速短暂,一般在数分钟内完成。
甘油
某些非必需氨基酸
磷酸甘油醛
糖酵解途径
丙酮酸
其他α-酮酸
ቤተ መጻሕፍቲ ባይዱ
• 但不能说,脂类可转变为氨基酸
• 氨基酸可以转变为脂类
氨基酸
乙酰CoA
脂肪
• 氨基酸可作为合成磷脂的原料
丝氨酸
丝氨酸磷脂
胆胺
脑磷脂
胆碱
卵磷脂
4. 核酸与糖、蛋白质
代谢的相互联系
• 氨基酸是体内合成核酸的重要原料
甘氨酸
天冬氨酸
谷氨酰胺
一碳单位
酶结构 的调节
酶数量 的调节
一、代谢途径的区域化分布 1、代谢途径有关酶类常组成酶体系,分布
于细胞的某一区域或亚细胞结构中。
生物化学讲义第十章物质代谢的联系和调节

生物化学讲义第十章物质代谢的联系和调节 【目的与要求】1.熟悉三大营养物质氧化供能的通常规律与相互关系。
2.熟悉糖、脂、蛋白质、核酸代谢之间的相互联系。
3.熟悉代谢调节的三种方式。
掌握代谢途径、关键酶(调节酶)的概念;掌握关键酶(调节酶)所催化反应的特点。
熟悉细胞内酶隔离分布的意义。
熟悉酶活性调节的方式。
4.掌握变构调节、变构酶、变构效应剂、调节亚基、催化亚基的概念;5.掌握酶的化学修饰调节的概念及要紧方式。
6.熟悉激素种类及其调节物质代谢的特点。
7.熟悉饥饿与应激状态下的代谢改变。
【本章重难点】1.物质代谢的相互联系2.物质代谢的调节方式及意义3.酶的变构调节、化学修饰、阻遏与诱导4.作用于细胞膜受体与细胞内受体的激素学习内容第一节物质代谢的联系第二节物质代谢的调节第一节物质代谢的联系一、营养物质代谢的共同规律物质代谢:机体与环境之间不断进行的物质交换,即物质代谢。
物质代谢是生命的本质特征,是生命活动的物质基础。
二、三大营养物质代谢的相互联系糖、脂与蛋白质是人体内的要紧供能物质。
它们的分解代谢有共同的代谢通路—三羧酸循环。
三羧酸循环是联系糖、脂与氨基酸代谢的纽带。
通过一些枢纽性中间产物,能够联系及沟通几条不一致的代谢通路。
对糖、脂与蛋白质三大营养物质之间相互转变的关系作简要说明:㈠糖可转变生成甘油三酯等脂类物质(除必需脂肪酸外),甘油三酯分解生成脂肪酸,脂肪酸经β-氧化生成乙酰CoA,乙酰CoA或者进入三羧酸循环或者生成酮体,因此甘油三酯的脂肪酸成分不易生糖,但甘油部分能够转变为磷酸丙糖而生糖,但是甘油只有三个碳原子,只占甘油三酯的很小部分。
㈡多数氨基酸是生糖或者生糖兼生酮氨基酸。
因此氨基酸转变成糖较为容易。
糖代谢的中间产物只能转变成非必需氨基酸,不能转变成必需氨基酸。
㈢少数氨基酸能够生酮,生糖氨基酸生糖后,也可转变为脂肪酸(除必需脂肪酸外),因此氨基酸转变成脂类较为容易。
脂肪酸经β-氧化生成乙酰CoA进入三羧酸循环后,即以CO2形式被分解。
【高中生物】高中生物知识点:三大营养物质代谢的关系

【高中生物】高中生物知识点:三大营养物质代谢的关系三大营养物质的代谢关系:三种营养素代谢之间的关系:三种营养素相互关联,相互制约。
它们是可以转化的,但有条件,而且转化的程度有明显的差异。
知识点拨:1.蛋白质与糖的转化关系:构成蛋白质的天然氨基酸几乎可以转化为糖;2、糖类代谢与蛋白质代谢的关系:糖类代谢的中间产物可以转变成非必需氨基酸。
糖类在分解的过程中产生的一些中间产物如丙酮酸,可以通过氨基转换作用产生相应的非必需氨基酸,但由于糖类分解时不能产生与必需氨基酸相对应的中间产物,因而糖类不能转化成必需氨基酸。
3.脂肪与糖的转化关系脂肪分解产生的甘油和脂肪酸都能够转变成糖类。
4.蛋白质代谢与脂肪代谢的关系一般来说,动物体内不容易利用脂肪合成氨基酸。
植物和微生物可由脂肪酸和氮源生成氨基酸;某些氨基酸通过不同途径可转变成甘油和脂肪酸。
5.糖、脂肪和蛋白质之间转化的条件在正常情况下,人和动物体所需要的能量主要由糖类氧化供给的,只有当糖类代谢发生障碍,引起供能不足时,才由脂肪和蛋白质氧化分解供给能量,保证集体的能量需要。
当糖类和脂肪的摄入量都不足时,体内蛋白质的分解就会增加。
而当大量摄入糖类和脂肪时,体内蛋白质的分解就会减少。
6.人体内的物质代谢是一个完整的过程相关高中生物知识点:糖代谢葡萄糖代谢:知识拓展:1.除了定义中给出的淀粉(主要是食品中的淀粉)外,血糖的来源还包括非糖物质(如脂肪和蛋白质)的转化和肌糖原的分解。
2、蛋白质转化成血糖的时候主要是脱氨基作用形成,而脱去的氨基主要形成尿素随尿液排出。
3.糖、脂肪和蛋白质转化为血糖,按糖、脂肪和蛋白质的顺序提供能量。
4、空腹血糖正常值(1)一般情况下,空腹血糖为3.9~6.1mmol/L(70~110mg/dl),血糖为3.9~6.9mmol/L(70~125mg/dl)。
(2)、空腹全血血糖≥6.7毫摩尔/升(120毫克/分升)、血浆血糖≥7.8毫摩尔/升(140毫克/分升),2次重复测定可诊断为糖尿病。
物质代谢的联系与调节《生物化学》复习提要

物质代谢的联系与调节第一节物质代谢的特点(一)整体性体内各种物质包括糖、脂、蛋白质、水、无机盐、维生素等的代谢不是彼此孤立各自为政,而是同时进行的,而且彼此互相联系,或相互转变,或相互依存,构成统一的整体。
(二)代谢调节机体存在精细的调节机制,不断调节各种物质代谢的强度、方向和速度以适应内外环境的变化。
代谢调节普遍存在于生物界,是生物的重要特征。
(三)各组织、器官物质代谢各具特色由于各组织、器官的结构不同,所含有酶系的种类和含量各不相同,因而代谢途径及功能各异,各具特色。
例如肝在糖、脂、蛋白质代谢上具有特殊重要的作用,是人体物质代谢的枢纽。
(四)各种代谢物均具有各自共同的代谢池无论是体外摄人的营养物或体内各组织细胞的代谢物,只要是同一化学结构的物质在进行中间代谢时,不分彼此,参加到共同的代谢池中参与代谢。
(五)ATP是机体能量利用的共同形式糖、脂及蛋白质在体内分解氧化释出的能量,均储存在ATP的高能磷酸键中。
(六)NADPH是合成代谢所需的还原当量参与还原合成代谢的还原酶则多以NADPH为辅酶,提供还原当量。
如糖经戊糖磷酸途径生成的NADPH既可为乙酰辅酶A合成脂酸,又可为乙酰辅酶A 合成固醇提供还原当量。
第二节物质代谢的相互联系一、在能量代谢上的相互联系乙酰辅酶A是三大营养物共同的中间代谢物,三羧酸循环是糖、脂、蛋白质最后分解的共同代谢途径,释出的能量均以ATP形式储存。
从能量供应的角度看,这三大营养素可以互相代替,并互相制约。
二、糖、脂和蛋白质代谢之间的联系体内糖、脂、蛋白质和核酸等的代谢不是彼此独立,而是相互关联。
它们通过共同的中间代谢物,即两种代谢途径汇合时的中间产物,三羧酸循环和生物氧化等联成整体。
(一)糖代谢与脂代谢的相互联系当摄人的糖量超过体内能量消耗时,除合成少量糖原储存在肝及肌肉外,生成的柠檬酸及ATP可变构激活乙酰辅酶A竣化酶,使由糖代谢源源而来的大量乙酰辅酶A得以羧化成丙二酰辅酶A,进而合成脂酸及脂肪在脂肪组织中储存,即糖可以转变为脂肪。
关于人体内三大营养物质代谢关系的解读

关于人体内三大营养物质代谢关系的解读
人体内的三大营养物质包括蛋白质、脂质和碳水化合物,这些物
质之间存在着复杂的代谢关系。
蛋白质是细胞结构和活动的重要物质,参与细胞新陈代谢,是组成血液和淋巴细胞的原始物质,也是体内激素,酶和免疫细胞的主要成分,因此蛋白质在人体各种活动中都有重
要作用。
脂质既可以作为营养物质,也可以构成部分细胞膜,有着重
要的生理功能,还可以提供能量和跳动剂,在脂肪肝、高胆固醇血症
中脂质的代谢机制也发生变化。
碳水化合物的代谢非常复杂,它可以
作为人体的热量来源,也可以作为合成多种有机分子的原料,在细胞
供氧过程中有着重要作用。
从细胞代谢的角度来看,这三类营养物质之间存在着复杂的相互
关系。
在营养物质的代谢过程中,可以将原物质通过代谢反应进行改变,并将其转化为另一种物质,形成新的物质。
例如,碳水化合物可
以通过呼吸酶催化反应,将糖类物质分解转化成同位素CO2和水;另
外蛋白质和脂质也可以通过催化反应进行互转。
在营养物质代谢过程中,人体内会产生能量作为新物质形成的催化剂,而能量则会通过ATP
产生和消耗来得到衡量。
总之,人体内三大营养物质依存于复杂的代谢关系,除了彼此间
的相互关系,这些物质还深入了解了细胞的新陈代谢及能量的代谢机制,使得我们对营养的获取和利用有了全面的了解,以此来促进健康
的生活。
生物化学 第11章、代谢调控

色氨酸操纵子 调节基因产生的阻遏蛋白没有生物) 酶蛋白
阻遏蛋白不能跟操纵基因结 合, 结构基因可以表达 B:有色氨酸 色氨酸与阻遏蛋白结合,从 而使阻遏蛋白能够结合到 操纵基因,结构基因不表达
代谢产物
色氨酸合成途径还存在色氨酸操纵子中衰
减子所引起的衰减调节。
操纵子(operon ):指原核生物基因表达的的 调控单位。包括一个操纵基因(operator,O) , 一群功能相关的结构基因(S)和专管转录起始 的启动基因(P)。
调节 基因
R
启动 操纵 基因 基因
P O S
1
结构 基因
S
2
S
3
操纵子
操纵子可分为:
可诱导操纵子:基因在正常情况下不表 达,
加入诱导物后基因表达。如乳糖操纵子 可阻遏操纵子:基因在正常情况下表达, 有辅阻遏物存在时不表达。如色氨酸操纵子
酶促反应的前馈和反馈
:
前馈作用(feedforward):代谢途径中前
面的底物对其后某一催化反应的调节酶有作用。
前馈激活——底物对后面的酶起激活作用。
前馈抑制——底物对后面的酶起抑制作用
丙酮酸激酶
G → G-6-P → F-6-P → FDP →→→ PEP
前馈激活
丙酮酸
乙酰CoA+CO2 + H2O + ATP
前馈抑制
乙酰CoA羧化酶
丙二酸单酰CoA+ADP+ Pi
反馈调节(feedback)—某一代谢途径的产物或 终产物积累时,反过来对反应序列前头的限速 酶发生的调节作用
正反馈(反馈激活)——产物能使反应速度加快 负反馈(反馈抑制)——产物能使反应速度减慢
《生物化学》-物质代谢的调节与控制

1.酶量调节机理
酶量调节的两种基本调节机制是诱导和阻遏
诱导:一些分解代谢的酶类只在有关的底物或底物 类似物存在时才被诱导合成。依赖于诱导物才能合 成的酶称为诱导酶。
阻遏:对于合成代谢的酶类,在产物或产物类似物 足够量存在时,其合成被阻遏。(反馈阻遏)
共价修饰调节是酶蛋白中的活性基团(-OH、SH、-COOH、-NH2)在其他酶的作用下发生共价 修饰,从而改变酶的活性。
共价修饰调节具有级联放大作用,效率高。
(三)酶量变化对代谢的调节(基因表达的调节控制)
细胞内酶浓度的改变也可以改变代谢速度。
主要是通过调节酶蛋白的合成过程实现的。 (1)活化基因则合成相应的酶,酶量增加; (2)钝化基因则停止酶的合成,酶量降低。
柠檬酸
+
–
乙酰辅酶A羧化酶 6-磷酸果糖激酶
促进脂酸的合成 抑制糖的氧化
2.共价修饰调节
(1)有些酶,在其它酶的催化下,其分子结构中的某 些基团,如:Ser、Thr或Tyr 的-OH 基,能与特殊的 化学基团,如ATP分子上脱下的磷酸基或腺苷酰基 (AMP),共价结合或解离,从而使酶分子活性形式发生 改变。这种修饰作用称为共价修饰调节。这种被修饰 的酶称为共价调节酶。
葡萄糖
分解代 谢产物
变构调节的生理意义
① 代谢终产物反馈抑制 (feedback inhibition) 反应途径中的酶,使代谢物不致生成过多。
乙酰CoA
丙二酰CoA
乙酰CoA羧化酶
长链脂酰CoA
②变构调节使能量得以有效利用,不致浪费。
G-6-P
+
–
糖原合酶
糖原磷酸化酶
物质代谢联系与调节

01
02
03
某些物质可以诱导细胞内产生诱导酶,这种作用叫做酶的诱导生成作用。
一些分解代谢的酶类只在有关底物or底物类似物存在时才能诱导合成;
一些合成代谢的酶类在产物或产物类似物足够存在时,其合成被阻遏。
1.酶的诱导和阻遏
1
诱导酶:是指当细胞中加入特定诱导物后诱导产生的酶,它的含量在诱导物存在下显著增高,这种诱导物往往是酶底物的类似物或底物本身。
脂肪转变为糖是有限的。脂类分子的甘油部分经糖异生可以生成糖,而FA部分分解产生的乙酰CoA进入TCA后全部氧化为CO2和H2O。因此,在动物中,脂肪转变为糖是有限的,而在植物和微生物中存在乙醛酸循环,乙酰-CoA可产生OA,可异生为糖,因此,在植物和微生物中,脂肪可以转变为糖。
糖代谢与脂代谢的相互联系
细胞代谢的调节,主要是通过控制酶的作用而实现的。这种酶水平的调节,是最基本的调节方式。激素和神经调节是随着生物进化、发展而完善起来的调节机制,但是它们仍然是通过“酶水平”的调节而发挥其作用。所有这些调节又受生物遗传因素的控制。
DNA的复制、转录在细胞核里进行。转录出的mRNA、tRNA、rRNA从核孔穿出进入细胞质,在粗面内质网上进行蛋白质的生物合成。
当诱导物存在时,诱导物和阻遏蛋白结合时,改变阻遏蛋白的构象,不能与操纵基因结合,于是RNA聚合酶起作用,使底物基因进行转录和翻译,生成酶蛋白。
酶生成的阻遏作用(repression) 在没有代谢产物时,阻遏蛋白不能与操纵基因结合,因而结构基因就转录翻译,生成酶蛋白。
当代谢产物存在时,代谢终产物和阻遏蛋白结合,使阻遏蛋白构象发生变化,可与操纵基因结合,从而使结构基因不能进行转录,酶的生成受到阻遏。
核酸代谢与糖、脂及蛋白质代
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(二)酶水平的调节
1、酶活性的调节
酶活性调节是快速调节,在几分钟到几十分钟内完成
2、基因表达的调节
酶浓度的调节要牵涉到基因、mRNA、蛋白质的生物合成, 所以这种调节是一种慢调节,在几小时或几天内才能完成。
(二)糖代谢与蛋白质代谢的相互关系
糖可以转变为非必需氨基酸。 蛋白质可以转变为糖。
糖代谢与蛋白质代谢的相互联系
糖 →→ α -酮酸 NH3 氨基酸
蛋白质
蛋白质 氨基酸 α -酮酸 糖
(生糖氨基酸)
(三)脂类代谢与蛋白质代谢的相互关系
由脂肪合成蛋白质的可能性是有限的,实 际上仅限于Glu。
蛋白质间接地转变为脂肪。
6-磷酸葡萄糖对糖原合成的激活作用
ATP
G
ADP
6-P-G
UTP
1-P-G
+
UDPG
UDPG
糖原 合成酶
糖原
(三)细胞膜结构对代谢的调节和控制作用
细胞质:酵解;磷戊糖途 径;糖原合成;脂肪酸合 成;
线粒体:丙酮酸氧化;三羧 酸循环;-氧化;呼吸链电 子传递;氧化磷酸化
细胞核:核酸合成
内质网:蛋白质合 成;磷脂合成
各类物质代谢都离不开具高能磷酸键的各种核苷酸,如ATP是 能量的“通货”,此外UTP参与多糖的合成,CTP参与磷脂合成, GTP参与蛋白质合成与糖异生作用。
核苷酸的一些衍生物具重要生理功能(如CoA, NAD+,NADP+, cAMP,cGMP)。
蛋白质 核酸
淀粉、糖原
脂肪
糖
类
氨基酸
核苷酸
1-磷酸葡萄糖
R
c
蛋白激酶(无活性)
c +R
蛋白激酶(有活性)
cAMP
内在蛋白质的磷酸化作用
改变细胞的生理过程
细胞膜
(五) 神经的调节
直接控制 间接控制
甘油
磷酸二羟丙酮
糖代谢
脂肪
脂肪酸
-氧化
乙醛酸循环
糖异生
乙酰CoA(植物) 琥珀酸
糖
TCA
脂肪代谢和糖代谢的相互关系
三酰甘油
3-磷酸甘油
脂肪酸
甘油
合
氧
成
化
丙酮酸
乙酰 CoA
植物或微 生物
三羧酸 循环
乙醛酸 循环
糖原(或淀粉) 1,6-二磷酸果糖
磷酸二羟丙酮 磷酸烯醇丙酮酸
草酰乙酸 苹果酸 延胡索酸 琥珀酸
许多核苷酸在代谢中起着重要的作用。核酸是细胞内的 重要遗传物质,可通过控制蛋白质的合成影响细胞的组成成 分和代谢类型。
核酸与糖、脂类、蛋白质代谢的相互联系
核酸是细胞内重要的遗传物质,控制着蛋白质的合成,影响细
胞的成分和代谢类型。 核酸生物合成需要糖和蛋白质的代谢中间产物参加,而且需要 酶和多种蛋白质因子。
脂类代谢与蛋白质代谢的相互联系
甘油 脂肪
磷酸二羟丙酮
脂肪酸 乙酰CoA 氨基酸碳架
氨基酸
蛋白质
蛋白质 氨基酸 酮酸或乙酰CoA (生酮氨基酸)
脂肪酸 脂肪
(四)核酸与其他物质代谢的相互关系
核酸及其衍生物和多种物质代谢有关。但脂类代谢除供 应CO2外,和核酸代谢并无明显的关系。
蛋白质代谢为嘌呤和嘧啶的合成提供许多原料;糖类产生 二羧基氨基酸的酮酸前身,又是戊糖的来源。
大分子降解成 基本结构单位
小分子化合物 分解成共同的 中间产物(如 丙酮酸、乙酰
CoA等)
共同中间物进 入三羧酸循环, 氧化脱下的氢 由电子传递链 传递生成H2O ,释放出大量 能量,其中一 部分通过磷酸 化储存在ATP 中。
二、代 谢 调 节
(一)代谢调节的概念 (二)酶水平的调节 (三)细胞膜结构对代谢的调节和控制作用 (四)激素调节和跨膜信号转导 (五)神经的调节
第十二章 物质代谢的相互联系和调节控制
一、物质代谢的相互联系 二、代谢的调节
一、物质代谢的相互联系
(一)糖代谢与脂类代谢的相互关系
糖可以在生物体内变成脂肪。 脂肪不能大量转变为糖,除了油料作物种子。
糖代谢与脂类代谢的相互关系
有氧氧化
从头合成
乙酰CoA,NADPH
脂肪酸
糖
脂肪
酵解
磷酸二羟丙酮
α -磷酸甘油
脂
6-磷酸葡萄糖
类 生糖氨基酸
核糖-5-磷酸
脂肪酸
氨
甘氨酸 天冬氨酸
基
谷氨酰氨
磷酸二羟丙酮 PEP
甘油
酸
丙氨酸 甘氨酸
生酮氨基酸
和
丝氨酰 苏氨酸
亮氨酸 赖氨酸
核 酸
半胱氨酸 天冬氨酸
酪酰氨 色氨酸
笨丙氨酸
丙酮酸 乙酰乙酰CoA
丙二单酰CoA
乙酰CoA
胆固醇
之
天冬酰氨
异亮氨酸
间
酪氨酸 天冬氨酸
亮氨酸 色氨酸
的
苯丙酰氨
代
异亮氨酸 甲硫酰氨
谢 联 系
苏氨酸 缬氨酸
谷氨酸 谷氨酰氨
组氨酸
草酰乙酸 苹果酸
延胡索酸 琥珀酸
琥珀酰CoA -酮戊二酸
乙醛酸
柠檬酸 异柠檬酸
脯氨酸
精氨酸
生物氧化的三个阶段
脂肪
多糖
蛋白质
脂肪酸、甘油
葡萄糖、 其它单糖
NADPH
乙酰CoA
氨基酸
磷酸化
电子Hale Waihona Puke 递 (氧化)+Pi
e-
三羧酸 循环
细胞膜结构对代谢的调节和控制作用
控制跨膜离子浓度梯度和电位梯度 控制细胞和细胞器的物质运输 内膜系统对代谢途径的分隔作用
(四)激素调节的机制
1、含氮激素作用模式 2、甾醇类激素作用模式
肽类激素通过cAMP-蛋白激酶调节代谢示意图
激素 受体 G蛋白 环化酶
ATP
cAMP+PPi
细胞膜
(一)代谢调节的概念
生命是靠代谢的正常运转维持的。生命有限的空间内同时有 那麽多复杂的代谢途径在运转,必须有灵巧而严密的调节机制, 才能使代谢适应外界环境的变化与生物自身生长发育的需要。调 节失灵便会导致代谢障碍,出现病态甚至危及生命。在漫长的生 物进化历程中,机体的结构、代谢和生理功能越来越复杂,代谢 调节机制也随之更为复杂。