STM32高级定时器日记之PWM
STM32 TIM的PMW模式

STM32 TIM的PMW模式STM32开发板学习日记-[5]TIM的PMW模式脉冲宽度调制模式可以产生一个由TIMx_ARR寄存器确定频率、由TIMx_CCRx寄存器确定占空比的信号。
在TIMx_CCMRx寄存器中的OCxM位写入’110’(PWM模式1)或’111’(PWM模式2),能够独立地设置每个OCx输出通道产生一路PWM。
必须设置TIMx_CCMRx寄存器OCxPE位以使能相应的预装载寄存器,最后还要设置TIMx_CR1寄存器的ARPE位使能自动重装载的预装载寄存器(在向上计数或中心对称模式中)。
因为仅当发生一个更新事件的时候,预装载寄存器才能被传送到影子寄存器,因此在计数器开始计数之前,必须通过设置TIMx_EGR寄存器中的UG位来初始化所有的寄存器。
OCx的极性可以通过软件在TIMx_CCER寄存器中的CCxP 位设置,它可以设置为高电平有效活或低电平有效。
TIMx_CCER寄存器中的CCxE位控制OCx输出使能。
在PWM模式(模式1或模式2)下,TIMx_CNT和TIM1_CCRx 始终在进行比较,(依据计数器的计数方向)以确定是否符合TIM1_CCRx≤TIM1_CNT或者TIM1_CNT≤TIM1_CCRx。
然而为了与OCREF_CLR的功能(在下一个PWM周期之前,ETR信号上的一个外部事件能够清除OCxREF)一致,OCxREF信号只能在下述条件下产生:●当比较的结果改变●当输出比较模式(TIMx_CCMRx寄存器中的OCxM位)从“冻结”(无比较,OCxM=’000’)切换到某个PWM模式(OCxM=’110’或’111’)。
STM32高级定时器TIM1输出六路带死区互补PWM波形

本文讲述如何配置单片机STM32F407VET6高级定时器TIM1输出六路带死区互补PWM波形。
一、高级定时器TIM1介绍
高级定时器TIM1有5种计数模式:
TIM_CounterMode_Up、TIM_CounterMode_Down
TIM_CounterMode_CenterAligned1
TIM_CounterMode_CenterAligned2
TIM_CounterMode_CenterAligned3
PWM输出有2种模式:
TIM_OCMode_PWM1、TIM_OCMode_PWM2
查看ST官方RM0090参考手册,高级定时器TIM1框图如下:
本文以高级定时器TIM1工作在TIM_CounterMode_Up模式,PWM工作在TIM_OCMode_PWM1为例,讲述如何配置输出六路带死区互补PWM波形。
二、配置代码示例
1.IO配置
硬件IO说明
TIM1_CH1---->PE9 TIM1_CH1N---->PE8
TIM1_CH2---->PE11 TIM1_CH2N---->PE10
TIM1_CH3---->PE13 TIM1_CH3N---->PE12
IO配置具体代码如下:
2. 定时器配置
三、实验测试
1. 测试硬件平台接线
2.测试结果
由测试结果可以看到高级定时器TIM1可以输出六路带死区互补PWM波形。
具体死区时间如何计算,下篇文章会讲解,敬请关注!。
stm32PWM输入捕获

stm32PWM输入捕获tm32定时器pwm输入捕获输入捕捉的功能是记录下要捕捉的边沿出现的时刻,如果你仅仅捕捉下降沿,那么两次捕捉的差表示输入信号的周期,即两次下降沿之间的时间。
如果要测量低电平的宽度,你应该在捕捉到下降沿的中断处理中把捕捉边沿改变为上升沿,然后把两次捕捉的数值相减就得到了需要测量的低电平宽度。
如果要的测量低电平太窄,中断中来不及改变捕捉方向时,或不想在中断中改变捕捉方向,则需要使用PWM输入模式,或使用两个TIM某通道,一个通道捕捉下降沿,另一个通道捕捉上升沿,然后对两次捕捉的数值相减。
PWM输入模式也是需要用到两个通道。
使用两个通道时,最好使用通道1和通道2,或通道3和通道4,这样上述功能只需要使用一个I/O管脚,详细请看STM32技术参考手册中的TIM某框图。
//0-----------------------一、概念理解PWM输入捕获模式是输入捕获模式的特例,自己理解如下1.每个定时器有四个输入捕获通道IC1、IC2、IC3、IC4。
且IC1IC2一组,IC3IC4一组。
并且可是设置管脚和寄存器的对应关系。
2.同一个TI某输入映射了两个IC某信号。
3.这两个IC某信号分别在相反的极性边沿有效。
4.两个边沿信号中的一个被选为触发信号,并且从模式控制器被设置成复位模式。
5.当触发信号来临时,被设置成触发输入信号的捕获寄存器,捕获“一个PWM周期(即连续的两个上升沿或下降沿)”,它等于包含TIM时钟周期的个数(即捕获寄存器中捕获的为TIM的计数个数n)。
6.同样另一个捕获通道捕获触发信号和下一个相反极性的边沿信号的计数个数m,即(即高电平的周期或低电平的周期)7.由此可以计算出PWM的时钟周期和占空比了frequency=f(TIM时钟频率)/n。
dutycycle=(高电平计数个数/n),若m为高电平计数个数,则dutycycle=m/n若m为低电平计数个数,则dutycycle=(n-m)/n 注:因为计数器为16位,所以一个周期最多计数65535个,所以测得的最小频率=TIM时钟频率/65535。
stm32 pwm调节转速原理

STM32的PWM调节转速原理主要基于PWM(Pulse Width Modulation)脉冲宽度调制。
通过编程控制输出方波的频率和占空比(高低电平的比例),可以实现对电机转速的控制。
在直流电机驱动中,PWM调速的基本原理是通过控制电机通电的电压来实现转速的调节。
当提高电压时,反电势升高,进而转速升高。
因此,通过控制PWM信号的占空比,可以实现对电机通电电压的调节,从而控制电机的转速。
在STM32中,可以通过定时器产生PWM信号,并通过调节占空比来控制电机的转速。
具体实现方式如下:
1.设置定时器工作模式为PWM模式,并配置相应的PWM通道和占空比。
2.根据需要调节占空比的值,以控制电机通电的电压。
3.将PWM信号输出到电机驱动器,从而实现对电机转速的控制。
需要注意的是,具体的PWM调速实现方式可能会因电机的类型、驱动器的型号等因素而有所不同。
因此,在实际应用中,需要根据具体情况进行相应的调整和配置。
STM32++定时器与+PWM+快速使用入门

STM32 定时器与 PWM 快速使用入门要求:在万利的开发板 EK-STM32F 上产生周期为1秒,占空比分别为 50% 10%的 PWM 并且点亮板上的 LD1,LD2 灯闪烁。
做法很简单。
STM32的PWM是由定时器来产生的。
可以看出。
定时器3的通道1至4在GPIO端口的映像。
如果是完全映射。
各通道的连接引脚如下:CH1=PC6, CH2=PC7, CH3=PC8, CH4=PC9这样,刚好与板上的LD1,LD2灯符合,因为LD1连接到PC7,LD2连接到PC6引脚。
关于PWM一些知识.STM32的TIMx 是 TIMx_ARR 寄存器确定频率(周期)、由TIMx_CCRx 寄存器确定占空比的信号。
使用定时器3。
而TIM2、3、4的时钟源是 APB1 即是 PCLK1 ( APB1 对应 PCLK1 )PCLK1 = APB1 = HCLK/2 = SYSCLK/2 = 36MHZ (36,000,000 HZ)但是注意:倍频器会自动倍2,即是【72MHZ】!代码如下:voidSTM32_PWM_GPIO_Configuration(void){// 11:完全映像STM32_Afio_Regs->mapr.bit.TIM3_REMAP=3;// LD1 =P7 LD2=PC6/*GPIOA Configuration: ( PC6 PC7 ) TIM3 channel 1 and 2 as alternate function push -pull */STM32_Gpioc_Regs-&F6=Output_Af_push_pull; // PC.06 复用功能推挽输出模式STM32_Gpioc_Regs->crl.bit.MODE6=Output_Mode_50mhz; // PC.06 输出模式,最大速度50MHzSTM32_Gpioc_Regs-&F7=Output_Af_push_pull; // PC.07 复用功能推挽输出模式STM32_Gpioc_Regs->crl.bit.MODE7=Output_Mode_50mhz; // PC.07 输出模式,最大速度50MHz}//end subvoidSTM32_TIM3_Configuration(void){// TIM_DeInit( TIM3);//复位TIM3定时器STM32_Rcc_Regs->apb1rstr.all |= RCC_TIM3RST;STM32_Rcc_Regs->apb1rstr.all &= ~RCC_TIM3RST;//时钟使能STM32_Rcc_Regs->apb1enr.all |=RCC_TIM3EN;/* TIM3 base configuration *///TIM_TimeBaseStructure.TIM_Period = 9999;//TIM_TimeBaseStructure.TIM_Prescaler = 7200;//TIM_TimeBaseStructure.TIM_ClockDivision = 0x0;//TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;//TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);STM32_Tim3_Regs->arr.all=9999; // 定时周期,PWM频率! 10毫秒*100=1秒STM32_Tim3_Regs->psc.all=720; // 7200分频 72MHZ/72,00 72,000,000/72,00=10,000STM32_Tim3_Regs->cr1.bit.CKD=0; // 时钟分频因子STM32_Tim3_Regs->cr1.bit.DIR=0; // 0:计数器向上计数/* Clear TIM3 update pending flag[清除TIM3溢出中断标志] *///TIM_ClearFlag(TIM3, TIM_FLAG_Update);STM32_Tim3_Regs->sr.bit.UIF=0; //更新中断标记由软件清0 ,例如当上溢或下溢时,软件对CNT重新初始化/* PWM1 Mode configuration: Channel1 Channel2 *///TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;//TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;//TIM_OCInitStructure.TIM_Pulse = CCR1_Val;//TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;//TIM_OC1Init(TIM3, &TIM_OCInitStructure);// timer3 的通道1 是 PC6 引脚, AFIO完全映射STM32_Tim3_Regs-&1P=0; // 输入/捕获1输出极性 0:OC1高电平有效 1:OC1低电平有效STM32_Tim3_Regs-&1E=1; // 输入/捕获1输出使能 1:开启- OC1信号输出到对应的输出引脚。
stm32 中pwm频率计算公式

一、概述在嵌入式系统开发中,PWM(脉冲宽度调制)是一种重要的控制技术,常用于电机驱动、灯光控制、无线通讯和其他类似应用领域。
对于STM32系列的微控制器来说,如何准确地计算PWM的频率是一个关键问题。
本文将介绍STM32中PWM频率的计算公式,希望对开发者们有所帮助。
二、PWM频率计算公式在STM32系列微控制器中,PWM的频率计算可以使用以下公式:\[PWM频率 = \frac{定时器时钟频率}{预分频系数 * 定时器自动重载值}\]其中,各参数的含义如下:1. 定时器时钟频率:定时器的时钟频率取决于系统时钟的频率以及定时器的分频系数。
一般情况下,定时器的时钟频率可以表示为:\[定时器时钟频率 = 系统时钟频率 / 分频系数\]如果系统时钟频率为72MHz,定时器的分频系数为72,那么定时器时钟频率为1MHz。
2. 预分频系数:预分频系数决定了定时器时钟频率的除数。
通过修改预分频系数,可以改变PWM信号的频率。
在STM32系列微控制器中,通常有多个预分频系数可以选择,开发者可以根据具体应用需求进行选择。
3. 定时器自动重载值:定时器的自动重载值决定了PWM周期的长度。
一般情况下,定时器的计数范围为0到定时器自动重载值,当定时器计数达到自动重载值时,定时器会自动清零并产生中断。
通过以上公式,开发者可以根据具体的系统时钟频率、预分频系数和定时器自动重载值来计算出所需的PWM频率。
三、实例分析为了更直观地理解PWM频率的计算方法,接下来将通过一个实例来演示具体的计算过程。
假设我们需要设计一个PWM信号,其频率为1kHz,系统的时钟频率为72MHz。
我们可以根据需要的PWM频率来确定定时器的自动重载值。
由于所需的PWM频率为1kHz,因此PWM周期为1ms。
根据PWM的工作原理,我们知道PWM信号的周期T与频率f的关系为:\[T = \frac{1}{f}\]PWM周期T为1ms。
我们需要根据系统时钟频率来确定定时器的分频系数。
STM32TIM的PMW模式

STM32TIM的PMW模式STM32 TIM的PMW模式STM32开发板学习⽇记-[5]TIM的PMW模式脉冲宽度调制模式可以产⽣⼀个由TIMx_ARR寄存器确定频率、由TIMx_CCRx寄存器确定占空⽐的信号。
在TIMx_CCMRx寄存器中的OCxM位写⼊’110’(PWM模式1)或’111’(PWM模式2),能够独⽴地设置每个OCx输出通道产⽣⼀路PWM。
必须设置TIMx_CCMRx寄存器OCxPE位以使能相应的预装载寄存器,最后还要设置TIMx_CR1寄存器的ARPE位使能⾃动重装载的预装载寄存器(在向上计数或中⼼对称模式中)。
因为仅当发⽣⼀个更新事件的时候,预装载寄存器才能被传送到影⼦寄存器,因此在计数器开始计数之前,必须通过设置TIMx_EGR寄存器中的UG位来初始化所有的寄存器。
OCx的极性可以通过软件在TIMx_CCER寄存器中的CCxP 位设置,它可以设置为⾼电平有效活或低电平有效。
TIMx_CCER寄存器中的CCxE位控制OCx输出使能。
在PWM模式(模式1或模式2)下,TIMx_CNT和TIM1_CCRx始终在进⾏⽐较,(依据计数器的计数⽅向)以确定是否符合TIM1_CCRx≤TIM1_CNT或者TIM1_CNT≤TIM1_CCRx。
然⽽为了与OCREF_CLR 的功能(在下⼀个PWM周期之前,ETR信号上的⼀个外部事件能够清除OCxREF)⼀致,OCxREF信号只能在下述条件下产⽣:●当⽐较的结果改变●当输出⽐较模式(TIMx_CCMRx寄存器中的OCxM位)从“冻结”(⽆⽐较,OCxM=’000’)切换到某个PWM模式(OCxM=’110’或’111’)。
这样在运⾏中可以通过软件强置PWM输出。
根据TIMx_CR1寄存器中CMS位的状态,定时器能够产⽣边沿对齐的PWM信号或中央对齐的PWM信号。
110:PWM模式1-在向上计数时,⼀旦TIMx_CNT<TIMx_CCR1时通道1为有效电平,否则为⽆效电平;在向下计数时,⼀旦TIMx_CNT>TIMx_CCR1时通道1为⽆效电平(OC1REF=0),否则为有效电平(OC1REF=1)。
STM32之PWM波形输出配置总结

STM32之PWM波形输出配置总结1.TIMER分类STM32中一共有11个定时器,其中TIM6、TIM7是基本定时器;TIM2、TIM3、TIM4、TIM5是通用定时器;TIM1和TIM8是高级定时器,以及2个看门狗定时器和1个系统嘀嗒定时器。
其中系统嘀嗒定时器是前文中所描述的SysTick。
其中TIM1和TIM8是能够产生3对PWM互补输出,常用于三相电机的驱动,时钟由APB2的输出产生。
TIM2-TIM5是普通定时器,TIM6和TIM7是基本定时器,其时钟由APB1输出产生。
2.PWM波形产生的原理通用定时器可以利用GPIO引脚进行脉冲输出,在配置为比较输出、PWM输出功能时,捕获/比较寄存器TIMx_CCR被用作比较功能,下面把它简称为比较寄存器。
举例说明定时器的PWM输出工作过程:若配置脉冲计数器TIMx_CNT为向上计数,而重载寄存器TIMx_ARR被配置为N,即TIMx_CNT的当前计数值数值X 在TIMxCLK时钟源的驱动下不断累加,当TIMx_CNT的数值X大于N时,会重置TIMx_CNT数值为0重新计数。
而在TIMxCNT计数的同时,TIMxCNT的计数值X会与比较寄存器TIMx_CCR 预先存储了的数值A进行比较,当脉冲计数器TIMx_CNT的数值X小于比较寄存器TIMx_CCR的值A时,输出高电平(或低电平),相反地,当脉冲计数器的数值X大于或等于比较寄存器的值A时,输出低电平(或高电平)。
如此循环,得到的输出脉冲周期就为重载寄存器TIMx_ARR存储的数值(N+1)乘以触发脉冲的时钟周期,其脉冲宽度则为比较寄存器TIMx_CCR的值A 乘以触发脉冲的时钟周期,即输出PWM的占空比为 A/(N+1) 。
3.STM32产生PWM的配置方法1)配置GPIO口不是每一个IO引脚都可以直接使用于PWM输出,下面是定时器的引脚重映像,其实就是引脚的复用功能选择:表3-1 定时器1的引脚复用功能映像表3-2 定时器2的引脚复用功能映像表3-3 定时器3的引脚复用功能映像表3-4 定时器4的引脚复用功能映像根据以上重映像表,我们使用定时器3的通道2作为PWM的输出引脚,所以需要对PB5引脚进行配置,对IO口操作代码:2)初始化定时器3)设置TIM3_CH2的PWM模式、使能TIM3的CH2输出4)使能定时器3经过以上的操作,定时器3的第二通道已经可以正常工作并输出PWM波了,只是其占空比和频率都是固定的,我们可以通过改变TIM3_CCR2,则可以控制它的占空比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
STM32高级定时器PWM实用程序
文章来源:本站原创作者:佚名
该文章讲述了STM32高级定时器PWM实用程序.
高级定时器与通用定时器比较类似,下面是一个TIM1 的PWM 程序,TIM1是STM32唯一的高级定时器。
共有4个通道有死区有互补。
先是配置IO脚:
GPIO_InitTypeDef GPIO_InitStructure;
/* PA8设置为功能脚(PWM) */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
/*PB13 设置为PWM的反极性输出*/
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOB, &GPIO_InitStructure);
/*开时钟PWM的与GPIO的*/
RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
/*配置TIM1*/
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
void Tim1_Configuration(void)
{
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
TIM_DeInit(TIM1); //重设为缺省值
/*TIM1时钟配置*/
TIM_TimeBaseStructure.TIM_Prescaler = 4000; //预分频(时钟分
频)72M/4000=18K
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //向上计数TIM_TimeBaseStructure.TIM_Period = 144; //装载值18k/144=125hz 就是说向上加的144便满了
TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; //设置了时钟分割不
懂得不管
TIM_TimeBaseStructure.TIM_RepetitionCounter = 0x0; //周期计数器值不懂得不管TIM_TimeBaseInit(TIM1,&TIM_TimeBaseStructure); //初始化TIMx的时间基数单位/* Channel 1 Configuration in PWM mode 通道一的PWM */
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2; //PWM模式2
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //正向通道有效PA8
TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable; //反向通道也有效PB13
TIM_OCInitStructure.TIM_Pulse = 40; //占空时间144 中有40的时间为高,互补的输出正好相反
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low; //输出极性
TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_Low; //互补端的极性TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset; //空闲状态下的非工作状态不管
TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCIdleState_Reset; //先不管TIM_OC1Init(TIM1,&TIM_OCInitStructure); //数初始化外设TIMx通道1这里2.0库为TIM_OCInit。