stm32高级定时器使用教程

合集下载

STM32定时器配置(TIM1、TIM2、TIM3、TIM4、TIM5、TIM8)高级定时。。。

STM32定时器配置(TIM1、TIM2、TIM3、TIM4、TIM5、TIM8)高级定时。。。

STM32定时器配置(TIM1、TIM2、TIM3、TIM4、TIM5、TIM8)⾼级定时。

⽂章结构:——> ⼀、定时器基本介绍——> ⼆、普通定时器详细介绍TIM2-TIM5——> 三、定时器代码实例⼀、定时器基本介绍之前有⽤过野⽕的学习板上⾯讲解很详细,所以直接上野⽕官⽅的资料吧,作为学习参考笔记发出来⼆、普通定时器详细介绍TIM2-TIM52.1 时钟来源计数器时钟可以由下列时钟源提供:·内部时钟(CK_INT)·外部时钟模式1:外部输⼊脚(TIx)·外部时钟模式2:外部触发输⼊(ETR)·内部触发输⼊(ITRx):使⽤⼀个定时器作为另⼀个定时器的预分频器,如可以配置⼀个定时器Timer1⽽作为另⼀个定时器Timer2的预分频器。

由于今天的学习是最基本的定时功能,所以采⽤内部时钟。

TIM2-TIM5的时钟不是直接来⾃于APB1,⽽是来⾃于输⼊为APB1的⼀个倍频器。

这个倍频器的作⽤是:当APB1的预分频系数为1时,这个倍频器不起作⽤,定时器的时钟频率等于APB1的频率(36MHZ);当APB1的预分频系数为其他数值时(即预分频系数为2、4、8或16),这个倍频器起作⽤,定时器的时钟频率等于APB1的频率的2倍。

{假如APB1预分频为2(变成36MHZ),则定时器TIM2-5的时钟倍频器起作⽤,将变成2倍的APB1(2x36MHZ)将为72MHZ给定时器提供时钟脉冲。

⼀般APB1和APB2的RCC时钟配置放在初始化函数中例如下⾯的void RCC_Configuration(void)配置函数所⽰,将APB1进⾏2分频,导致TIM2时钟变为72MHZ输⼊。

如果是1分频则会是36MHZ输⼊,如果4分频:CKINT=72MHZ/4x2=36MHZ; 8分频:CKINT=72MHZ/8x2=18MHZ;16分频:CKINT=72MHZ/16x2=9MHZ}1//系统时钟初始化配置2void RCC_Configuration(void)3 {4//定义错误状态变量5 ErrorStatus HSEStartUpStatus;6//将RCC寄存器重新设置为默认值7 RCC_DeInit();8//打开外部⾼速时钟晶振9 RCC_HSEConfig(RCC_HSE_ON);10//等待外部⾼速时钟晶振⼯作11 HSEStartUpStatus = RCC_WaitForHSEStartUp();12if(HSEStartUpStatus == SUCCESS)13 {14//设置AHB时钟(HCLK)为系统时钟15 RCC_HCLKConfig(RCC_SYSCLK_Div1);16//设置⾼速AHB时钟(APB2)为HCLK时钟17 RCC_PCLK2Config(RCC_HCLK_Div1);18 //设置低速AHB时钟(APB1)为HCLK的2分频(TIM2-TIM5输⼊TIMxCLK频率将为72MHZ/2x2=72MHZ输⼊)19 RCC_PCLK1Config(RCC_HCLK_Div2);20//设置FLASH代码延时21 FLASH_SetLatency(FLASH_Latency_2);22//使能预取指缓存23 FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);24//设置PLL时钟,为HSE的9倍频 8MHz * 9 = 72MHz25 RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);26//使能PLL27 RCC_PLLCmd(ENABLE);28//等待PLL准备就绪29while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET);30//设置PLL为系统时钟源31 RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);32//判断PLL是否是系统时钟33while(RCC_GetSYSCLKSource() != 0x08);34 }35//允许TIM2的时钟36 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);37//允许GPIO的时钟38 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);39 }APB1的分频在STM32_SYSTICK的学习笔记中有详细描述。

stm32 timer 用法

stm32 timer 用法

stm32 timer 用法摘要:1.引言2.STM32定时器简介3.STM32定时器工作原理4.STM32定时器配置与使用5.STM32定时器应用实例6.总结正文:1.引言STM32是一款广泛应用于嵌入式系统的微控制器,拥有丰富的外设资源。

其中,定时器(Timer)是STM32外设中非常关键的部分,它在系统时钟、输入捕捉、输出比较、PWM等功能中起着举足轻重的作用。

本文将详细介绍STM32定时器的用法。

2.STM32定时器简介STM32定时器主要包括基本定时器(Basic Timer)、高级定时器(Advanced Timer)和看门狗定时器(Watchdog Timer)。

其中,基本定时器主要用于系统时钟的生成和控制;高级定时器具有更多的功能,如输入捕捉、输出比较、PWM等;看门狗定时器用于检测系统的运行状态,防止系统崩溃。

3.STM32定时器工作原理STM32定时器的工作原理主要基于计数器、预分频器和比较器。

计数器用于记录定时器滴答(Tick)的数量;预分频器用于控制定时器滴答频率;比较器用于产生定时器溢出信号。

当定时器溢出时,定时器硬件会自动产生中断,通过编程可以设置相应的中断处理程序,实现特定功能。

4.STM32定时器配置与使用配置STM32定时器主要包括以下步骤:(1)使能定时器:通过设置相应寄存器位,使能定时器;(2)配置定时器工作模式:根据需求选择定时器工作模式,如计数模式、PWM模式等;(3)配置定时器时钟源:选择定时器时钟源,如内部时钟、外部时钟等;(4)配置定时器预分频器:设置定时器预分频器值,以满足定时器滴答频率要求;(5)配置比较器:设置比较器值,以产生定时器溢出信号;(6)配置中断:根据需求配置定时器中断,如使能中断、设置优先级等。

5.STM32定时器应用实例以下是一个简单的STM32定时器应用实例:使用STM32F103C8T6微控制器实现一个LED闪烁的程序。

(1)配置定时器:使能定时器TIM2,设置工作模式为计数模式,时钟源为内部时钟,预分频器值为72000,比较器值为65536。

STM32高级定时器TIM1输出六路带死区互补PWM波形

STM32高级定时器TIM1输出六路带死区互补PWM波形

本文讲述如何配置单片机STM32F407VET6高级定时器TIM1输出六路带死区互补PWM波形。

一、高级定时器TIM1介绍
高级定时器TIM1有5种计数模式:
TIM_CounterMode_Up、TIM_CounterMode_Down
TIM_CounterMode_CenterAligned1
TIM_CounterMode_CenterAligned2
TIM_CounterMode_CenterAligned3
PWM输出有2种模式:
TIM_OCMode_PWM1、TIM_OCMode_PWM2
查看ST官方RM0090参考手册,高级定时器TIM1框图如下:
本文以高级定时器TIM1工作在TIM_CounterMode_Up模式,PWM工作在TIM_OCMode_PWM1为例,讲述如何配置输出六路带死区互补PWM波形。

二、配置代码示例
1.IO配置
硬件IO说明
TIM1_CH1---->PE9 TIM1_CH1N---->PE8
TIM1_CH2---->PE11 TIM1_CH2N---->PE10
TIM1_CH3---->PE13 TIM1_CH3N---->PE12
IO配置具体代码如下:
2. 定时器配置
三、实验测试
1. 测试硬件平台接线
2.测试结果
由测试结果可以看到高级定时器TIM1可以输出六路带死区互补PWM波形。

具体死区时间如何计算,下篇文章会讲解,敬请关注!。

第六章 STM32 定时器的使用 《基于ARM的单片机应用及实践--STM32案例式教学》课件

第六章 STM32 定时器的使用 《基于ARM的单片机应用及实践--STM32案例式教学》课件

第六章 STM32 定时器的使用
AHB预分频 /1,2,…,512
APB1预分频 /1,2,4,8,16
最大36MHz
PCLK1 至APB1外设
20个外设时钟使能位
TIM2,3,4,5,6,7 如果APB1预分频=1, 则乘1输出,否则乘2输出
6个外设时钟使能位
TIMXCLK 至TIM2~7
APB2预分频 /1,2,4,8,16
第六章 STM32 定时器的使用
PWM模式 脉冲宽度调制模式可以产生一个由TIMx_ARR寄存器 确定频率、由TIMx_CCRx寄存器确定占空比的信号。 在TIMx_CCMRx寄存器中的OCxM位写入‘110’(PWM 模式1)或‘111’(PWM模式2),能够独立地设置每个 OCx输出通道产生一路PWM。必须设置TIMx_CCMRx 寄存器OCxPE位以使能相应的预装载寄存器, 最后要设置TIMx_CR1寄存器的ARPE位,(在向上计数 或中心对称模式中)使能自动重装载的预装载寄存器。
这个倍频器的作用:当APB1的预分频系数为1时,倍 频器不起作用,定时器的时钟频率等于APB1的频率; 当APB1的预分频系数为其它数值(即预分频系数为2、4 、8或16)时,这个倍频器起作用,定时器的时钟频率 等于APB1的频率两倍。
第六章 STM32 定时器的使用 下面举一个例子说明。假定AHB=36MHz,因为APB1 允许的最大频率为36MHz,所以APB1的预分频系数可 以取任意数值;当预分频系数=1时,APB1=36MHz, TIM2~7的时钟频率=36MHz(倍频器不起作用);
第六章 STM32 定时器的使用
3)设置TIM3_DIER允许更新中断 因为我们要使用TIM3的更新中断,所以设置DIER 的UIE位,并使能触发中断。

第六章-STM32-定时器的使用-《基于ARM的单片机应用及实践--STM32案例式教学》课件

第六章-STM32-定时器的使用-《基于ARM的单片机应用及实践--STM32案例式教学》课件

第六章 STM32 定时器的使用 通用定时器配置步骤
1)TIM3时钟使能 这里我们通过APB1ENR的第1位来设置TIM3的时钟,因为 Stm32_Clock_Init函数里面把APB1的分频设置为2了, 所以我们的TIM3时钟就是APB1时钟的2倍,等于系统时 钟(72M)。 2)设置TIM3_ARR和TIM3_PSC的值 通过这两个寄存器,设置自动重装的值及分频系数。这 两个参数加上时钟频率就决定了定时器的溢出时间。
计数器寄存器:TIMx_CNT 预分频器寄存器:TIMx_PSC 自动装载寄存器:TIMx_ARR
第六章 STM32 定时器的使用 通用寄存器时基单元 1)计数器寄存器:TIMx_CNT
16位的计数器,设定值从1~65535
第六章 STM32 定时器的使用 计数器模式 向上计数模式:计数器从0计数到设定的数值,然后 重新从0开始计数并且产生一个计数器溢出事件。
在定时器配置完了之后,因为要产生中断,必不可少的 要设置NVIC相关寄存器,以使能TIM3中断。
6)编写中断服务函数 编写定时器中断服务函数,通过该函数处理定时器 产生的相关中断。中断产生后,通过状态寄存器的 值来判断此次产生的中断属于什么类型。然后执行 相关的操作。
第六章 STM32 定时器的使用 通用寄存器时基单元
第六章 STM32 定时器的使用
2)预分频器寄存器:TIMx_PSC 预分频器可以讲计数器的时钟频率按1到65536之间的任 意值分频,它是一个16位寄存器。 这个寄存器带有缓冲区,它能够在工作时被改变。新的 预分频器参数在下一次更新事件到来时被采。
第六章 STM32 定时器的使用 预分频器寄存器在事件更新时采用
定时器的工作频率计算公式为 CK_CNT=定时器时钟/(TIMx_PSC+1) 其中CK_CNT表示定时器工作频率 TIMx_PSC表示分频系数

STM32CUBEMX配置教程(十二)STM32的定时器触发的固定频率ADC采样(使用DMA)

STM32CUBEMX配置教程(十二)STM32的定时器触发的固定频率ADC采样(使用DMA)

STM32CUBEMX配置教程(十二)STM32的定时器触发的固定频率ADC采样(使用DMA)本教程将向您展示如何使用STM32CubeMX配置定时器触发的固定频率ADC采样,并使用DMA进行数据传输。

此配置可以用于您需要按照固定频率对模拟信号进行采样的应用中。

在开始之前,请确保已安装好STM32CubeMX和相应的IDE(如Keil、IAR等),并且您已熟悉STM32CubeMX的基本使用方法。

以下是配置步骤:1. 打开STM32CubeMX,并选择您的目标MCU型号。

2. 在"Pinout & Configuration"选项卡中,配置定时器和ADC引脚。

a.选择一个定时器,并设置其时钟源和频率。

您可以选择任何一个可用的定时器来触发ADC采样。

b.配置ADC引脚,将其连接到您的模拟信号源。

3. 在"Configuration"选项卡中,配置ADC。

a.启用ADC和DMA控制器。

b.配置ADC分辨率,采样时间和采样周期。

这些参数取决于您的应用需求。

c. 在"Mode"选项中,选择"Continuous Conversion Mode"。

这样ADC将会不断地根据定时器触发进行采样。

d. 启用"DMA Continuous Requests"。

这样当ADC完成一次采样后,DMA控制器将自动将数据传输到内存中。

4. 在"NVIC Settings"选项卡中,启用DMA和ADC中断。

5. 在"Project"选项卡中,选择生成代码所需的IDE和工程路径。

然后单击"Generate Code"按钮生成代码。

现在您已成功配置了定时器触发的固定频率ADC采样,并使用DMA进行数据传输。

您可以在生成的代码中初始化和启用各个模块,并编写相应的中断处理函数来处理DMA和ADC中断。

STM32高级定时器死区时间设置探究

STM32高级定时器死区时间设置探究

STM32高级定时器死区时间设置探究一、死区设置位置:决定死区时间设置的位是‘刹车和死区寄存器TIM1->BDTR’中的DTG[7:0],设置范围是0x00~0xff。

二、死区时间设置公式如下:DT为死区持续时间,TDTS为系统时钟周期时长,Tdtg为系统时钟周期时长乘以倍数后的死区设置时间步进值。

在72M的定时器时钟下TDTS=1/72M=13.89ns.所以以第一个公式,死区时间能以13.89ns的步进从0调整到127*13.89ns=1764ns第二个公式则能(64+0)*2*13.89~(64+63)*2*13.89=1777.9ns~3528.88ns换个角度看,就是(128~254)*13.89同理,第三个公式就是3555.84ns~7000.56ns换个角度看,就是(256~504)*13.89第四个公式就是7111.68ns~14001.12ns换个角度看,就是(512~1008)*13.89综上:死区时间就是不同的公式代表不同范围的死区时间设置,这个范围是互不重叠的。

而但是在不同的死区时间范围内死区时间设置步进是不同的。

若某个系统时钟下的死区时间不够,可以通过改变定时器时钟来改变最大死区时间范围。

当根据硬件电路的特性定下死区时间后,可以根据目标死区时间范围来找到相应的公式,然后代入公式求解出相应的整数(有时候不一定是整数,那就选择最近的那个),拼接DTG[7:5]+DTG[4:0]即可。

例子:这样当我需要3us的死区持续时间时,则可这么计算:3us在第二个公式决定的死区范围之内。

所以选择第二个公式。

3000/(13.89*2)=108,所以DTG[5:0]=108-64=44,所以DTG=127+44=171=0XabTIM1->BDTR|=0xab;反过来验算//72Mhz,死区时间=13.89nsX108*2=3000us经示波器验证,完全正确。

By zxx2013.07.18。

stm32定时器的使用流程

stm32定时器的使用流程

STM32定时器的使用流程1. 简介STM32定时器是STM32系列微控制器中重要的外设之一。

定时器可以用于生成特定的定时器事件,实现计时、测量时间间隔、产生PWM信号等功能。

本文将介绍STM32定时器的使用流程。

2. STM32定时器的基本工作原理STM32定时器通常由一个或多个计数器和若干个通道组成。

计数器用于计算时间的流逝,而通道用于控制输出。

计数器的计数范围和分辨率可以根据需求进行配置。

通常情况下,定时器通过外部时钟源进行计数,也可以使用内部时钟源。

3. STM32定时器的使用流程使用STM32定时器通常需要以下步骤:3.1 初始化定时器在使用定时器之前,需要初始化定时器的相关参数,包括计数器的计数范围、分频系数等。

通常可以通过寄存器的设置来完成初始化工作。

使用HAL库的话,可以使用HAL_TIM_Base_Init()函数进行初始化。

3.2 配置定时器的工作模式定时器可以根据需求配置为不同的工作模式,常见的模式包括单脉冲模式、连续模式、PWM输出模式等。

可以使用TIM_CR1、TIM_CR2等寄存器进行配置。

使用HAL库的话,可以使用相应的函数进行配置。

3.3 配置定时器的中断和DMA定时器可以配置中断和DMA功能,在特定的条件下触发相应的中断或DMA请求。

可以使用TIM_DIER寄存器进行配置。

使用HAL库的话,可以使用相应的函数进行配置。

3.4 启动定时器在配置完成后,需要启动定时器开始计数。

可以使用TIM_CR1寄存器进行配置。

使用HAL库的话,可以使用相应的函数进行配置。

3.5 处理定时器中断如果配置了定时器中断,当定时器达到设定的计数值时,会触发中断。

在中断服务函数中可以根据需求进行相应的处理。

3.6 设置定时器输出如果配置了定时器的通道输出模式,可以在定时器计数到一定值时,通过通道输出相应的信号。

可以使用TIM_CCR1、TIM_CCR2等寄存器进行配置。

3.7 停止定时器如果需要停止定时器的计数,可以使用TIM_CR1寄存器进行配置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

STM32 高级定时器-PWM简单使用
2010-04-14 14:49:29| 分类:STM32 | 标签:|举报|字号大中小订阅高级定时器与通用定时器比较类似,下面是一个TIM1 的PWM 程序,TIM1是STM32唯一的高级定时器。

共有4个通道有死区有互补。

先是配置IO脚:
GPIO_InitTypeDef GPIO_InitStructure;
/* PA8设置为功能脚(PWM) */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
/*PB13 设置为PWM的反极性输出*/
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOB, &GPIO_InitStructure);
/*开时钟PWM的与GPIO的*/
RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
/*配置TIM1*/
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
void Tim1_Configuration(void)
{
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
TIM_DeInit(TIM1); //重设为缺省值
/*TIM1时钟配置*/
TIM_TimeBaseStructure.TIM_Prescaler = 4000; //预分频(时钟分频)72M/4000=18K
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //向上计数
TIM_TimeBaseStructure.TIM_Period = 144; //装载值18k/144=125hz 就是说向上加的144便满了 TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; //设置了时钟分割不懂得不管 TIM_TimeBaseStructure.TIM_RepetitionCounter = 0x0; //周期计数器值不懂得不管
TIM_TimeBaseInit(TIM1,&TIM_TimeBaseStructure); //初始化TIMx的时间基数单位
/* Channel 1 Configuration in PWM mode 通道一的PWM */
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2; //PWM模式2 TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //正向通道有效PA8 TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable; //反向通道也有效 PB13
TIM_OCInitStructure.TIM_Pulse = 40; //占空时间144 中有40的时间为高,互补的输出正好相反 TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low; //输出极性 TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_Low; //互补端的极性
TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset; //空闲状态下的非工作状态不管 TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCIdleState_Reset; //先不管
TIM_OC1Init(TIM1,&TIM_OCInitStructure); //数初始化外设TIMx通道1这里2.0库为
TIM_OCInit
/* TIM1 counter enable开定时器*/
TIM_Cmd(TIM1,ENABLE);
/* TIM1 Main Output Enable 使能TIM1外设的主输出*/
TIM_CtrlPWMOutputs(TIM1,ENABLE);
}
//设置捕获寄存器1
void SetT1Pwm1(u16 pulse)
{
TIM1->CCR1=pulse;
}
/*操作寄存器改变占空时间*/
/***************************************************************************************************************
**
TIM1的定时器通道时间1到4 分别为PB8 PA9 PA10 PA11 而互补输出分别为PB13 PB14
PB15
中止PB12 。

如果输出与互补输出极性相同的话就刚好输出高互补低至于PWM模式1 与模式2的区别
在下图:
这个是模式1的了绿为输出黄为互补
*************************************************************************************************
上图是模式2的情况正好和模式1的反过来了144中有40 为高互补的有40为低。

*************************************************************************************************/
//在MAIN 中加点键盘扫描啥的用来改变占空比
/************************************************************
**实验名称:PWM
**功能:是PA8产生PWM输出,PA8为驱动LED1和马达的IO, 通过UP DOWN键,可以改变占空比,从而让ED1和小马达的产生变化
**注意事项:LED是低有效,马达则是高有效,所以LED全灭的时候马达转速达到最高.
**作者:电子白菜
*************************************************************/
#include"STM32Lib\\stm32f10x.h"
#include"hal.h"
extern void SetT1Pwm1(u16 pulse);
int main(void)
{
u16 pulse=40;
ChipHalInit(); //片内硬件初始化
ChipOutHalInit(); //片外硬件初始化
for(;;)
{
if(GET_UP())
{
while(GET_UP());
if(pulse<=144)
{
pulse+=5;
SetT1Pwm1(pulse);
}
}
if(GET_DOWN())
{
while(GET_DOWN());
if(pulse>30)
{
pulse-=5;
SetT1Pwm1(pulse);
}
}
}
}
/***************************************************************************************/
再来两张最小系统板子
/***************************************************************************************/
你也只需一块这样板子再来一点时间与干劲这个历程一样跑的起来。

相关文档
最新文档