初中数学竞赛《排列与组合问题》练习题及答案 (10)
初中数学竞赛《排列与组合问题》练习题及答案 (2)

初中数学竞赛《排列与组合问题》练习题
1.将2个相同的黑球和11个相同的白球排在一个圆周上,共有6种不同的排法.(旋转,翻转相同的方法算同一种)
【分析】按2个相同的黑球之间白球个数的不同,即可得出不同的排法的种数.注意如果两球间隔6球的话,那就只剩下5个白球,即和两球间隔5球方法相同,因为排法可翻转、旋转,以此类推…
【解答】解:①●●两球相邻;
②●〇●两球间隔1球;
③●〇〇●两球间隔2球;
④●〇〇〇●两球间隔3球;
⑤●〇〇〇〇●两球间隔4球;
⑥●〇〇〇〇〇●两球间隔5球.
共六种方法.
故答案为:6.
【点评】本题考查了排列与组合问题,解题的关键是以2个相同的黑球为基础,根据2个相同的黑球之间白球个数的不同,得出不同的排法的种数.。
(完整word版)排列组合竞赛训练题(含答案),推荐文档

排列组合一、选择题1、公共汽车上有4位乘客,其中任何两人都不在同一车站下车,汽车沿途停靠6个站,那么这4位乘客不同的下车方式共有A、15种B、24种C、360种D、480种2、把10个相同的球放入三个不同的盒子中,使得每个盒子中的球数不少于2,则不同的放法有A、81种B、15种C、10种D、4种3、12辆警卫车护送三位高级领导人,这三位领导人分别坐在其中的三辆车中,要求在开行后12辆车一字排开,车距相同,车的颜色相同,每辆车内的警卫的工作能力是一样的,三位领导人所坐的车不能相邻,且不能在首尾位置。
则共()种安排出行的办法A、A99×A310B、A99×A38C、A38D、C384、在正方体的8个顶点、12条棱的中点、6个面的中心及正方体的中心共27个点中,不共线的三点组的个数是A、2898B、2877C、2876D、28725、有两个同心圆,在外圆上有相异的6个点,内圆上有相异的3个点,由这9个点所确定的直线最少可有A、15条B、21条C、36条D、3条6、已知两个实数集A={a1,a2,…,a60}与B={b1,b2,…b25},若从A到B的映射f使得B中每个元素都有原象,且f(a1)≥f(a2)≥…≥f(a60),则这样的映射共有A、C60B、C2459C、C2560D、C2559二、填空题7、4410共有个不同的正约数。
8、有7个人站成一排,其中A、B不能相邻,C、D必须挨在一起,且C要求在A的右侧,则共有站队方法数是。
9、如图,两圆相交于A、B两点,在两圆周上另有六点C、D、E、F、G、H,其中仅E、B、G共线,共他无三点共线,这八点紧多可以确不同圆的个数是。
10、一个圆周上有5个红点,7个白点,要求任两个红点不得相邻,那么共有种排列方法。
11、平面上给定5点,这些点两两间的连线互不平行,又不垂直,也不重合,现从任一点向其余四点两两之间的连线作垂线,则所有这些垂线间的交点数最多是。
初中数学竞赛—奥数讲义计数专题:排列组合及答案

华杯赛计数专题:排列组合基础知识:1.排列:从n个对象中选出m(不超过n)个并进行排序,共有的方法数称为排列数,写成。
2.排列数的计算:约定:0!=1排列数是由乘法原理得到的,因此排列可以看成是乘法原理的一种应用。
3.组合:从n个对象中选出m(不超过n)个,不进行排序,共有的方法数称为组合数,写成。
4.排列与组合的关系:。
5.组合数的计算:6.排列数与组合数的一些性质:例题:例1.4名男生和3名女生站成一排:(1)一共有多少种不同的站法?(2)甲,乙二人必须站在两端的排法有多少种?(3)甲,乙二人不能站在两端的排法有多少种?(4)甲不排头,也不排尾,有多少种排法?(5)甲只能排头或排尾,有多少种排法?【答案】(1)5040;(2)240;(3)2400;(4)3600;(5)略【解答】例2.在50件产品中有4件是次品,从中任意抽出5件,至少有3件是次品的抽法共多少种?【答案】4186种【解答】至少有3件是次品,分两种情况第一种情况:3件是次品的抽法:从4件次品中中抽出3件是种,其中,,然后,从46件正常品中抽2件,总共种。
其中,所以,3件是次品的抽法共种。
第二种情况:4件是次品的抽法共:种。
任意抽出5件产品,至少有3件是次品的抽法,是将上述两种情况加在一起,所以,总共是4×23×45+46=23×182=4186种。
总结:有序是排列,无序是组合。
例3.3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有多少种?【答案】540种【解答】可设三所学校为甲、乙、丙,三位医生去3所学校的分配方案:用排列数表示为=3×2×1=6。
用乘法原理表示为3!=6。
六名护士去学校甲有种选法,剩下4名护士去乙学校,有种选法,剩下两名自然去学校丙。
所以,不同的分配方法共有种。
例4.有多少个五位数,满足其数位上的每个数字均至少出现两次?【答案】819【解答】方法一:(1)出现一个数字的情况是9种;(2)出现两个数字,首位不能是0,共有9种情况,(i)首位确定之后,如果首位数总共出现3次,则从后面的4个数位中,选出两位,共种情况,剩下的两个数位,还需要选相同的数,因为可以是0,所以,有9种选择。
数学练习排列和组合

数学练习排列和组合数学练习:排列和组合在数学中,排列和组合是两个重要的概念,它们用于计算对象的不同排列方式和组合方式。
在这篇文章中,我们将深入了解排列和组合,并提供一些相关的数学练习题。
一、排列排列是指将一组对象按一定的顺序排列,形成不同的序列。
当我们有n个不同的对象,要从中选择r个对象按一定顺序排列时,我们使用排列计算公式:P(n, r) = n! / (n-r)!其中,n! 表示 n 的阶乘,即从1到n的连续整数的乘积。
为了更好地理解排列,我们来尝试解决一些排列问题:1. 从字母 A、B、C、D、E 中选择3个字母排列,有多少种排列方式?解:根据公式,我们有 P(5, 3) = 5! / (5-3)! = 5! / 2! = 60 种排列方式。
2. 有5个不同的球,要将它们排成一行,有多少种不同的排列方式?解:根据公式,我们有 P(5, 5) = 5! / (5-5)! = 5! = 120 种排列方式。
二、组合组合是指从一组对象中选择若干个对象,形成一个组合集合。
与排列不同,组合不考虑对象的顺序。
当我们有n个不同的对象,要从中选择r个对象组合时,我们使用组合计算公式:C(n, r) = n! / (r!(n-r)!)同样地,n! 表示 n 的阶乘。
下面我们来解决一些组合问题:1. 从字母 A、B、C、D、E 中选择3个字母组合,有多少种组合方式?解:根据公式,我们有 C(5, 3) = 5! / (3!(5-3)!) = 5! / (3!2!) = 10 种组合方式。
2. 有5个不同的球,要从中选择3个球组合,有多少种不同的组合方式?解:根据公式,我们有 C(5, 3) = 5! / (3!(5-3)!) = 5! / (3!2!) = 10 种组合方式。
三、练习题1. 有10支不同的笔,从中选择4支笔排成一行,有多少种不同的排列方式?解:根据公式,我们有 P(10, 4) = 10! / (10-4)! = 10! / 6! = 5040 种排列方式。
初中数学竞赛排列与组合

排列与组合基础知识:1.排列:从n个对象中选出m(不超过n)个并进行排序,共有的方法数称为排列数,写成。
2.排列数的计算:约定:0!=1排列数是由乘法原理得到的,因此排列可以看成是乘法原理的一种应用。
3.组合:从n个对象中选出m(不超过n)个,不进行排序,共有的方法数称为组合数,写成。
4.排列与组合的关系:。
5.组合数的计算:6.排列数与组合数的一些性质:例1.4名男生和3名女生站成一排:(1)一共有多少种不同的站法?(2)甲,乙二人必须站在两端的排法有多少种?(3)甲,乙二人不能站在两端的排法有多少种?(4)甲不排头,也不排尾,有多少种排法?(5)甲只能排头或排尾,有多少种排法?[答疑编号5721060101]【答案】(1)5040;(2)240;(3)2400;(4)3600;(5)略【解答】例2.在50件产品中有4件是次品,从中任意抽出5件,至少有3件是次品的抽法共多少种?[答疑编号5721060102]【答案】 4186种【解答】至少有3件是次品,分两种情况第一种情况:3件是次品的抽法:从4件次品中中抽出3件是种,其中,,然后,从46件正常品中抽2件,总共种。
其中,所以,3件是次品的抽法共种。
第二种情况:4件是次品的抽法共:种。
任意抽出5件产品,至少有3件是次品的抽法,是将上述两种情况加在一起,所以,总共是4×23×45+46=23×182=4186种。
总结:有序是排列,无序是组合。
例3.3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有多少种?[答疑编号5721060103]【答案】 540种【解答】可设三所学校为甲、乙、丙,三位医生去3所学校的分配方案:用排列数表示为=3×2×1=6。
用乘法原理表示为3!=6。
六名护士去学校甲有种选法,剩下4名护士去乙学校,有种选法,剩下两名自然去学校丙。
所以,不同的分配方法共有种。
2020年初中数学竞赛《排列与组合问题》复习题及答案解析

2020年初中数学竞赛《排列与组合问题》复习题一.解答题(共20小题)1.用1、2、3、4组成6位数,可以重复,但每一个数都必须用到,问一共有多少个这样的六位数?2.在m(m≥2)个不同数的排列P1P2P3…P m中,若1≤i<j≤m时,P i>P j(即前面某数大于后面某数),则称P i与P j构成一个逆序.一个排列的全部逆序的总数称为该排列的逆序数.记排列(n+1)n(n﹣1)…321的逆序数为a n,如排列21的逆序数a1=1,排列4321的逆序数a3=6.(1)求a4、a5,并写出a n的表达式(用n表示,不要求证明);(2)令b n =+﹣2,求b1+b2+…b n并证明b1+b2+…b n<3,n=1,2,….3.5个人站成一排照相.(1)若甲、乙两人必须相邻,则有多少不同的站队方法?(2)若甲、乙两人必不相邻,则有多少不同的站队方法?4.从1,2,…,16中,最多能选出多少个数,使得被选出的数中,任意三个数都不是两两互质.5.从数1,2,3,…,1995中任意取出n个不同的数(1≤n≤1995)形成一组叫做一个n 元数组,如(1,2,3,4)就是一个四元数组,(4,8,12,20,32)就是一个五元数组.现要给出一个自然数k,使得每一个k元数组中总能找到三个不同的数,此三数能构成一个三角形的三边长,则给出的k至少是多少时才能满足要求?证明你的结论.6.试将7个数字:3、4、5、6、7、8、9分成两组,分别排成一个三位数和一个四位数,并且使这两个数的乘积最大,试问应该如何排列?证明你的结论?7.8分和15分的邮票可以无限制地取用,某些邮资额数,例如7分、29分,不能够刚好凑成,求不能凑成的最大额数n,即大于n的额数都能够凑成(证明你的答案).8.平面上给定了2n个点,其中任意三点不共线,并且n个点染成了红色,n个点染成了蓝色,证明:总可以找到两两没有公共点的n条直线段,使得其中每条线段的两个端点具有不同的颜色.9.如图,是一个计算装置的示意图,A、B是数据入口,C是计算结果的出口,计算过程是第1 页共18 页。
(完整版)排列组合概率练习题(含答案)
排列与组合练习题1.如图,三行三列的方阵中有9个数(1,2,3;1,2,3)ij a i j ==,从中任取三个数,则至少有两个数位于同行或同列的概率是(A )37 (B )47 (C )114 (D )1314 答案:D解析:若取出3个数,任意两个不同行也不同列,则只有6种取法;而从9个数中任意取3个的方法是39C .所以39613114C -=. 2.同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则四张贺年卡不同的分配方式有(A )6种 (B )9种 (C )11种 (D )13种答案:B解析:设四人分别是甲、乙、丙、丁,他们写的卡片分别为,,,a b c d ,则甲有三种拿卡片的方法,甲可以拿,,b c d 之一.当甲拿b 卡片时,其余三人有三种拿法,分别为,,badc bcda bdac .类似地,当甲拿c 或d 时,其余三人各有三种拿法.故共有9种拿法.3.在平面直角坐标系中,x 轴正半轴上有5个点,y 轴正半轴上有3个点,将x 轴正半轴上这5个点和y 轴正半轴上这3个点连成15条线段,这15条线段在第一象限内的交点最多有(A )30个 (B )20个 (C )35个 (D )15个答案:A解析:设想x 轴上任意两个点和y 轴上任意两个点可以构成一个四边形,则这个四边形唯一的对角线交点,即在第一象限,适合题意.而这样的四边形共有302325=⋅C C 个,于是最多有30个交点.推广1:.在平面直角坐标系中,x 轴正半轴上有m 个点,y 轴正半轴上有n 个点,将x 轴正半轴上这m 个点和y 轴正半轴上这n 个点连成15条线段,这15条线段在第一象限内的交点最多有22m n C C ⋅个变式题:一个圆周上共有12个点,由这些点所连的弦最多有__个交点.答案:412C4.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率是(A )15 (B )25 (C )35 (D ) 45答案:B111213212223313233a a a a a a a a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭解析:由古典概型的概率公式得522155222233232222=+-=A A A A A A A P . 5.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A )13 (B )12 (C )23 (D )34答案:A解析:每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=3193=. 6.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则(|)P B A =A .18B .14C .25D .12答案:B 解析:2()5P A =,1()10P AB =,()1(|)()4P AB P B A P A ==. 7.甲、乙两队进行排球决赛.现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为A .12 B .35 C .23 D .34 答案:D解析:由题得甲队获得冠军有两种情况,第一局胜或第一局输第二局胜,所以甲队获得冠军的概率11132224P =+⋅=.所以选D . 8.如图,用K 、A 1、A 2三类不同的元件连成一个系统.当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作.已知K 、A 1、A 2正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为KA 2A 1A .0.960B .0.864C .0.720D .0.576答案:B解析:系统正常工作概率为120.90.8(10.8)0.90.80.80.864C ⨯⨯⨯-+⨯⨯=,所以选B.9.甲乙两人一起去“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是(A )136 (B )19 (C )536 (D )16 答案:D解析:各自独立地从1到6号景点中任选4个进行游览有1111111166554433C C C C C C C C 种,且等可能,最后一小时他们同在一个景点有11111116554433C C C C C C C 种,则最后一小时他们同在一个景点的概率是11111116554433111111116655443316C C C C C C C p C C C C C C C C ==,故选D . 10.在集合{}1,2,3,4,5中任取一个偶数a 和一个奇数b 构成以原点为起点的向量(,)a b α=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记所有作成的平行四边形的个数为n ,其中面积不超过...4的平行四边形的个数为m ,则m n =( ) (A )415 (B )13 (C )25 (D )23答案:B解析:基本事件:26(2,1),(2,3),(2,5),(4,1),(4,5),(4,3)23515n C ==⨯=从选取个,.其中面积为2的平行四边形的个数(2,3)(4,5);(2,1)(4,3);(2,1)(4,1);其中面积为4的平行四边形的为(2,3)(2,5);(2,1)(2,3); m=3+2=5故51153m n ==. 11.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于A .14B .13C .12D .23答案:C解析:显然ABE ∆面积为矩形ABCD 面积的一半,故选C .12.在204(3)x y +展开式中,系数为有理数的项共有 项.答案:6解析:二项式展开式的通项公式为20204412020(3)(3)(020)r r r r r r r r T C x y C x y r --+==≤≤要使系数为有理数,则r 必为4的倍数,所以r 可为0.、4、8、12、16、20共6种,故系数为有理数的项共有6项.13.集合{1,2,3,4,5,6,7,8,9,10}M =,从集合M 中取出4个元素构成集合P ,并且集合P 中任意两个元素,x y 满足||2x y -≥,则这样的集合P 的个数为____.答案:35解析:其实就是从1到10这十个自然数中取出不相邻的四个数,共有多少方法的问题.因此这样的集合P 共有4735C =个.14.在一个正六边形的六个区域栽种观赏植物,如右图所示,要求同一块中种同一种植物,相邻的两块种不同的植物,现有4种不同的植物可供选择,则有___种栽种方案.答案:732解析:共分三类:(1)A 、C 、E 三块种同一种植物;(2)A 、B 、C 三块种两种植物(三块中有两块种相同植物,而与另一块所种植物不同);(3)A 、B 、C 三块种三种不同的植物.将三类相加得732.15.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.(I)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(Ⅱ)X 表示该地的100位车主中,甲、乙两种保险都不购买的车主数,求X 的期望()E X .解:(I )设A 表示事件“购买甲种保险”,B 表示购买乙种保险. ()A B A A B =并且A 与A B 是互斥事件,所以()()()0.50.30.8P A B P A P A B =+=+=答:该地1位车主至少购买甲、乙两种保险中的1种的概率为0.8. (II )由(I )得任意1位车主两种保险都不购买的概率为()10.80.2p p A B ==-=. 又(3,0.2)XB ,所以()20E X =.所以X 的期望()20E X =.。
数学竞赛组合试题及答案
数学竞赛组合试题及答案试题一:排列组合问题题目:某班级有30名学生,需要选出5名代表参加校际数学竞赛。
如果不考虑性别和成绩,仅考虑组合方式,问有多少种不同的选法?答案:这是一个组合问题,可以用组合公式C(n, k) = n! / (k! *(n-k)!)来计算,其中n为总人数,k为选出的人数。
将数值代入公式,得到C(30, 5) = 30! / (5! * 25!) = 142506。
试题二:概率问题题目:一个袋子里有10个红球和20个蓝球,随机抽取3个球,求至少有1个红球的概率。
答案:首先计算没有红球的概率,即抽到3个蓝球的概率。
用组合公式计算,P(3蓝) = C(20, 3) / (C(30, 3)) = (20! / (3! * 17!)) / (30! / (3! * 27!))。
然后,用1减去这个概率得到至少有1个红球的概率,P(至少1红) = 1 - P(3蓝)。
试题三:几何问题题目:在一个半径为10的圆内,随机选择两个点,连接这两点形成弦。
求这条弦的长度小于8的概率。
答案:首先,弦的长度小于8意味着弦所对的圆心角小于某个特定角度。
通过几何关系和圆的性质,可以计算出这个特定角度。
然后,利用面积比来计算概率。
圆的面积为πr²,而弦所对的扇形面积可以通过角度来计算。
最后,将扇形面积除以圆的面积得到概率。
试题四:数列问题题目:给定一个等差数列,其首项为3,公差为2,求前10项的和。
答案:等差数列的前n项和公式为S_n = n/2 * (2a + (n-1)d),其中a为首项,d为公差,n为项数。
将数值代入公式,得到S_10 = 10/2* (2*3 + (10-1)*2) = 10 * 13 = 130。
试题五:逻辑推理问题题目:有5个盒子,每个盒子里都有不同数量的球,分别是1个,2个,3个,4个和5个。
现在有5个人,每个人随机选择一个盒子,每个人只能拿一个盒子。
问至少有一个人拿到的盒子里球的数量与他选择的顺序号相同的概率。
挑战极限初三数学下册综合算式专项练习题排列与组合的计算方法
挑战极限初三数学下册综合算式专项练习题排列与组合的计算方法排列与组合是初三数学中重要的概念与计算方法,对于解决各类实际问题具有广泛的应用。
本文将着重介绍排列与组合的计算方法,并结合综合算式专项练习题,帮助初三学生提升解题能力。
一、排列的计算方法排列是从给定的元素中选取若干元素按照一定顺序进行排列的方法。
设有n个元素,要从中取出m个元素进行排列,计算排列的数量可以使用以下公式:P(n, m) = n! / (n-m)!其中,n!表示n的阶乘,即n! = n * (n-1) * (n-2) * ... * 2 * 1。
根据上述公式,我们可以开始解答综合算式专项练习题。
例题一:有5个不同的字母A、B、C、D、E,可以使用这些字母组成多少个三位字母序列?解析:根据题目,我们需要从5个字母中选取3个字母进行排列。
代入公式,即P(5, 3) = 5! / (5-3)! = 5! / 2! = 5 * 4 * 3 = 60。
因此,可以组成60个三位字母序列。
例题二:有7本不同的书,小明从中选取3本书进行排列,问他有多少种排列方式?解析:根据题目,我们需要从7本书中选取3本书进行排列。
代入公式,即P(7, 3) = 7! / (7-3)! = 7! / 4! = 7 * 6 * 5 = 210。
因此,小明有210种排列方式。
二、组合的计算方法组合是从给定的元素中选取若干元素无序地进行组合的方法。
设有n个元素,要从中取出m个元素进行组合,计算组合的数量可以使用以下公式:C(n, m) = n! / (m! * (n-m)!)根据上述公式,我们可以开始解答综合算式专项练习题。
例题三:有8个不同的球,小明从中选取4个球放入篮子中,问他有多少种不同的放法?解析:根据题目,我们需要从8个球中选取4个球进行组合。
代入公式,即C(8, 4) = 8! / (4! * (8-4)!) = 8! / (4! * 4!) = 8 * 7 * 6 * 5 / (4 * 3 * 2 * 1) = 70。
2020年初中数学竞赛复习资料:排列与组合问题含答案解析
2020年初中数学竞赛复习资料:排列与组合问题
一.选择题(共19小题)
1.某学校从三楼到四楼的楼梯共9级,上楼可以一步上一级,也可以一步上两级,若规定从三楼到四楼用7步走完,则方法有()
A.21B.28C.35D.36
2.某校九年级6名学生和1位老师共7人在毕业前合影留念(站成一行),若老师站在中间,则不同的站位方法有()
A.6种B.120种C.240种D.720种
3.仪表板上有四个开关,每个开关只能处于开或者关状态,如果相邻的两个开关不能同时是开的,那么所有不同的状态有()
A.6种B.7种C.8种D.9种
4.两本不同的语文书、两本不同的数学书和一本英语书排放在书架上,若同类书不相邻,英语书不放在最左边,则排法的种数为()
A.32B.36C.40D.44
5.甲乙丙丁四位同学站成一横排照相,如果任意安排四位同学的顺序,那么恰好甲乙相临且甲在乙左边的概率是()
A .
B .
C .
D .
6.设(2x﹣1)5=a0+a1x+a2x2+a3x3+a4x4+a5x5.则a0﹣a1+a2﹣a3+a4﹣a5=()A.﹣1B.1C.﹣243D.243
7.现有1、2、3、4、5共五个数,从中取若干个数分给A、B两组,两组都不能放空,要使得B组中最小的数比A组中最大的数都大,则有()种分配方法.
A.44B.49C.51D.32
8.将1,2,3,4,5,6,7,8这8个数排成一行,使8的两边各数的和相等,则不同的排列方法有()
A.1152种B.576种C.288种D.144种
9.如图所示,韩梅家的左右两侧各摆了3盆花,韩梅每次按照以下规则往家中搬一盆花,
第1 页共35 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学竞赛《排列与组合问题》练习题
1.世界杯足球赛每个小组共有四个队参加比赛,采用单循环赛制(即每两个队之间要进行一场比赛),每场比赛获胜的一方得3分,负的一方得0分,如果两队战平,那么双方各得1分,小组赛结束后,积分多的前两名从小组出线.如果积分相同,两队可以通过比净胜球或其他如抽签等方式决定谁是第二名,确保有两支队伍出线.
(1)某队小组比赛后共得6分,是否一定从小组出线?
(2)某队小组比赛后共得3分,能从小组出线吗?
(3)某队小组比赛后共得2分,能从小组出线吗?
(4)某队小组比赛后共得1分,有没有出线的可能?
【分析】(1)假设四个球队分别为A、B、C、D,如四个球队的比赛结果是A战胜了B,D,而B战胜了C,D,C战胜了A,D,D在3场比赛中都输了,可知不能出线,则知不一定从小组出线;
(2)假如A在3场比赛中获得全胜,而B战胜了C,C战胜了D,战胜了B,这样,小组赛之后,A积9分,B、C、D都积3分,则可出线;
(3)假如A队三战全胜,B、C、D之间的比赛都战平,则有出线的可能;
(4)如果只得1分,说明他的3场比赛成绩是1平2负,而他负的两个球队的积分至少是3分,则可知必然被淘汰.
【解答】解:(1)不一定.
设四个球队分别为A、B、C、D,
如四个球队的比赛结果是A战胜了B,D,
而B战胜了C,D,C战胜了A,D,D在3场比赛中都输了,
这样,小组赛之后,ABC三个球队都得6分,D队积0分,
因此小组中的第三名积分是6分,
∴不能出线;
(2)有可能出线.
如A在3场比赛中获得全胜,而B战胜了C,C战胜了D,
D战胜了B,这样,小组赛之后,A积9分,B、C、D都积3分,
因此这个小组的第二名,一定是3分出线;
(3)有可能出线.
如A队三战全胜,B、C、D之间的比赛都战平,
这样这个小组的第二名的积分一定是2分,
自然有出线的可能.
(4)不可能出线.
如果只得1分,说明他的3场比赛成绩是1平2负,
而他负的两个球队的积分至少是3分,
他就不可能排到小组的前两名,必然被淘汰.
【点评】此题考查了排列组合知识应用,考查了学生的实际应用能力.解题的关键是结合实际举出例子.。