重庆大学概率与数理统计课后答案第八章
概率论与数理统计课后习题参考答案

习题11、(1)同时掷两枚骰子,记录点数之和 {2,3,,12}S =;(2)生产产品知道得到5件正品,记录生产产品的总件数 {5,6,}S =; (3)单位圆任取一点,记录它的坐标 22{(,)1,,}S x y x y x R y R =+<∈∈;(4)将单位长线段分3段,观察各段长度{(,,)1,0,0,0}S x y z x y z x y z =++=>>>。
2、(1)A 与B 都发生,C 不发生:ABC ;(2)ABC 至少一个发生:A B C ;(3)ABC 不多于一个发生:ABAC BC 。
3、对事件ABC ,已知P(A)=P(B)=P(C)=1/4,P(AB)=P(BC)=0,P(AC)=1/8,求ABC 至少发生一个的概率?解:依题可知,()0P ABC =,则所求的概率为()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC ++=++---+1153000488=⨯---+= 4、将10本书任意地放在书架上,其中有一套4卷成套的书,求概率?解:设事件A 表示“成套的书放在一起”,B 表示“成套的书按卷次顺序排好放在一起”,由概率的古典定义可得所求的概率为 (1)成套的书放在一起:7!4!1()10!30P A ⋅==(2)成套的书案卷次顺序排好放在一起:7!11()10!720P B ⋅==5、从5双不同的鞋子中任取4只,问这4只鞋子不能配成一双的概率是多少?解:设事件A 表示“取出的4只鞋子不能配成一双”,由概率的古典定义可得所求的概率为 44541028()21C P A C ⋅== 6、在电话号码簿中任取一个电话号码,求后面4个数全不相同的概率?解:设事件A 表示“电话号码的后面4个数全不相同”,由概率的古典定义可得所求的概率为4104()0.50410A P A ==7、已知P(非A)=0、3,P(B)=0、4,P(A 非B)=1/2,求P(B|AU 非B)? 解:依题可知,()1()0.7P A P A =-=,()1()0.6P B P B =-=,而()0.55()()0.77P AB P B A P A ===则2()1()7P B A P B A =-=,()()()0.2P AB P A P B A ==,故所求的概率为 ()()()()()P BAB P ABBB P B A B P AB P AB ⎡⎤⎣⎦== ()0.20.25()()()0.70.60.5P AB P A P B P AB ===+-+-8、设AB 是随机事件,P(A)=0、7,P(A-B)=0、3,求P (非(AB))?解:由()()()P A B P A P AB -=-,得()()()0.70.30.4P AB P A P A B =--=-=故 ()1()0.6P AB P AB =-=9、半圆内均匀的投掷一随机点Q ,试求事件A={Q于π/4}的概率?解:事件A 所对应的区域D 如下图所示,由概率的几何定义得所求的概率为()()()m D P A m S ==10、10解:设事件A 表示“这对夫妇正好坐在一起”,(91)!22()(101)!9P A -⋅==-11、已知10只晶体管中有2只是次品,在其中任取两只,每次随机取一只作不放回抽取 解:设事件A 表示“两只都是正品”, B 表示“两只都是次品”, C 表示“一只是正品,一只是次品”, D 表示“第二次取出的是次品”, 由概率的古典定义可得所求的概率为(1)两只都是正品2821028()45A P A A == (2)两只都是次品222101()45A P B A ==(3)一直是正品,一只是次品11128221016()45C C C P C A ⋅⋅== (4)第二次取出的是次品11292101()5C C PD A ⋅== 12、某学生接连参加同一课程的两次考试,第一次及格的概率为p ,如果他第一次及格,则x第二次及格的概率也为p ,如果第一次不及格,第二次及格概率为p/2。
概率统计6-8章习题解答(DOC)

第13次1在总体N (U 「2)中抽取样本 X !,X 2,X 3 (」已知,二2未知),指出X ! X 2 X 3,解 X 1 X 2 X 3 , X 2 2h , max(X 1 ,X 2,X 3) , |X 1—'X 31 是统计量2给定样本观测值92,94,103,105,106求样本均值和方差1解 X =丄(9294 103 105 106) =100 521 2 2 2 2 2S[(92 -100)(94 -100) (103-100)(105 -100) (106 -100)]5 -1=42.53在总体X ~ N(12,22)中随机抽取容量为 5的样本,求样本均值与总体均值之差的绝对值大于1的概率 2解 注意到 X~N (叫——)n - (2 丫有 X ~ N(12,)& 5丿13 _ 12 11 _ 12P{| X -12 | 1} =1 - P{11 :: X :: 13} =1 -[门( )一 门( 2 )]、5. 5=1一:门( )亠叫一 )=1一门()1一门()=0.26282 2 2 24 已知 X ~t(8),求(1)P{X 2.306},P{X <1.3968}(2)若 P{X }=0.01 求’解 (1)P{X 2.306} =0.025,P{ X ::: 1.3968} = P{ X 1.3968} = 1 - 0.1 = 0.9(2)P{X } =0.01= • - 2.89655 已知 X ~2(8),求(1)P{X 2.18},P{X :: 20.09}(2)若 P{X 「} =0.025求,(3)若 P{X :: } =0.95 求■ 解(1)P{X 2.18} =0.975,P{X :: 20.09} =1-P{X 20.09} = 1 -0.01 = 0.99(2) P{X •} =0.025 二,-17.534X 2 2」,max(X ,,X 2,X 3)|X i -X 3 I 哪些是统计量?2 2X iX 2 X2 3(3) P{X }=0.95 P{X . •} =0.05 二,-15.5076设总体X ~ N (3.2,62 3 4), X ,,X 2,...,X n 是X 的样本,则容量n 应取多大,才能使得P{1.2 :: X :: 5.2} _0.95P{1.2 :::X ::5.2}二仁5^尹)一讥违竺)凡(亍)一讥一亍)n= :.:,( □)_:「( 0) =2+(」)_1 _0.9533 3y' n Tn ::」()_ 0.975 1.96 n_ 34.5 7 4433所以n 最小为35第14次1从某正态总体 X 取得样本观测值:14.7,15.1,14.8,15.0, 15.2,14.6,用矩法估计总体均值」和方差c 2 解」-X =1(14.7 15.1 14.8 15.0 15.2 14.6) =14.96A —1-X21 n--------------------------- 2 1 2 2 2 匚 (X i -X) [(14.7—14.9)(15.1—14.9)(14.8—14.9)n i 总 6(15.0-14.9)2 (15.2 -14.9)2 (14.6 -14.9)2] =0.28X 乞1 2总体x 的密度为p(x) =1 飞,样本为X 1,X 2 ,...X n 求二的矩法估计量归 ex 〉11 3总体x 的密度为p (x )=1。
概率论与数理统计课后习题答案 第八章

有无显著差异(
).
解:检验假设
经计算
查表知
由于
故接受
即甲,乙两台车床加工的产品直径无显著差异.
8. 从甲地发送一个信号到乙地.设乙地接受到的信号值是一个服从正态分布
的随机变量,其
中 为甲地发送的真实信号值.现甲地重复发送同一信号 5 次,乙地接受到的信号值为
8.05
8.15
8.2
8.1
8.25
设接收方有理由猜测甲地发送的信号值为 8.问能否接受这一猜测? (
∵
该机正常工作与否的标志是检验 是否成立.一日
试问:在检验水平
下,该日自动机工作是否正
查表知
,由于
故拒绝 ,即该日自动机工作不正常.
2. 假定考生成绩服从正态分布,在某地一次数学统考中,随机抽取了 36 位考生的成绩,算的平均成绩为 分,标准差 S=15 分,问在显著性水平 0.05 下,是否可以认为这次考试全体考生的平均成绩为
问这两台机床的加工精度是否一致?
解:该题无 值,故省略.(用 F 检验)
4. 对两批同类电子元件的电阻进行测试,各抽 6 件,测得结果如下(单位:Ω )
A 批 0.140 0.138 0.143 0.141 0.144 0.137
B 批 0.135 0.140 0.142 0.136 0.138 0.141
态分布
(单位:公斤).现抽测了 9 包,其重量为:
99.3
98.7
100.5 101.2 98.3
99.7
99.5
102.0 100.5
问这天包装机工作是否正常?
将这一问题化为一个假设检验问题,写出假设检验的步骤,设
解: (1)作假设
概率论与数理统计课后习题答案第八章习题详解

习题八1. 已知某炼铁厂的铁水含碳量在正常情况下服从正态分布N(4.55,0.1082).现在测了5炉铁水,其含碳量(%)分别为4.28 4.40 4.42 4.35 4.37问若标准差不改变,总体平均值有无显著性变化(α=0.05)?【解】0010/20.0250.025: 4.55;: 4.55.5,0.05, 1.96,0.1084.364,(4.364 4.55)3.851,0.108.H Hn Z ZxxZZZαμμμμασ==≠=======-===->所以拒绝H0,认为总体平均值有显著性变化.2. 某种矿砂的5个样品中的含镍量(%)经测定为:3.24 3.26 3.24 3.27 3.25设含镍量服从正态分布,问在α=0.01下能否接收假设:这批矿砂的含镍量为3.25.【解】设0010/20.0050.005: 3.25;: 3.25.5,0.01,(1)(4) 4.60413.252,0.013,(3.252 3.25)0.344,0.013(4).H Hn t n tx sxtttαμμμμα==≠===-====-===<所以接受H0,认为这批矿砂的含镍量为3.25.3. 在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为1.008(克),样本方差s2=0.1(g2).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=0.05).【解】设0010/20.02520.025: 1.1;: 1.1.36,0.05,(1)(35) 2.0301,36,1.008,0.1,6 1.7456,1.7456(35)2.0301.H Hn t n t nx sxtttαμμμμα==≠===-=========<=所以接受H0,认为这堆香烟(支)的重要(克)正常.4.某公司宣称由他们生产的某种型号的电池其平均寿命为21.5小时,标准差为2.9小时.在实验室测试了该公司生产的6只电池,得到它们的寿命(以小时计)为19,18,20,22,16,25,问这些结果是否表明这种电池的平均寿命比该公司宣称的平均寿命要短?设电池寿命近似地服从正态分布(取α=0.05). 【解】0100.050.05:21.5;:21.5.21.5,6,0.05, 1.65, 2.9,20,(2021.5)1.267,2.91.65.H Hn z xxzz zμμμασ≥<======-===->-=-所以接受H0,认为电池的寿命不比该公司宣称的短.5.测量某种溶液中的水分,从它的10个测定值得出x=0.452(%),s=0.037(%).设测定值总体为正态,μ为总体均值,σ为总体标准差,试在水平α=0.05下检验.(1)H0:μ=0.5(%);H1:μ<0.5(%).(2):Hσ'=0.04(%);1:Hσ'<0.04(%).【解】(1)00.050.050.5;10,0.05,(1)(9) 1.8331,0.452,0.037,(0.4520.5)4.10241,0.037(9) 1.8331.n t n tx sxtt tαμα===-====-===-<-=-所以拒绝H0,接受H1.(2)2222010.9522222220.95(0.04),10,0.05,(9) 3.325,0.452,0.037,(1)90.0377.7006,0.04(9).nx sn sασαχχχσχχ-=======-⨯===>所以接受H0,拒绝H1.6.某种导线的电阻服从正态分布N(μ,0.0052).今从新生产的一批导线中抽取9根,测其电阻,得s=0.008欧.对于α=0.05,能否认为这批导线电阻的标准差仍为0.005?【解】00102222/20.0251/20.975222220.02522:0.005;:0.005.9,0.05,0.008,(8)(8)17.535,(8)(8) 2.088,(1)80.00820.48,(8).(0.005)H Hn sn sαασσσσαχχχχχχχσ-===≠=======-⨯===>故应拒绝H0,不能认为这批导线的电阻标准差仍为0.005.7.有两批棉纱,为比较其断裂强度,从中各取一个样本,测试得到:第一批棉纱样本:n1=200,x=0.532kg, s1=0.218kg;第二批棉纱样本:n2=200,y=0.57kg, s2=0.176kg.设两强度总体服从正态分布,方差未知但相等,两批强度均值有无显著差异?(α=0.05) 【解】01211212/2120.0250.0250.025:;:.200,0.05,(2)(398) 1.96,0.1981,1.918;(398).w H H n n t n n t z s x y t t t αμμμμα=≠===+-=≈=======-< 所以接受H 0,认为两批强度均值无显著差别.8.两位化验员A ,B 对一种矿砂的含铁量各自独立地用同一方法做了5次分析,得到样本方差分别为0.4322(%2)与0.5006(%2).若A ,B 所得的测定值的总体都是正态分布,其方差分别为σA 2,σB 2,试在水平α=0.05下检验方差齐性的假设222201:;:.A B A B H H σσσσ=≠【解】221212/2120.0250.9750.02521225,0.05,0.4322,0.5006,(1,1)(4,4)9.6,11(4,4)0.1042,(4.4)9.60.43220.8634.0.5006n n s s F n n F F F s F s αα=====--========那么0.9750.025(4,4)(4,4).F F F << 所以接受H 0,拒绝H 1. 9~12. 略。
《概率论与数理统计》习题及答案第八章

《概率论与数理统计》习题及答案第⼋章《概率论与数理统计》习题及答案第⼋章1. 设x.,x2,,%…是从总体X中抽岀的样本,假设X服从参数为兄的指数分布,⼏未知,给泄⼊〉0和显著性⽔平a(Ovavl),试求假设H o的⼒$检验统计量及否建域.解选统汁量*=2⼈⼯⼄=2如庆则Z2 -Z2(2n) ?对于给宦的显著性⽔平a,査z'分布表求出临界值加⑵",使加⑵2))=Q因z2 > z2 > 所以(F": (2/1)) => (/2 > /; (2n)),从⽽a = P{X2 > 加⑵“} n P{r > Za(2/0)可见仏:2>^的否定域为Z2>Z;(2?).2. 某种零件的尺⼨⽅差为O-2=1.21,对⼀批这类零件检查6件得尺⼨数据(毫⽶):,,,,,。
设零件尺⼨服从正态分布,问这批零件的平均尺⼨能否认为是毫⽶(a = O.O5).解问题是在/已知的条件下检验假设:“ = 32.50Ho的否定域为1“ l> u af2u0(n5 = 1.96 ,因1“ 1=6.77 >1.96,所以否泄弘,即不能认为平均尺⼨是亳⽶。
3. 设某产品的指标服从正态分布,它的标准差为b = 100,今抽了⼀个容量为26的样本,计算平均值1580,问在显著性⽔平a = 0.05下,能否认为这批产品的指标的期望值“不低于1600。
解问题是在b?已知的条件下检验假设://>1600的否定域为u < -u a/2,其中X-1600 r-r 1580-1600 c , “11 = ------------ V26 = ------------------- x 5.1 = —1.02.100 100⼀叫05 =—1.64.因为// =-1.02>-1.64 =-M005,所以接受H(>,即可以认为这批产品的指标的期望值“不低于1600.4. ⼀种元件,要求其使⽤寿命不低于1000⼩时,现在从这批元件中任取25件,测得其寿命平均值为950⼩时,已知该元件寿命服从标准差为o-=100 ⼩时的正态分布,问这批元件是否合格(<7=0.05)解设元件寿命为X,则X~N(“,IO。
概率论与数理统计课后习题答案1-8章-习题解答

第一章 思 考 题1.事件的和或者差的运算的等式两端能“移项”吗?为什么?2.医生在检查完病人的时候摇摇头“你的病很重,在十个得这种病的人中只有一个能救活. ”当病人被这个消息吓得够呛时,医生继续说“但你是幸运的.因为你找到了我,我已经看过九个病人了,他们都死于此病,所以你不会死” ,医生的说法对吗?为什么?3.圆周率 1415926.3=π是一个无限不循环小数, 我国数学家祖冲之第一次把它计算到小数点后七位, 这个记录保持了1000多年! 以后有人不断把它算得更精确. 1873年, 英国学者沈克士公布了一个π的数值, 它的数目在小数点后一共有707位之多! 但几十年后, 曼彻斯特的费林生对它产生了怀疑. 他统计了π的608位小数, 得到了下表:675844625664686762609876543210出现次数数字你能说出他产生怀疑的理由吗?答:因为π是一个无限不循环小数,所以,理论上每个数字出现的次数应近似相等,或它们出现的频率应都接近于0.1,但7出现的频率过小.这就是费林产生怀疑的理由.4.你能用概率证明“三个臭皮匠胜过一个诸葛亮”吗?5.两事件A 、B 相互独立与A 、B 互不相容这两个概念有何关系?对立事件与互不相容事件又有何区别和联系?6.条件概率是否是概率?为什么?习 题1.写出下列试验下的样本空间: (1)将一枚硬币抛掷两次答:样本空间由如下4个样本点组成{(,)(,)(,)(,)}Ω=正正,正反,反正,反反 (2)将两枚骰子抛掷一次答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6}i j i j Ω==(3)调查城市居民(以户为单位)烟、酒的年支出答:结果可以用(x ,y )表示,x ,y 分别是烟、酒年支出的元数.这时,样本空间由坐标平面第一象限内一切点构成 .{(,)0,0}x y x y Ω=≥≥2.甲,乙,丙三人各射一次靶,记-A “甲中靶” -B “乙中靶” -C “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件: (1) “甲未中靶”: ;A (2) “甲中靶而乙未中靶”: ;B A (3) “三人中只有丙未中靶”: ;C AB(4) “三人中恰好有一人中靶”: ;C B A C B A C B A (5)“ 三人中至少有一人中靶”: ;C B A(6)“三人中至少有一人未中靶”: ;C B A 或;ABC (7)“三人中恰有两人中靶”: ;BC A C B A C AB(8)“三人中至少两人中靶”: ;BC AC AB (9)“三人均未中靶”: ;C B A (10)“三人中至多一人中靶”: ;C B A C B A C B A C B A(11)“三人中至多两人中靶”: ;ABC 或;C B A 3 .设,A B 是两随机事件,化简事件 (1)()()AB A B (2) ()()A B A B解:(1)()()AB A B AB AB B B ==,(2) ()()AB AB ()A BA B B A A B B ==Ω=.4.某城市的电话号码由5个数字组成,每个数字可能是从0-9这十个数字中的任一个,求电话号码由五个不同数字组成的概率.解:51050.302410P P ==.5.n 张奖券中含有m 张有奖的,k 个人购买,每人一张,求其中至少有一人中奖的概率。
《概率论与数理统计教程》魏宗舒 课后习题解答答案_1-8章

第一章 事件与概率1.1 写出下列随机试验的样本空间及表示下列事件的样本点集合。
(1)10件产品中有1件是不合格品,从中任取2件得1件不合格品。
(2)一个口袋中有2个白球、3个黑球、4个红球,从中任取一球,(ⅰ)得白球,(ⅱ)得红球。
解 (1)记9个合格品分别为 921,正正正,, ,记不合格为次,则,,,,,,,,,)()()(){(1913121次正正正正正正正 =Ω,,,,,,,,,)()()()(2924232次正正正正正正正 ,,,,,,,)()()(39343次正正正正正 )}()()(9898次正次正正正,,,,,, =A ){(1次正,,,,)(2次正)}(9次正,,(2)记2个白球分别为1ω,2ω,3个黑球分别为1b ,2b ,3b ,4个红球分别为1r ,2r ,3r ,4r 。
则=Ω{1ω,2ω,1b ,2b ,3b ,1r ,2r ,3r ,4r }(ⅰ) =A {1ω,2ω} (ⅱ) =B {1r ,2r ,3r ,4r }1.2 在数学系的学生中任选一名学生,令事件A 表示被选学生是男生,事件B 表示被选学生是三年级学生,事件C 表示该生是运动员。
(1) 叙述C AB 的意义。
(2)在什么条件下C ABC =成立? (3)什么时候关系式B C ⊂是正确的? (4) 什么时候B A =成立?解 (1)事件C AB 表示该是三年级男生,但不是运动员。
(2) C ABC = 等价于AB C ⊂,表示全系运动员都有是三年级的男生。
(3)当全系运动员都是三年级学生时。
(4)当全系女生都在三年级并且三年级学生都是女生时`。
1.3 一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是合格品(n i ≤≤1)。
用i A 表示下列事件: (1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅仅只有一个零件是不合格品; (4)至少有两个零件是不合格品。
概率与数理统计第八章 --第十一章例题

• 分布函数为
0, x -1, 1 F(x;1) ,1 x 2, 2 1, x 2.
• 2、设随机过程X(t)=e-At,t>0,其中A是在区间(0,a)上 服从均匀分布的随机变量,试求X(t)的均值函数和自相 关函数。 解:由关于随机变量函数的数学期望的定理知道X(t)的均 值函数为
192 190
188 187
A2
A3 A4
201
179 180
187
191 188
196
183 175
200
194 182
• 判断4个林场松毛虫密度有无显著变化,取显著性 水平=0.05。
• 解 记Ai林场的平均松毛虫密度为I,i=1,2,3,4.则 所述问题为在显著性水平=0.05下检验假设
H 0 : 1 2 3 4 , H1 : 1 , 2 , 3 , 4不全相等。 今s 4,n1 n 2 n 3 n 4 5, n 20.T.1 932, T.2 974, T.3 935, T.4 912, T.. 3753 .
2 2 S r xij T..2 / n 705225 3753 / 20 974.55. j 1 i 1 4 4 5
SA
j 1
T. 2 j 5
T..2 n 704653 .8 704250 .45 403.35
S E S r S A 571.2. S r , S A , S E的自由度分别为 n - 1 19, s 1 3, n s 20 4 16, 从而得方差分析表如下 :
S xx
S xy
S xy
1 x ( xi ) 2 n 1 13 32 .81 25 14 1.252 2.70 83 33 , 15 1 xi yi xi yi n 1 98 5.5 14 1.25 10 4.5 1.45 83 33 , 15 1 2 yi ( yi ) 2 n 1 7.29.62 5 10 4.5 2 1.60 83 33 . 15
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题八A 组1.假设总体X ~)1,(μN ,从中抽取容量为25的样本,对统计假设0:,0:10≠=μμH H ,拒绝域为X 0={}392.0≥x 。
(1)求假设检验推断结果犯第Ⅰ类错误的概率。
(2)若3.0:1=μH ,求假设检验推断结果犯第Ⅱ类错误的概率。
解:(1){}{}001H H P P α==犯第I 类错误拒绝成立={}0392.0=>μX P{}{}96.10392.0>==>=n X P X P μ,所以05.01=α(2){}{}00H H P P β==犯第II 类错误接受不成立{}3.0392.0=≤=μX P {}6769.046.0)3.0(46.3=<-<-=n X P2.已知某厂生产的电视机显像管寿命(单位:小时)服从正态分布。
过去,显像管的平均寿 命是15000小时,标准差为3600小时。
为了提高显像管寿命采用了一种新技术,现从新生 产的显像管中任意抽取36只进行测试,其平均寿命为15800=x 小时。
若用假设检验方 法推断新技术是否显著提高了显像管的寿命,试指出:(1)假设检验中的总体;(2)统计假设;(3)检验法、检验统计量、拒绝域;(4)推断结果。
解:(1)假设检验中的总体是新生产的显像管的寿命,用X 表示,由题意知:X ~),(2σμN )90000,5000(N(2)统计假设:15000:0≤μH ,15000:1>μH(3)假设σ与过去一样为3600小时,那么检验方法为U 检验法,检验统计量为:nX U σ15000-=显著水平05.0=α时的拒绝域为:X 0 ={}α->1u u ={}645.1>u(4)推断:因为U 的样本值为不在X 0 内,所以接受原假设,即在显著水平05.0=α 下,认为新技术没有提高显像管的寿命。
3.某计算机公司使用的现行系统,运行通每个程序的平均时间为45秒。
现在使用一个新系统运行9个程序,所需的计算时间(秒)分别是:30,37,42,35,36,40,47,48,45。
假设一个系统试通一个程序的时间服从正态分布,那么据此数据用假设检验方法推断新系统是否减少了现行系统试通一个程序的时间。
解:设新系统试通一个程序的时间为X ,由题意知X ~),(2σμN 。
统计假设:0H :45≥μ,1H :45<μ 检验统计量为:n SX T 45-=拒绝域为:X 0 ={})1(-<n t t α={}859.1-<t推断:因为T 的样本值为 ∈X 0,所以拒绝0H ,接受1H ,即新系统减少了现行系统试通一个程序的平均时间。
4.甲制药厂进行有关麻疹疫苗效果研究,用一个人注射这种疫苗后的抗体强度X 表示。
假 定X 服从正态分布。
另一家与之竞争的乙制药厂生产的同种疫苗的平均抗体强度为。
甲厂为证实其产品比乙厂有更高的抗体强度,随机抽取了16样本,获得下表所示数据:问在显著水平05.0=α下能否认为甲厂产品有更高的抗体强度。
解: 由题意知X ~),(2σμN 。
统计假设:0H :9.1≤μ,1H :9.1>μ 检验统计量为:n SX T 9.1-=拒绝域为:X 0 ={})1(1->-n t t α={}753.1>t推断:因为T 的样本值为∈X 0,所以拒绝0H ,接受1H ,即可以认为甲厂产品有更高的抗体强度。
5.某机器加工的B 型钢管的长度服从标准差为公分的正态分布。
现从一批新生产的B 型钢管中随机选取25根,测得样本标准差为公分。
试以显著性水平1%判断该批钢管长度的变异性与标准差比较是否有明显变化。
解:设某机器新生产的一批B 型钢管的长度为X ,由题意知X ~)4.2,(2μN 。
统计假设:0H :224.2=σ,1H :224.2≠σ检验统计量为:2224.2)1(S n -=χ拒绝域为:X 0 =⎭⎬⎫⎩⎨⎧-<)1(222n αχχ⎭⎬⎫⎩⎨⎧->-)1(2212n αχχY ={}886.92<χ{}559.452>χY推断:2χ的样本值为,不在拒绝域X 0内,所以接受0H ,即在显著性水平1%下,新生产的钢管长度的变异性与标准差比较无明显变化。
6.某厂生产的某种电池寿命(单位:小时)长期以来服从标准差为70小时的正态分布。
今 有一批这种电池,为判断其寿命的波动性是否较以往有所变化,随机抽取了一个容量为26 的样本,测得寿命的样本标准差为75小时。
问在显著水平05.0=α下,这批电池寿命的 波动性较以往是否显著增大解: 设电池寿命为X ,由题意知X ~),(2σμN 。
统计假设:0H :2270≤σ,1H :2270>σ检验统计量为:22270)1(S n -=χ 拒绝域为:X 0 ={})1(212->-n αχχ={}652.372>χ推断:2χ的样本值为,不在拒绝域X 0内,所以接受0H ,即在显著性水平05.0=α下,这批电池寿命的波动性较以往没有显著增大。
7.在选择一个新建超市的位置时需要考虑很多因素,其中超市所在地附近居民的收入水平是 重要的因素之一。
现有A 、B 两地可供选择,A 地的建筑费用较B 地低。
如果两地居民的 年均收入相同,就在A 地建筑。
但若B 地居民的年均收入明显高于A 地,则选在B 地建 筑。
现从A 、B 两地的居民中分别抽取了100和120户居民,经调查分析知:A 地年均收 入28650元,B 地年均收入29980元。
若已知A 地居民年收入标准差是4746元,B 地居 民年收入标准差5365元,问超市在何地建假设A 、B 两地居民年收入(单位:元)服从 正态分布。
解:假设A 、B 两地居民年收入(单位:元)分别为X,Y 。
由题意知X ~)4746,(21μN ,Y ~)5365,(22μN 。
统计假设:0H :21μμ≥,1H :21μμ< 检验统计量为:mnYX U 2221σσ+-=显著水平05.0=α时的拒绝域为:X 0 ={}αu u <={}645.1-<u推断:因为U 的样本值为∈X 0,所以拒绝0H ,接受1H ,即在显著水平05.0=α下,可以认为B 地居民年平均收入明显高于A 地,应在B 地建超市。
8.要比较甲、乙两种轮胎的耐磨性,现从甲、乙两种轮胎中各取8个,各取一个组成一对, 再随机选取8架飞机,将8对轮胎磨损量(单位:mg )数据列表如下:假定甲、乙两种轮胎的磨损量分别为X ~),(21σμN ,Y ~),(22σμN ,且两个样本相 互独立。
试问在显著水平05.0=α时,甲、乙两种轮胎的耐磨性是否有显著的差异 解: 统计假设:0H :21μμ=,1H :21μμ≠检验统计量为:mnS Y X T 11+-=ω,22212(1)(1)2n S m S S n m ω-+-=+-拒绝域为:X 0 =)}2({21-+>-m n t t α=}145.2{>t推断:因为T 的样本值为不在拒绝域X 0内,所以接受0H ,即在显著水平05.0=α下,可以认为甲、乙两种轮胎的耐磨性无显著差异。
9.设甲、乙两工厂生产同一种零件,现从这两个工厂生产的零件中分别抽测8个和9个,测得其外径(单位:mm )分别为:假定零件外径服从正态分布,试乙厂生产的零件精度是否比甲厂生产的高(05.0=α) 解:假定甲、乙两厂生产的零件外径分别为X ,Y ,由题意知X ~),(211σμN ,Y ~),(222σμN统计假设:0H :2221σσ≥,1H :2221σσ<检验统计量为:2122S F S = 拒绝域为:X 0 ={})1,1(--<m n F F α=}268.0{<F推断:因为F 的样本值为不在拒绝域X 0内,所以接受0H ,即在显著水平05.0=α下,可以认为乙厂生产的零件精度比甲厂生产的高。
10.一项调查结果显示某市老年人口比重为%。
该市老年人口研究协会为了检验该项调查是否可靠,随机抽选了400名居民,发现其中有57人是老年人。
问调查结果是否支持该市老年人口比重为%的看法(05.0=α)。
解:设某市老年人口比例为p 。
(1)统计假设:147.0:0=p H ,147.0:1≠p H (2)检验统计量为:1)1(147.0---=n X X X U ,(3)05.0=α时的拒绝域为:X 0 ={}21{} 1.96u u u α-=>=>(4)推断:因为U 的样本值为不在X 内,所以接受原假设,即在显著性水平为5%下调查结果支持该市老年人口比重为%的看法。
11.某机构声称5年来各种新发行债券的承销价高于面值的比率低于50%,现随机抽取了60只新发行的债券,其中有24只的承销价高于面值。
问上述说法是否可接受(0.05α=) 解:设5年来各种新发行债券的承销价高于面值的比率为p (1)统计假设:5.0:0≥p H ,5.0:1<p H (2)检验统计量为:1)1(5.0---=n X X X U ,(3)05.0=α时的拒绝域为:X 0 ={}αu u <={}32.2-<u(4)推断:因为U 的样本值为不在X 内,所以接受原假设,即在显著性水平为下不接受该机构的说法。
12.某大公司的人事部门希望了解公司职工的病假是否均匀分布在周一到周五,以便合理安排工作。
如今抽取了100名病假职工,其病假日分布如下:试问该公司职工病假是否均匀分布在一周五个工作日中(05.0=α) 解:设公司职工的病假时间为X(1)统计假设:0H :X 服从周一到周五的均匀分布,分布律为()5,4,3,2,1,2.0====i p i X P i(2) 检验统计量: =2χn npi ii -∑=512ν,(3)拒绝域为: X 0=}488.9{)}1({2212>=->-χχχαm(4)推断:检验统计量的样本值为,不在拒绝域里,接受0H ,可以认为该公司职工病假在五个工作日中是均匀分布。
13.对某厂生产的汽缸螺栓口径进行100次抽样检验,测得100数据分组列表如下:组限 ~ ~ ~ ~ 频数 5 8 20 34 组限 ~ ~ ~ ~ 频数17664试问螺栓的口径X 的分布是否服从正态分布(05.0=α)。
解:(1)统计假设:0H :X ~),(2σμN(2) 求2,σμ的极大似然法估计值。
001.0ˆ,002.11ˆ*22====m x σμ(3) 检验统计量: =2ˆχn pn i ii -∑=812ˆν,(4)拒绝域为: X 0=}071.11{)}1(ˆ{2212>=-->-χχχαr m (5)推断:在0H 成立的条件下计算:=-Φ=)032.0)002.1195.10((ˆ1p=2ˆp; =3ˆp ; =4ˆp ; =5ˆp;=6ˆp ;=7ˆp ;=8ˆp 检验统计量2ˆχ的样本值为,不在拒绝域里,接受0H ,可以认为螺栓的口径X 的分布服从正态分布。