大学物理 习题册答案
《大学物理》习题册题目及答案第17单元波的干涉-副本(可编辑修改word版)

5 波的干涉、衍射学号姓名 专业、班级 课程班序号一 选择题[ D ]1.如图所示, S 1 和 S 2 为两相干波源,它们的振动方向均垂直于图面, 发出波长为 的简谐波。
P 点是两列波相遇区域中的一点,已知 S 1P = 2, S 2 P = 2.2,两列波在P 点发生相消干涉。
若 S 的振动方程为 y = A cos(2t + 1) ,则 S 的振动方程为(A) 1 122y = A c os( 2 t - 1) S 122(B) y 2 = A c os( 2 t - (C) y 2 = A c os( 2 t +) 1)2(D) y 2 = A c os( 2 t - 0.1 )S 2[ C ]2. 在一根很长的弦线上形成的驻波是(A)由两列振幅相等的相干波,沿着相同方向传播叠加而形成的。
(B)由两列振幅不相等的相干波,沿着相同方向传播叠加而形成的。
(C)由两列振幅相等的相干波,沿着反方向传播叠加而形成的。
(D)由两列波,沿着反方向传播叠加而形成的。
[ B ]3. 在波长为 λ 的驻波中,两个相邻波腹之间的距离为 (A) λ/4 (B) λ/2 (C)3λ/4 (D)λ[ A ]4. 某时刻驻波波形曲线如图所示,则 a 、b 两点的位相差是 (A)(C)4(B)1 2(D) 0[ B ]5. 如图所示,为一向右传播的简谐波在 t 时刻的波形图,BC 为波密介质的反射面,波由 P 点反射,则反射波在 t 时刻的波形图为y A O- Aac2xbP[ B ]6. 电磁波的电场强度 E 、磁场强度 H 和传播速度 u 的关系是: (A) 三者互相垂直,而 E 和 H 相位相差12(B) 三者互相垂直,而且 E 、H 、u 构成右旋直角坐标系 (C) 三者中 E 和 H 是同方向的,但都与 u 垂直(D) 三者中 E 和 H 可以是任意方向的,但都必须与 u 垂直二 填空题1. 两相干波源 S 1 和 S 2 的振动方程分别是y 1 = A cost 和 y 2= A cos(t + 1) 。
大学物理下习题册答案详解

解 : a 30cm ,d 0.6m m , b=2.2m
D =a+b 2.5m ,
x 2.25m m
x D dx 5400 A
d
D
第 4级 明 纹 至 中 心 距 离 满 足 :
dx 4 x 4 D 9.00m m
D
ቤተ መጻሕፍቲ ባይዱ
d
练习34 光的干涉(2)
1.在双缝装置中,用一折射率为n的薄云母片覆盖其中
光的程亮差度2 分,, 2别则. 5为 有 , :3 .5
,比较 P、Q、R 三点
(1)P点最亮、Q点次之、R点最暗;
注意。单击此处添加正文,文字是您思想的提炼,为了演示发布的良好效果,请言简意赅地阐述您的观点。您的 内容已经简明扼要,字字珠玑,但信息却千丝万缕、错综复杂,需要用更多的文字来表述;但请您尽可能提炼思
20D 想 的 精 髓 , 否 则 容 易 造 成 观 者 的 阅 读 压 力 , 适 得 其 反 。 正 如 我 们 都 希 望 改 变 世 界 , 希 望 给 别 人 带 去 光 明 , 但 更 多
x 20x= 0.11m 时候我们只需要播下一颗种子,自然有微风吹拂,雨露滋养。恰如其分地表达观点,往往事半功倍。当您的内容 a 到 达 这 个 限 度 时 , 或 许 已 经 不 纯 粹 作 用 于 演 示 , 极 大 可 能 运 用 于 阅 读 领 域 ; 无 论 是 传 播 观 点 、 知 识 分 享 还 是 汇 报
n 1 题 目 中 k=-7
所 以 : e 7 n 1
答案为:(1)
2.迈克耳逊干涉仪可用来测量单色光的波长,当干涉仪
的动镜M2移动d距离时,测得某单色光的干涉条纹移 动N条,则该单色光的波长为:( )
大学物理练习册习题及答案4

习题及参考答案第3章 刚体力学参考答案思考题3-1刚体角动量守恒的充分而必要的条件是 (A )刚体不受外力矩的作用。
(B )刚体所受合外力矩为零。
(C)刚体所受的合外力和合外力矩均为零。
(D)刚体的转动惯量和角速度均保持不变。
答:(B )。
3-2如图所示,A 、B 为两个相同的绕着轻 绳的定滑轮。
A 滑轮挂一质量为M 的物体, B 滑轮受拉力F ,而且F =Mg 。
设A 、B 两 滑轮的角加速度分别为βA 和βB ,不计滑轮 轴的摩擦,则有(A )βA = βB (B )βA > βB(C )βA < βB (D )开始时βA = βB ,以后βA < βB 答:(C )。
3-3关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关。
(B)取决于刚体的质量和质量的空间分布,与轴的位置无关。
(C )取决于刚体的质量、质量的空间分布和轴的位置。
(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无 答:(C )。
3-4一水平圆盘可绕通过其中心的固定铅直轴转动,盘上站着一个人,初始时整个系统处于静止状态,当此人在盘上随意走动时,若忽略轴的摩擦,则此系统(A)动量守恒; (B)机械能守恒; (C)对转轴的角动量守恒;(D)动量、机械能和角动量都守恒; (E)动量、机械能和角动量都不守恒。
答:(C )。
3-5光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点o 且垂直于杆的竖直光滑固定轴自由转动,其转动惯量为213mL,起初杆静止,桌面上有两个质量均为m 的小球,各自在 垂直于杆的方向上,正对着杆的一端,以相同速率v 相向 运动,如图所示,当两小球同时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动,则这一系统碰撞后的转动角速度应为AMF思考题3-2图v思考题3-5图(A)23L v (B)45L v (C)67L v (D)89L v (E)127L v答:(C )。
大学物理习题册答案

xO 1A22练习 十三(简谐振动、旋转矢量、简谐振动的合成)一、选择题1. 一弹簧振子,水平放置时,它作简谐振动。
若把它竖直放置或放在光滑斜面上,试判断下列情况正确的是 (C )(A )竖直放置作简谐振动,在光滑斜面上不作简谐振动; (B )竖直放置不作简谐振动,在光滑斜面上作简谐振动; (C )两种情况都作简谐振动; (D )两种情况都不作简谐振动。
解:(C) 竖直弹簧振子:kx mg l x k dt x d m )(22(mg kl ),0222 x dt xd弹簧置于光滑斜面上:kx mg l x k dt x d m sin )(22 (mg kl ),0222 x dtxd2. 两个简谐振动的振动曲线如图所示,则有 (A ) (A )A 超前2π; (B )A 落后2π;(C )A 超前π; (D )A 落后π。
解:(A)t A x A cos ,)2/cos( t A x B3. 一个质点作简谐振动,周期为T ,当质点由平衡位置向x 轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的最短时间为: (B ) (A )4T ; (B )12T ; (C )6T ; (D )8T 。
解:(B)振幅矢量转过的角度6/ ,所需时间12/26/T T t , 4. 分振动表式分别为)π25.0π50cos(31 t x 和)π75.0π50cos(42 t x (SI 制)则它们的合振动表达式为: (C )(A ))π25.0π50cos(2 t x ; (B ))π50cos(5t x ;(C )π15cos(50πarctan )27x t; (D )7 x 。
解:(C)作旋转矢量图或根据下面公式计算)cos(21020212221A A A A A 5)25.075.0cos(4324322712)75.0cos(4)25.0cos(3)75.0sin(4)25.0sin(3cos cos sin sin 1120210120210110 tg tg A A A A tg5. 两个质量相同的物体分别挂在两个不同的弹簧下端,弹簧的伸长分别为1l 和2l ,且212l l ,则两弹簧振子的周期之比21:T T 为 (B )(A )2; (B )2; (C )2/1; (D )2/1。
大学物理练习册习题及答案

习题及参考答案第2章 质点动力学参考答案一 思考题2-1如图,滑轮绳子质量忽略不计,忽略一切摩擦力,物体A 的质量m A 大于物体B 的质量m B ,在A 、B 运动过程中弹簧秤的读数是(A )()12m m g + (B )()12m m g -(C )12122m m g m m ⎛⎫⎪+⎝⎭ (D )12124m m g m m ⎛⎫⎪+⎝⎭2-2用水平压力F 把一个物体压着靠在竖直的墙面上保持静止,当F 逐渐增大时,物体所受的静摩擦力f(A )恒为零 (B )不为零,但保持不变(C )随成F 正比增大 (D )开始随F 增大,达到某一值后,就保持不变 2-3如图,物体A 、B 的质量分别为M 、m ,两物体间摩擦系数为μ,接触面为竖直面,为使B 不下滑,则需要A 的加速度为(A )a g μ≥ (B )a g μ≥ (C )a g ≥ (D )M ma g M +≥2-4质量分别为m 和M 的滑块A 和B ,叠放在光滑的水平面上,如图,A 、B 间的静摩擦系数为μs ,滑动摩擦系数为μk ,系统原先处于静止状态,今将水平力F 作用于B 上,要使A 、B 间不轰生相对滑动,应有(A )s F mgμ≤ (B )(1)s F m M mgμ≤+(C )()s F m M mg μ≤+(D )s m MF mgM μ+≤AmBBm A 思考题2-1图思考题2-3图 思考题2-4图m(a )(b )Bm mm 21m 21思考题2-7图2-5 在光滑的水平面上,放有两个相互接触的物体A 和B ,质量分别为m 1和m 2,且m 1> m 2。
设有一水平恒力F ,第一次作用在A 上如图(a )所示,第二次作用在B 上如图(b )所示,问在这两次作用中A 与B 之间的作用力哪次大?2-6 图(a )中小球用轻弹簧o 1A 与o 2A 轻绳系住,图(b )中小球用轻绳o'1B 与o'2B 系住,今剪断o 2A 绳和o'2B 绳;试求在刚剪断的瞬时,A 球与B 球的加速度量值和方向。
《大学物理》习题册题目及答案第12单元稳恒电流的磁场

第12单元 稳恒电流的磁场 第七章 静电场和恒定磁场的性质(三)磁感应强度序号序号 学号学号 姓名姓名 专业、班级专业、班级一 选择题[ C ]1.一磁场的磁感应强度为B ai bj ck =++(T ),则通过一半径为R ,开口向z 正方向的半球壳表面的磁通量的大小是:向的半球壳表面的磁通量的大小是: (A) Wb 2a R p(B) Wb 2b R p (C) Wb 2c R p (D) Wb 2abc R p[ B ]2. ]2. 若要使半径为若要使半径为4×103-m 的裸铜线表面的磁感应强度为7.07.0××105- T T,则铜线中需,则铜线中需要通过的电流为要通过的电流为((μ0=4π×107-T ·m ·A 1-)(A) 0.14A (B) 1.4A (C) 14A (D) 28A[ B ]3. [ B ]3. 一载有电流一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管(R=2r)(R=2r),,两螺线管单位长度上的匝数相等,两螺线管中的磁感应强度大小R B 和r B 应满足: (A) R B =2r B(B) R B =rB (C) 2R B =r B (D) R B R=4r B[ D ]4.如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感应强度B 沿图中闭合路径L 的积分l B d ×ò等于等于(A)I 0m(B)I 031m (C) I041m(D)I032m[ D ]5. [ D ]5. 有一由有一由N 匝细导线绕成的平面正三角形线圈,边长为a ,通有电流I ,置于均匀外磁场外磁场 B 中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩mM(A) 2/32IB Na (B) 4/32IB Na (C) 0260sin 3IB Na (D) 0abcdI L1201I 2I 1R 2R二 填空题1.1.一无限长载流直导线,通有电流一无限长载流直导线,通有电流I ,弯成如图形状,设各线段皆在纸面内,则P 点磁感应强度强度 B B 的大小为aIp m 830。
大学物理课后习题答案(高教版共三册)

⼤学物理课后习题答案(⾼教版共三册)第⼆章动量及其守恒定律1、⼀质点的运动轨迹如图所⽰,已知质点的质量为20g ,在A 、B ⼆位置处的速率都为20m/s ,A v与 x 轴成045⾓,B v垂直于 y 轴,求质点由A 点到B 点这段时间内,作⽤在质点上外⼒的总冲量?解:由动量定理知质点所受外⼒的总冲量I =12v v v m m m )(由A →B A B Ax Bx x m m m m I v v v v cos45°=-0.683 kg·m·s 1 1分I y =0m v Ay = m v A sin45°= 0.283 kg·m·s 1I =s N 739.022y x I I 3分⽅向: 11/tg x y I I 202.5° ( 1为与x 轴正向夹⾓) 1分2、质量为m 的物体,以初速0v 从地⾯抛出,抛射⾓030 ,如忽略空⽓阻⼒,则从抛出到刚要接触地⾯的过程中,物体动量增量的⼤⼩为多少?物体动量增量的⽅向如何?解:由斜⾯运动可知,落地速度⼤⼩与抛出速度⼤⼩相等,⽅向斜向下,与X 轴正向夹⾓为300,所以,动量增量⼤⼩:0030sin 2mv mv mv动量增量的⽅向竖直向下3、设作⽤在质量为1kg 的物体上的⼒F =6t +3(SI ).如果物体在这⼀⼒的作⽤下,由静⽌开始沿直线运动,在0到2.0 s 的时间间隔内,这个⼒作⽤在物体上的冲量⼤⼩为多少? 解:I=Fdt =.20)36(dt t =(3t 2+3t)0.20=3 2.02+3 2.0=18(S N )A vxyOBA4、⼀个质量为m 的质点,沿x 轴作直线运动,受到的作⽤⼒为i F Ft cos 0 (SI),0t 时刻,质点的位置坐标为0x ,初速度00 v,求质点的位置坐标和时间的关系式?解:由⽜顿第⼆定律tm F dt dx v tdtm F dv dtdv mt F dt v d m a m F t vsin cos cos 00000 ⼜有故tdt m F dx txx sin 000则: t m Fx xcos 1005、电动列车⾏驶时每千克质量所受的阻⼒N v F 2210)5.05.2( ,式中,v 为列车速度,以s m /计。
大学物理习题册及解答_第二版_第一章_质点的运动

如果质点在原点处的速度为零,试求其在任意位置的速度
为
.
a
d
dt
d
dx
dx dt
d
dx
d adx (3 6x2 )dx
d
x (3 6x2 )dx
0
0
6x 4x3
2.一质点沿半径为R的圆周运动,其路程S随时间t变化的规律为:
(S I)S,式bt中b0、.5cct为2 大于零的常数,且b2>R c.
Δt
2 1
“-”表示平均速度 方向沿x轴负向。
dx
(2) 第2秒末的瞬时速度 v 10t 9t 2 16m/s
dt
t2
(3) 由2秒末的加速度 a dv 10 18t 26m/s2
dt
t2
2.一质点在Oxy平面上运动,运动方程为x=3t, y=3t2-5(SI), 求(1)质 点运动的轨道方程,并画出轨道曲线;(2)t1=0s和t2=120s时质点的 的速度、加速度。
与其速度矢量恰好垂直;(4) 在什么时刻电子离原点最近.
4 质点作曲线运动, 表示位置矢量, 表示速度, 表示加速度,
S表示路程,at表示切向加速度,下列表达式中,
(1) d a
dt
(3) dS
dt
(2) dr
(4)
ddtr
dt
at
(A)只有(1)、(4)是对的.
(B) 只有(2)、(4)是对的.
(C)只有(2)是对的.
(D) 只有(3)是对的.
, ay
dvy dt
dv 2dt, dv 36t 2dt
x
y
dv vx
0
x
t
0
2 dt
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.轻型飞机连同驾驶员总质量为31.010kg ⨯。
飞机以155.0m s -⋅速率在水平跑道上着陆后,驾驶员开始制动,若阻力与时间成正比,比例系数215.010N S -∂=⨯⋅求:⑴ 10秒后飞机的速率;⑵ 飞机着陆后10秒内滑行的距离。
解:(1)在水平面上飞机仅受阻力作用,以飞机滑行方向为正方向, 由牛顿第二定律得:t dt dv mma F -∂===∴ dt m t dv t v v ⎰⎰∂-=00 可得:202t mv v ∂-=∴ 当s t 10=时,10.30-⋅=s m v (2)又∵ dtdr v =∴⎰⎰⎰⎪⎭⎫ ⎝⎛∂-==ttrdt t m v vdt dr 020002 ∴m t mt v r r s 4676300=∂-=-= 2.用铁锤把钉子敲入墙面木板,设木板对钉子的阻力与钉子进入木板的深度成正比。
若第一次敲击,能把钉子钉入木板21.0010m -⨯。
第二次敲击时,保持第一次敲击钉子的速度,那么第二次能把钉子钉入多深?试问木板对钉子的阻力是保守力?解:由动能定理,有:12201011022s m kx x ks -=-=-⎰d v设铁锤第二次敲打时能敲入的深度为ΔS ,则有112220111110()222s s s m kx x k s s ks +∆⎡⎤-=-=-+∆-⎢⎥⎣⎦⎰d v得:2211()2s s s +∆= 化简后为:11s s +∆=第二次能敲入的深度为:111)10.41cm s s ∆=-=⨯=cm 易知:木板对钉子的阻力是保守力3.某弹簧不遵守胡克定律,力F 与伸长x 的关系为F =52.8x +38.4x 2(SI ),求: ⑴ 将弹簧从伸长x 1=0.50 m 拉伸到伸长x 2=1.00 m 时,外力所需做的功。
⑵ 将弹簧横放在水平光滑桌面上,一端固定,另一端系一个质量为2.17 kg 的物体,然后将弹簧拉伸到一定伸长x 2=1.00 m ,再将物体由静止释放,求当弹簧回到x 1=0.50 m 时,物体的速率。
⑶此弹簧的弹力是保守力吗? 解:(1)()2211252.838.431x x x x W Fdx x x dx J ==+=⎰⎰(2)由动能定理可知2220111222W mv mv mv =-=,即 5.35/v m s == (3)很显然,力F 做功与路径无关,此弹簧的弹力是保守力。
()()()220202002022222011322:,,,,3341111332222B A B A A B kx m v v A B K B v v v v v v v Lmv mv mv mv m v mv m v kL =∴=--->↓↑===+=-----=++---有①对、、系统过平衡位置后由于弹簧被拉长且当时弹簧拉得最长动量导恒②机械能守恒③4.在光滑水平面上有一质量为B m 的静止物体B ,在B 上又有一质量为A m 的静止物体A ,今有一小球从左边射到A 上,并弹回,于是A 以速度0v (相对于水平面的速度)向右边运动,A 和B 间的摩擦系数为μ,A 逐渐带动B 运动,最后A 与B 以相同的速度一起运动。
问A 从运动开始到与B 相对静止时,在B 上走了多远?解:由于水平面是光滑的,故而物体A 和物体B 所组成的系统水平方向动量守恒,设A 与B 运动相同的速度为v ,则有()v m m v m B A A +=0,即BA A m m v m v +=A 和B 间的摩擦之间的摩擦力为g m A μ,则A 的加速度大小为g μ,B 的加速度大小BA m gm μ,设在达到共同的速度时,A 相对地面走的路程为1S ,B 相对地面走的路程为2S 则有12022gS v v μ-=-,222S m gm v B A μ=,即A 在B 上走的距离为()gm m v m S S B A B +=-μ2221 5. 两个质量分别为m 1和m 2的木块A和B,用一个质量忽略不计,劲度系数为k 的弹簧联接起来,放置在光滑水平面上,使A紧靠墙壁(如图所示),用力推木块B使弹簧压缩x 0,然后释放,已知m 1=m ,m 2=3m ,求:⑴ 释放后,A、B两木块速度相等时的瞬时速度的大小;⑵ 释放后,弹簧的最大伸长量。
解:放手后,B 向右运动。
当B 运动到弹簧原长处0时2414343343)2(434302020220222220020x L kx x m k m x m K m kL kL m v m v x m k v v =∴=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+=---==用①、④式代入:由③式变为:④由②式得:6. 一转动惯量为J 的圆盘绕一固定轴转动;起初角速度为ω 0,设它所受阻力矩与转动角速度成正比,即M = - k ω (k 为正的常数),求圆盘的角速度从ω 0变为ω 0/2时所需的时间。
解:dtd J k M ωω=−−−→−-=转动定律由7. 如图,长为L 质量为m 的均匀细杆可绕水平轴O 在竖直平面内转动,另有一质量也为m 的小球用一轻绳栓住.不计一切摩擦,开始时使杆和绳均在水平位置,再让它们同时由静止释放,若在相同的时间内球与杆转过相同的角度,求:⑴绳的长度a ; ⑵若撞后,球与杆一起转动,其角速度ω为多大? 解:,,)1(21转到竖直位置时棒角速度为设小球角速度为ωω()()l g m L m a m l m a la lg m l m gl ag m a m ga /3713)3/1(:)2(32:,331212122/12222122122221212=∴+=-===∴⎪⎭⎫ ⎝⎛==∴=ωωωωωωωωωω角动量守恒得由棒小球8. 一内外半径分别为1R 和2R 的均匀带电球壳总电量为1Q ,球壳外同心地罩一个半径为3R 的带电球面,球面带电为2Q 。
求:⑴ 场强E 分布;⑵ 作E —r 曲线。
(r 为场点到球心的距离)解:(1)以球心O 为原点,球心至场点的距离r 为半径,作同心球面为高斯面。
由于电荷分布呈球对称分布,电场强度也为球对称分布,高斯面上电场强度沿径矢方向,且大小相等。
因而由高斯定理0Sq E dS ε⋅=∑⎰⇒ 024επ∑=⋅q rE ,可得204r q E πε∑=2ln 21ln :0200kJ t dt J k d dt J k d dt J k t =∴=-=-=-⎰⎰ωωωωωω积分分离变量1R r <时,高斯面内无电荷,0=∑q ,故01=E21R r R <<时,高斯面内电荷3132313131331321)()(34)(3/4R R R r Q R r R R Q q --=-⋅-=∑ππ, 所以33112332021()4()Q r R E R R r πε-=- 32R r R <<时,高斯面内电荷1Q q =∑,故2134/r Q E οπε= 3R r >时,高斯面内电荷21Q Q q +=∑,故124204Q Q E r πε+=以上电场强度的方向均沿径矢方向。
9. 电荷Q 均匀分布在半径为R 的球体内,试求球内、外的电势分布。
解: 因电荷Q 的分布具有球对称性,所以球内外场强分布具有球对称性,可在球内、外作半径为r 的同心球面为高斯面,由高斯定理0ε∑⎰=⋅iSqS d E⇒024επ∑=⋅iqr E 得:204rqE i πε∑=。
R r >时(即球外),2014r QE πε=,所以球外任意一点的电势rQ r r Q r E V rr02014d 4d πεπε==⋅=⎰⎰∞∞R r <时(即球内),33333434RQr r R Q q i ==∑ππ,故3024R QrE πε= 所以球内任意一点的电势为⎰⎰⎰⎰∞∞+=⋅+⋅=RrRR rR dr rQ dr R Qr r d E r d E V 20301244πεπε3022022308)3(4)(8Rr R Q R Qr R R Qπεπεπε-=+-= 10. 球壳的内半径为R 1,外半径为R 2,壳体内均匀带电,电荷体密度为ρ ,A、B、C点分别与球心O 相距为a 、b 、c ,求:A、B、C三点的电势与场强。
解:(1)作半径为r 的同心球面为高斯面,由于电荷分布具有球对称性,电场强度分布也呈球对称性,高斯面上各点的电场强度沿径矢方向,且大小相等。
因而由高斯定理ε∑⎰=⋅iSqS d E ⇒ 024επ∑=⋅iq rE 得:204r qE iπε∑=所以A 、B 、C 三点的场强分别为 0=A E203133)(b R b E B ερ-=, 2031323)(cR R E C ερ-= 电场强度沿径矢方向(2)A 、B 、C 三点的电势分别为⎰⎰⎰∞-=-+⋅-+=1221)(23)(3)(02122020313220313R aR R R A R R dr rR R dr r R r dr V ερερερ )23(63)(3)(3122202031322031322b R b R dr r R R dr r R r V R bR B --=-+⋅-=⎰⎰∞ερερερ 33332121200()()33C CR R R R V dr r cρρεε∞--=⋅=⎰11. 两个同轴的圆柱,长度都是L ,半径分别为R 1与R 2 (L >>R 1,R 2),这两个圆柱带有等值异号电荷Q ,两圆柱之间充满电容率为ε的电介质,忽略边缘效应。
⑴ 求这个圆柱形电容器的电容;⑵ 求与圆柱轴线垂直距离为r (R 1 < r < R 2)处一点P 的电场能量密度; ⑶ 求电介质中的总电场能量。
解: 由高斯定理,r 处的电场强度()2QE r rLπε=,(1)故两圆柱的电势差221121()ln 22R R R R Q Q R U E r dr dr rL L R πεπε===⎰⎰ 故212ln Q L C R U R πε== (2)因为()2Q E r rL πε=,所以,222221()28E Q w E r r Lεπε== (3)总能量221122222212ln 44R R E R R Q rLdr Q R W w rLdr r L L R πππεπε===⎰⎰ 12. 载有电流为I 的无限长导线,弯成如图形状,其中一段是半径为R 的半圆,则圆心处的磁感应强度B 的大小为多少? 解: 选B 以垂直纸面向外为正方向.C123B B B B →→→→=++1(14IB Rομπ=--2,42I B R ομπ=⋅34I B R ομ=∴ )12(4-+=ππμοRIB13. 如图,电流I 均匀地自下而上通过宽度为a 的无限长导体薄平板,求薄板所在平面上距板的一边为d 的P 点的磁感应强度。