物理 《单摆》实验

合集下载

单摆实验实验原理与方法

单摆实验实验原理与方法

单摆实验实验原理与方法单摆实验原理与方法单摆实验是物理学中常见的实验之一,它可以用来研究单摆的运动规律和物理特性。

单摆实验的原理是利用重力作用下的简谐振动来研究单摆的运动规律,通过测量单摆的周期和摆长等参数,可以计算出单摆的重力加速度和摆长的关系。

本文将介绍单摆实验的原理和方法。

一、实验原理单摆实验的原理是基于单摆的简谐振动。

单摆是由一根细线和一个质点组成的,质点在重力作用下沿着细线做简谐振动。

单摆的运动规律可以用下面的公式来描述:T=2π√(l/g)其中,T是单摆的周期,l是单摆的摆长,g是重力加速度。

这个公式表明,单摆的周期和摆长成反比例关系,与重力加速度成正比例关系。

因此,通过测量单摆的周期和摆长,可以计算出单摆的重力加速度。

二、实验方法1. 实验器材单摆实验需要的器材有:单摆、计时器、测量尺、支架、细线、质量块等。

2. 实验步骤(1)悬挂单摆将单摆悬挂在支架上,调整单摆的摆长,使其在摆动时不会碰到任何物体。

(2)测量摆长使用测量尺测量单摆的摆长,记录下来。

(3)测量周期启动计时器,记录单摆的摆动周期,重复多次测量,取平均值。

(4)计算重力加速度根据公式T=2π√(l/g),计算出单摆的重力加速度g。

(5)改变摆长改变单摆的摆长,重复上述步骤,测量不同摆长下的周期和重力加速度。

三、实验注意事项1. 单摆的摆长应该尽量长,以减小摆动的误差。

2. 单摆的摆长应该尽量垂直于地面,以减小摆动的阻力。

3. 计时器的误差应该尽量小,以提高测量的精度。

4. 实验过程中应该注意安全,避免单摆碰到任何物体。

四、实验结果分析通过单摆实验,可以得到单摆的周期和摆长的关系,进而计算出单摆的重力加速度。

实验结果应该与理论值相符合,如果存在偏差,需要分析偏差的原因,并进行修正。

单摆实验是一种简单而有趣的实验,它可以帮助我们更好地理解单摆的运动规律和物理特性。

在实验过程中,我们需要注意安全,保证实验的精度和准确性。

单摆测试实验报告

单摆测试实验报告

一、实验目的1. 了解单摆的基本原理及其应用;2. 掌握单摆实验的基本操作和数据处理方法;3. 通过实验验证单摆周期公式,测量重力加速度;4. 分析实验误差,提高实验技能。

二、实验原理单摆是一种经典的物理实验模型,其运动规律可以用简谐振动公式描述。

当摆角较小时,单摆的运动可视为简谐运动,其周期公式为:T = 2π√(l/g)其中,T为单摆的周期,l为摆长,g为重力加速度。

通过测量单摆的周期和摆长,可以计算出重力加速度g的值。

三、实验仪器与器材1. 单摆仪:包括摆线、摆球、支架等;2. 电子秒表:用于测量单摆周期;3. 米尺:用于测量摆线长度;4. 摆幅测量标尺:用于测量摆角;5. 计算器:用于数据处理和计算。

四、实验步骤1. 搭建单摆实验装置,将摆球固定在支架上,调整摆线长度,使摆球悬于平衡位置;2. 用米尺测量摆线长度,记录数据;3. 用摆幅测量标尺测量摆角,记录数据;4. 用电子秒表测量单摆振动n次(n=10)所需时间,记录数据;5. 根据公式T = t/n计算单摆的周期T;6. 重复以上步骤,进行多次测量,取平均值;7. 利用公式g = 4π²l/T²计算重力加速度g的值;8. 分析实验误差,总结实验结果。

五、实验数据与结果1. 摆线长度l = 1.00m;2. 摆角θ = 5°;3. 单次测量周期T = 2.00s;4. 多次测量周期平均值T = 2.00s;5. 重力加速度g = 9.81m/s²。

六、误差分析1. 系统误差:摆线长度测量误差、摆角测量误差等;2. 随机误差:电子秒表测量误差、摆球运动过程中空气阻力等;3. 估计误差:实验操作过程中人为因素等。

七、实验结论通过本实验,我们成功验证了单摆周期公式,测量了重力加速度g的值。

实验结果表明,所测重力加速度g的值与理论值较为接近,说明本实验具有较高的准确性。

同时,通过对实验误差的分析,我们认识到在实验过程中要注意减小系统误差和随机误差,提高实验精度。

单摆实验报告3篇

单摆实验报告3篇

单摆实验报告第一篇:单摆实验原理和实验装置一、实验原理单摆实验是研究简谐振动的基本实验之一,它是利用牛顿力学的基本原理和能量守恒定律,来探究单摆振动的特征和规律。

单摆实验中,我们可以测量摆的周期、振幅等参数,以验证其满足简谐振动的特性。

二、实验装置单摆实验的装置通常由摆杆、铅球、计时器和支架等组成。

具体实验装置如下:摆杆:由一根细且坚韧的杆子组成,可用金属杆或木制杆制成。

铅球:实验中有许多不同重量和大小的铅球可供使用,可以根据实验需求选择。

计时器:用于测量摆的周期,通常使用电子计时器或手机计时等设备。

支架:用于支撑摆杆和铅球,通常由钢架或木架制成。

三、实验步骤1. 将摆杆固定到支架上,并挂上铅球,调整铅球的高度,使其能够自由地摆动。

2. 用计时器测量摆杆的周期,并记录下来。

3. 改变铅球的重量和长度,并重复步骤2,记录下来不同条件下的周期和振幅等参数。

4. 使用数据处理软件处理实验数据,提取出实验结果。

四、实验注意事项1. 实验过程中,要注意铅球摆动的幅度,避免气流和震动对实验数据的影响。

2. 同一摆杆和铅球要保持固定,否则,实验数据将有很大的偏差。

3. 实验过程中,要注意安全事项,避免伤害自己和他人。

5. 实验结果通过单摆实验,我们可以得到摆的周期、振幅等参数,以验证摆的运动满足简谐振动特性。

同时,我们还可以通过实验数据的统计分析,得出摆的振幅与周期之间的关系函数。

这些数据和函数可以用于学习和探究简谐振动的基本规律和特征。

总之,单摆实验是一项非常基础和重要的物理实验,可以帮助学生深入理解简谐振动的特性和规律,同时也提高学生的实验技能和数据处理能力。

单摆实验报告

单摆实验报告

单摆实验报告实验目的本实验旨在通过观察和测量单摆的振动特性,研究单摆的运动规律,并验证单摆动力学方程。

实验原理单摆是由一根固定在顶部的绳子或杆上悬挂的质点,摆动的过程中受到重力和张力的作用。

当摆动角度较小时,单摆的运动可以近似看作简谐振动。

根据单摆的运动规律,可以得到单摆的动力学方程:\[ \frac{{d2\theta}}{dt2} + \frac{g}{l}\sin\theta = 0 \] 其中,\(\theta\) 是摆角,\(g\) 是重力加速度,\(l\) 是摆长。

实验装置•单摆(可以是杆状或线状)•支架•科学计时器•测量尺子实验步骤1.准备实验装置,并将单摆悬挂在支架上,使其可以自由摆动。

2.调整单摆的摆长,记录摆长的值。

3.将单摆摆动到一个较小的初始角度,并释放。

4.使用科学计时器记录单摆的摆动时间,多次测量取平均值,以提高数据的可靠性。

5.将摆动时间和摆长的数据记录下来。

数据处理与分析根据实验上述步骤得到的数据,可以进行以下分析和处理:1. 绘制摆动时间和摆长的图像,以探究两者之间的关系。

2.对实验数据进行回归分析,拟合出单摆的调和曲线。

3. 计算摆长对应的摆动周期,并与理论值进行比较,验证单摆动力学方程的准确性与实用性。

实验结果与讨论根据实验数据的处理与分析,得到以下结果与结论: 1. 单摆的摆动周期随着摆长的增加而增加,符合单摆动力学方程的预期。

2. 通过回归分析,可以得到单摆的调和曲线,为后续的实验和研究提供了参考依据。

3. 与理论值的比较表明,单摆动力学方程在实验中具有较高的适用性。

4. 实验过程中可能存在的误差包括:摆角测量误差、摆长测量误差和时间测量误差等,需要在后续实验中加以改进和补充。

总结本实验通过观察和测量单摆的振动特性,研究了单摆的运动规律,并验证了单摆动力学方程。

实验结果表明,单摆的摆动周期与摆长呈正相关关系,实验中得到的数据与理论值相符,说明单摆动力学方程在实验中具有较高的准确性与实用性。

单摆实验研究实验报告

单摆实验研究实验报告

一、实验目的1. 了解单摆的基本原理和运动规律;2. 掌握单摆实验的基本操作步骤和测量方法;3. 通过实验验证单摆的周期与摆长、摆角的关系;4. 测定当地的重力加速度。

二、实验原理单摆是一种理想化的物理模型,它由一根不可伸长的细线和一个小球组成。

当小球从某一角度被释放后,在重力作用下,小球将进行周期性的往返运动。

单摆的运动可以近似看作简谐振动,其周期T与摆长L、重力加速度g之间的关系为:T = 2π√(L/g)当摆角θ较小时(一般不超过5°),单摆的运动可以近似看作简谐振动,此时单摆的周期T与摆角θ无关。

但当摆角较大时,单摆的运动将偏离简谐振动,周期T将随摆角θ的增加而增加。

三、实验仪器1. 单摆装置:由一根细线和一个小球组成;2. 秒表:用于测量单摆的周期;3. 水平仪:用于调节摆线水平;4. 刻度尺:用于测量摆长;5. 游标卡尺:用于测量小球直径。

四、实验步骤1. 装置单摆:将细线固定在支架上,将小球悬挂在细线末端,调节摆线水平;2. 测量摆长:使用刻度尺测量摆线长度,即为摆长L;3. 测量小球直径:使用游标卡尺测量小球直径,即为小球直径D;4. 测量周期:将小球拉至一定角度,释放后,使用秒表测量单摆完成N次往返运动所需时间t;5. 计算周期:周期T = t/N;6. 重复上述步骤,进行多次测量,以减小误差。

五、实验数据及处理1. 测量摆长L:L1 = 100.0 cm,L2 = 100.1 cm,L3 = 100.2 cm,平均摆长L = (L1 + L2 + L3)/3 = 100.1 cm;2. 测量小球直径D:D1 = 1.00 cm,D2 = 1.01 cm,D3 = 1.02 cm,平均直径D = (D1 + D2 + D3)/3 = 1.01 cm;3. 测量周期T:T1 = 2.01 s,T2 = 2.02 s,T3 = 2.03 s,平均周期T = (T1 + T2 + T3)/3 = 2.02 s;4. 计算重力加速度g:g = 4π²L/T² = 4π²×100.1 cm/(2.02 s)² ≈ 9.81m/s²。

物理 《单摆》实验

物理 《单摆》实验
6、为了减少偶然误差改变摆长,多次测量求平均值 。
课堂练习
1、 在做“用单摆测定重力加速度的实验”中为了减
小误差,应注意的事项是( ③
)
A.摆球以选密度大,体积小的小球为好 ;
B.摆长以0.25米为宜 ;
C.摆角应小于10°;
D.摆线的悬点要固定,才不会在摆动中出现移动或晃 动;
E.要使单摆在竖直平面内摆动,不得使其形成锥形摆 或摆球转动 ;
2、单摆悬线的上端不可随意卷在铁夹的杆上,应夹紧在 铁夹中,以免摆动时发生摆线下滑或悬点不固定,摆长 改变的现象; 3、注意摆动时摆角不易过大,不能超过10º,以保证单 摆做简谐运动;
4、摆球摆动时,要使之保持在同一个竖直平面内,不 要形成圆锥摆;
5、测量从球通过平衡位置时开始计时,因为在此位置 摆球速度最大,易于分辨小球过此位置的时刻。
22
8
51
39
20
10
49
41
0
18
1
12
47 16 45 14 43
0
5
10
4、秒表(停表)
秒表的读数
0
59
31
28 57
14 0 1
13
2
2
26
12
3
55 24
11
4
10
5
9
6
87
53
33 4 35 6
37
22 51
20 49 18 47 16
8 39
10 41 12 43 45 14
2分7.6秒
(2)用游标卡尺测摆球直径
L
算出半径r,也准确到毫米
0 0
1
5
10

单摆实验报告5页

单摆实验报告5页

单摆实验报告5页单摆实验报告实验目的:1、研究单摆周期与摆长、重力加速度之间的关系。

2、通过实验验证单摆的周期公式。

实验仪器:单摆、秒表、直尺、千分尺、万能电表、万用表。

实验原理:单摆又称为简单重力摆,是一种由一定重量的物体(摆球)悬挂于一个细绳或细杆上,自由受重力作用而成摆的简单物理实验。

单摆周期定律的表述:单摆的周期与摆长的平方根成正比,与重力加速度的平方根成反比。

单摆的周期公式为:T=2π√l/g(g为地球重力加速度实验步骤:1、调整单摆的摆长,使其长短均匀,用直尺及千分尺测量并记录摆长l的值。

2、测量摆球重量w,用万能电表测量摆球在空气中的阻力f。

3、将摆球拉到一定高度A处,放松球,用秒表测量N个周期的时长t1,t2, ...... tn。

4、分别计算每个周期的平均值T1,t2,...... tn。

结果计算:摆球重量为w,在空气中的阻力为f。

所以摆球所受重力为(w-f),整个单摆系统所受的合力为(w-f)。

根据牛顿第二定律,可得:(w-f)g=(w-f)a其中a为摆球所做的向心加速度,可用公式a=v²/l求得,其中v为摆球的速度,由摆球所在位置的高度算得(对于单摆振动的摆角很小的情况,可以认为一摆球速度都与摆球高度相同,即仅与最大位移有关)。

又可得:T=2π√l/(w-f)g得到每组实验数据后,我们可以将它们带入式子,按照周期公式计算每组数据的周期T1,T2......Tn。

根据上述计算方法,得到如下表格数据:表格(略)实验结果:由表可知,单摆周期T与摆长l的平方根成正比,与重力加速度的平方根成反比。

而单摆的周期公式T=2π√l/g,于是我们可以将实验测得的周期带入公式中,计算出地球重力加速度g 的值。

即g=4π²l/T²通过实验,我们得到的地球重力加速度为g=9.75m/s²,与标准值g=9.80m/s²比较,误差约为0.5%。

这说明我们的实验结果是可靠的。

单摆法测量重力加速度实验原理

单摆法测量重力加速度实验原理

单摆法测量重力加速度实验原理一、实验介绍单摆法是测量重力加速度的一种方法,其基本原理是利用单摆在重力作用下的周期性振动来测量重力加速度。

该实验可以帮助学生深入了解物理学中的重要概念,如周期、振动、重力等。

二、实验原理1. 单摆的运动规律单摆是由一个质点和一根不可伸长的轻细线组成,质点在重力作用下沿着垂直方向做简谐运动。

根据牛顿第二定律,单摆系统受到的合力为质点所受的向下的重力和绳子所受的向上张力之和。

由于绳子不可伸长,因此张力始终与线上方向相反,大小相等。

因此,单摆系统可以看成是一个简谐振动系统。

2. 单摆周期与重力加速度之间关系根据简谐运动规律,单摆周期T与其长度l和重力加速度g有关系式:T=2π√(l/g)通过测量单摆长度和周期,可以计算出地球上的重力加速度g。

3. 实验步骤(1)将单摆吊在水平方向上,并调整摆线长度,使单摆在水平方向上做小振动,观察单摆的运动情况。

(2)记录单摆的长度和周期,重复多次实验取平均值。

(3)根据上述公式计算出重力加速度g。

三、实验注意事项1. 单摆必须保持在水平方向上振动。

2. 摆线必须细长且不可伸长。

3. 实验数据应取多次测量的平均值。

四、实验误差分析1. 系统误差:由于单摆的质量分布不均匀、空气阻力等因素的存在,会影响到单摆的运动规律,从而导致实验结果产生一定误差。

2. 随机误差:由于测量仪器精度、人为操作等因素的影响,每次测量所得数据可能存在一定偏差。

通过多次重复实验可以减小随机误差。

五、实验拓展1. 可以通过改变单摆长度来观察重力加速度与单摆周期之间的关系。

2. 可以将单摆置于不同地点进行比较,探究地球重力加速度在不同地点是否相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6、为了减少偶然误差改变摆长,多次测量求平均值 。
课堂练习
1、 在做“用单摆测定重力加速度的实验”中为了减 小误差,应注意的事项是( ③ ) A.摆球以选密度大,体积小的小球为好 ; B.摆长以0.25米为宜 ; C.摆角应小于10°; D.摆线的悬点要固定,才不会在摆动中出现移动或晃 动 ; E.要使单摆在竖直平面内摆动,不得使其形成锥形摆 或摆球转动 ; F.测量周期时,应从摆球通过最低点时开始计时 . ①A、B、C、D项正确 ②只有E、F项正确 ③ACDEF正确 ④都正确
8、有一单摆,其摆长l=1.02 m,摆球的质量m=0.10 kg,已知 单摆做简谐运动,单摆振动30次用的时间t=60.8 s,试求: (1)当地的重力加速度是多大? (2)如果将这个摆改为秒摆,摆长应怎样改变?改变多少?
(1)当单摆做简谐运动时,其周期公式
4 2 l l T=2 , 由此可得 g= 2 , 只要求出T值代入即可. T g 因为 T= t = 60.8 s=2.027 s, n 30
若取最低点为零势能点,小球摆动的机械 能等于最高点时的重力势能,也等于平衡位置 时的动能最大。
如何理解单摆的周期公式 秒摆:周期为2s的单摆为秒摆。 试计算出秒摆的摆长?(g=9.8m/s2)
答案:0.9939m 约为1m
如何理解单摆的周期公式
l T 2 g
重力加速度g:由单摆所在的空间位置决定。
T l = , T0 l0
故有: 其摆长要缩短:Δl=l-l0=1.02 m-0.993 m=0.027 m.
单摆的能量 单摆作简谐运动时的动能和重力势能在发 生相互转化,但机械能的总量保持不变,即机 械能守恒。 小球摆动到最高点时的重力势能最大,动 能最小;平衡位置时的动能最大,重力势能最 小。
O L θ
A
T2/s2 4 3
2
0
0.5
0.8
1.0
l/m
四、注意事项
1、选择材料时应选择细轻又不易伸长的线,长度一般 在1m左右,小球应选用密度较大的金属球,直径应较小, 最好不超过2 cm;
2、单摆悬线的上端不可随意卷在铁夹的杆上,应夹紧在 铁夹中,以免摆动时发生摆线下滑或悬点不固定,摆长 改变的现象; 3、注意摆动时摆角不易过大,不能超过10º ,以保证单 摆做简谐运动; 4、摆球摆动时,要使之保持在同一个竖直平面内,不 要形成圆锥摆; 5、测量从球通过平衡位置时开始计时,因为在此位置 摆球速度最大,易于分辨小球过此位置的时刻。
算出半径r,也准确到毫米
0
1
0
5
10
二、实验步骤
3、测周期:
把单摆从平衡位置拉开一个角度(<5o)放开它 用秒表测量单摆的周期。
26 55 59 28 57
13 12 11 10 9 8 7 6
0
14 0 1
31
2 3 4
2 33 4
35
6 37 8 39
三、实验器材 1、单摆组 2、米尺 3、游标卡尺 4、秒表(停表)
所以
5、有一单摆,其摆长l=1.02 m,摆球的质量m=0.10 kg,已知
单摆做简谐运动,单摆振动30次用的时间t=60.8 s,试求: (1)当地的重力加速度是多大? (2)如果将这个摆改为秒摆,摆长应怎样改变?改变多少? (2)秒摆的周期是2 s,设其摆长为l0,由于在同一地 点重力加速度是不变的,根据单摆的振动规律有:
T2/s2
4
3 2 0
0.5
0.8
1.0
l/m
课 堂 练 习
4.(2010·青岛高二检测)关于摆的等时性及摆钟的 发明,下列叙述符合历史事实的是( B、C A.单摆的等时性是由惠更斯首先发现的 )
B.单摆的等时性是由伽利略首先发现的
C.惠更斯首先将单摆的等时性用于计时,发明了摆钟
D.伽利略首先发现了单摆的等时性,并把它用于计时
5.单摆是为研究振动而抽象出的理想化模型, 其理想化条件是( ) A、B、 C
A.摆线质量不计
B.摆线长度不伸缩
C.摆球的直径比摆线长度短得多
D.只要是单摆的运动就是一种简谐运动
6.周期为2 s的摆叫秒摆,若要将秒摆的周期变为 1 s,下列措施可行的是( D A.将摆球的质量减半 C.将摆长减半 1/4 )
如何理解单摆的周期公式
如图,摆球可视为质点,各段绳长均为L, 甲、乙摆球做垂直纸面的小角度摆动,丙图中球 在纸面内做小角度的摆动,O`为垂直纸面的钉子, 而且OO`=L/3,求各摆的周期。
O
α
L
α
L
α
L L
α
L L
L/3 O`



如何理解单摆的周期公式 如图为半径很大的光滑凹形槽,将有一小球 从A点由静止释放。小球将做什么运动? 求运动的周期?
课 堂 练 习 在一加速系统中有一摆长为L的单摆。 (1)当加速系统以加速度a竖直向上做匀加速运 动时,单摆的周期多大?若竖直向下加速呢?
(2)当加速系统在水平方向以加速度a做加速直
线运动时,单摆的周期多大?
如何理解单摆的周期公式
l T 2 g
摆长L:摆球重心到摆动圆弧圆心的距离
不一定是摆线的长
纬度越低,高度越高,g值就越小。
不同星球上g值也不同。
如何理解单摆的周期公式
l T 2 g
重力加速度g还由单摆系统的运动状态决定。 系统处于超重状态时, 重力加速度的等效值g`=g+a 系统处于失重状态时, 重力加速度的等效值g`=g-a 系统处于完全失重时(如在轨道卫星内) g`=0,摆球不摆动
B.将振幅减半 D.将摆长减为原来的
7.(2010·湛江高二检测)做简谐运动的单摆,当所 受回复力逐渐减小时,随之变小的物理量是( C ) A.摆线上的张力 B.摆球所受的合力
C.摆球的重力势能
D.摆球的动能
【解析】选C.回复力逐渐减小时,摆球的重力沿切线 方向的分力减小,速度增大,动能增大,重力势能减 小,向心力增大,张力增大.
0
24 53 22 51 20 49 18 47 0
5
10 41 1 16 5 45 14 43 10 12
秒表的读数
59
28 57 26 55 24 53 22 51 20 49 18 47 16
13 12 11 10 9 8 14 0
0 31 2
1 2
3 4 5 7 6
33 4 35 6 37 8 39 10
二、实验步骤
4、求重力加速度:把测得的周期和摆长的数 值代入公式,求出重力加速度g的值来。 5、多次测量求平均值: 改变摆长,重做几次实验. 计算出每次实验 的重力加速度.最后求出几次实验得到的重力加 速度的平均值,即可看作本地区的重力加速度.
思考:如果要求用图象法来测定重力加速度, 哪么应该如何建立坐标系?
五、学生实验:
用单摆测定重力加速度
一、实验原理 单摆做简谐运动时,其周期为:
l T 2 g

l g 4 2 T
2
只要测出单摆的摆长L和振动周期T,就 可以求出当地的重力加速度g的值,
二、实验步骤 1、做单摆:取约1米长的线绳栓位小钢球,然后 固定在桌边的铁架台上。
×
二、实验步骤 2、测摆长: 摆长为L+r (1)用米尺量出悬线长L,准确到毫米 (2)用游标卡尺测摆球直径 L
41
12 45 14 43
2分7.6秒
秒表的读数 1分51.4秒
59 0 31
14 13 12 11 10
28
57 26 55 24 53 22
0
2
1 2 3 4 5
33 4 35 6 37 8
9
8
7
6
51
20 49 18 12 41 10
39
47
16
பைடு நூலகம்
45
14
43
二、实验步骤
3、测周期:
把单摆从平衡位置拉开一个角度(<5o)放开它 用秒表测量单摆完成30次全振动(或50次) 所用的时间t,求出完成一次全振动所需要的时 间,这个平均时间就是单摆的周期。 T= t / n 为了测量周期,摆球到达哪个位置的时刻 作为计时开始与停止的时刻比较好? 应以摆球经平衡位置计时开始与停止时刻
课堂练习 2、某同学测定的g的数值比当地公认值大,造成 的原因可能是( ② ⑤ ) ①摆球质量太大了;

②量摆长时从悬点量到球的最下端;
③摆角太大了(摆角仍小于10°);
④计算摆长时忘记把小球半径加进去;
⑤计算周期时,将(n-1)次全振动误记为n次 全振动.
课堂练习
3、为了提高实验精度,在试验中可改变几次摆 长L,测出相应的周期T,从而得出一组对应的L 与T的数值,再以L为横坐标T2为纵坐标,将所 得数据连成直线如下图所示,则测得的重力加速 9.86m/s2 。 度g=
相关文档
最新文档