第5章 MATLAB的符号运算及工具箱

合集下载

Matlab各工具箱功能简介(部分)

Matlab各工具箱功能简介(部分)
对于分析多维数据,Statistics and Machine Learning Toolbox 可让您通过序列特征选择、逐步回归、主成份分析、规则化和其他降维方法确定影响您的模型的主要变量或特征。该工具箱提供了受监督和不受监督机器学习算法,包括支持向量机(SVM)、促进式 (boosted) 和袋装 (bagged) 决策树、k-最近邻、k-均值、k-中心点、分层聚类、高斯混合模型和隐马尔可夫模型。4 Curve Fitting Toolbox 曲线拟合工具箱Curve Fitting Toolbox™ 提供了用于拟合曲线和曲面数据的应用程序和函数。使用该工具箱可以执行探索性数据分析,预处理和后处理数据,比较候选模型,删除偏值。您可以使用随带的线性和非线性模型库进行回归分析,也可以指定您自行定义的方程式。该库提供了优化的解算参数和起始条件,以提高拟合质量。该工具箱还提供非参数建模方法,比如样条、插值和平滑。 在创建一个拟合之后,您可以运用多种后处理方法进行绘图、插值和外推,估计置信区间,计算积分和导数。5 Optimization Toolbox 优化工具箱Optimization Toolbox™ 提供了寻找最小化或最大化目标并同时满足限制条件的函数。工具箱中包括了线性规划、混合整型线性规划、二次规划、非线性优化、非线性最小二乘的求解器。您可以使用这些求解器寻找连续与离散优化问题的解决方案、执行折衷分析、
Toolbox工具箱序号工具箱备注一、数学、统计与优化1 Symbolic Math Toolbox符号数学工具箱Symbolic Math Toolbox™提供用于求解和推演符号运算表达式以及执行可变精度算术的函数。您可以通过分析执行微分、积分、化简、转换以及方程求解。另外,还可以利用符号运算表达式为MATLAB、Simulink和Simscape™生成代码。®®Symbolic Math Toolbox包含MuPAD语言,并已针对符号运算表达式的处理和执®行进行优化。该工具箱备有MuPAD函数库,其中包括普通数学领域的微积分和线性代数,以及专业领域的数论和组合论。此外,还可以使用MuPAD语言编写自定义的符号函数和符号库。MuPAD记事本支持使用嵌入式文本、图形和数学排版格式来记录符号运算推导。您可以采用HTML或PDF的格式分享带注释的推导。2 Partial Differential Euqation Toolbox偏微分方程工具箱偏微分方程工具箱™提供了用于在2D,3D求解偏微分方程(PDE)以及一次使用有限元分析。它可以让你指定和网格二维和三维几何形状和制定边界条件和公式。你能解决静态,时域,频域和特征值问题在几何领域。功能进行后处理和绘图效果使您能够直观地探索解决方案。你可以用偏微分方程工具箱,以解决从标准问题,如扩散,传热学,结构力学,静电,静磁学,和AC电源电磁学,以及自定义,偏微分方程的耦合系统偏微分方程。3 Statistics Toolbox统计学工具箱Statistics and Machine Learning Toolbox提供运用统计与机器学习来描述、分析数据和对数据建模的函数和应用程序。您可以使用用于探查数据分析的描述性统计和绘图,使用概率分布拟合数据,生成用于Monte Carlo仿真的随机数,以及执行假设检验。回归和分类算法用于依据数据执行推理并构建预测模型。

2第五讲MATLAB符号运算

2第五讲MATLAB符号运算

(二)符号表达式运算
1.符号表达式的四则运算
符号表达式的加、减、乘、除运算可直接由算 符’+’,’-’*’,’/’,’\’ 来实现,幂运算可以由’^n’来实现。
算符’.*’,’./’,’.\’,’.^’,分别实现元素对元素的数组的乘、 左除、右除、和幂的运算。
MATLAB中没有ln运算符遇到它用log运算符代替。 另外log2(x),log10(y)表示求x和y的以2为底和以10为 底的对数。
实例演示
• 作符号计算(解方程组,其中a,b为常数,
x,y为变量):
• a,b,x,y均为符号运算量。在符号运算前,
应先将a,b,x,y定义为符号运算量。
实例演示
a=sym('a'); %定义‘a’为符号运算量,输出 变量名为a
b=sym('b');x=sym('x');y=sym('y');
(四)符号替换
• MATLAB软件提供的符号替换命令为subs,通常使 用下面三种形式(对数组也适用): • (1) subs(s,new) 用new替换s中的自由变量; • (2) subs(s,old,new) 用new替换s中的变量old; • (3) subs(s) 用当前内存中的已赋值变量去代 替s中的同名变量; • 例:执行命令 • subs(a+b,a,4) • 执行结果为 • 4+b
学习内容 • 一、符号对象
• 二、符号运算与高等数学 • 三、符号方程的求解
符号运算与高等数学
一、极限的计算
二、导数的运算
三、积分的运算
四、级数求和问题
五、函数的极值和零点
一、极限的计算
• 求极限问题解析解的MATLAB命令格式: • Limit(f)

MATLAB第5章解方程概要

MATLAB第5章解方程概要

2. 符号表达式的因式分解、展开、分式通分
因式分解--函数为 factor 调用格式为: factor(s) 符号表达式的展开-- 函数为 expand 举例 举例 调用格式为:expand (s) 举例
同类项合并--函数为 collect
调用格式为: collect(s,n) S为符号表达式,n为要合并系数的自变量 符号表达式的分式通分--函数为 numden 调用格式为: [n,d]=numden(s) n 为通分后的分子,d为分母 举例
注意:每次调用该函数,只能定义一个符号变量。 使用方法举例
>>a=sym(‘a’) %将‘a’创建为符号变量,以a作为输出变量名 a= a >>b=sym(‘b') >>x=sym(‘x') >>y=sym(‘y’) 符号变量的名字不一定和字符串中的字母相同 例如: m=sym(‘y’) Sym函数可以定义符号常数: k1=sym(‘9’);k2=sym(‘3’); %定义符号变量 r1=9;r2=3; %定义数值变量 k1+sqrt(k2) %符号计算(精确的数学表达式) ans = 9+3^(1/2) r1+sqrt(r2) %数值计算(近似为一个有限小数) ans = 10.7321
3. 符号表达式的化简
表达式的化简函数为 simple、simplify
调用格式为:
simplify (s) -使用Maple的化简规则化简函数
[r,how]=simple (s) -用多种方法寻找符号表达式
s的最简型, r为返回的化简形式, how为化简过程使用的主要
方法 举例
【例1】 对表达式
f1*f2

matlab中的数学符号与运算

matlab中的数学符号与运算

matlab中的数学符号与运算MATLAB(Matrix Laboratory)是一种用于数值计算和科学工程应用的高级编程语言和环境。

MATLAB中包含了丰富的数学符号和运算,用于进行矩阵操作、线性代数、微积分等数学计算。

以下是MATLAB中一些常见的数学符号和运算:1. 数学符号:-矩阵:MATLAB 中的基本数据类型是矩阵,可以使用方括号`[]` 来表示。

例如,`A = [1, 2; 3, 4]` 表示一个2x2的矩阵。

-向量:向量可以表示为一维矩阵,例如,`v = [1, 2, 3]` 表示一个包含3个元素的行向量。

-转置:使用单引号`'` 来进行转置操作。

例如,`A'` 表示矩阵A的转置。

-点乘和叉乘:点乘使用`.*`,叉乘使用`.*`。

例如,`A .* B` 表示矩阵A和B的对应元素相乘,`A * B` 表示矩阵A和B的矩阵乘法。

2. 数学运算:-基本算术运算:MATLAB支持基本的算术运算,如加法、减法、乘法和除法。

例如,`result = 2 + 3`。

-元素-wise 运算:MATLAB 支持元素-wise 的运算,即对矩阵或向量中的每个元素进行运算。

例如,`C = A .* B` 表示矩阵A和B的对应元素相乘。

-矩阵操作:MATLAB 提供了许多用于矩阵操作的函数,如`inv`(求逆矩阵)、`det`(求行列式)、`eig`(求特征值)等。

-积分和微分:MATLAB 提供了`int`(积分)和`diff`(微分)等函数,用于进行积分和微分运算。

-方程求解:MATLAB 提供了`solve` 函数,用于求解方程组。

这些是MATLAB中一些常见的数学符号和运算。

MATLAB 的强大之处在于它的矩阵操作能力,使得它非常适用于数学和工程领域的计算和建模。

如果你有特定的数学运算需求,可以查阅MATLAB 的官方文档或在线资源以获取详细信息。

matlab数学工具箱介绍

matlab数学工具箱介绍

Matlab符号数学工具箱应用简介Matlab符号运算是通过集成在Matlab中的符号数学工具箱(Symbolic Math Toolbox)来实现的。

和别的工具箱有所不同,该工具箱不是基于矩阵的数值分析,而是使用字符串来进行符号分析与运算。

实际上,Matlab中的符号数学工具箱是建立在Maple基础上的,当进行Matlab符号运算时,它就请求Maple软件去计算并将结果返回给Matlab。

Matlab的符号数学工具箱可以完成几乎所有得符号运算功能。

这些功能主要包括:符号表达式的运算,符号表达式的复合、化简,符号矩阵的运算,符号微积分、符号函数画图,符号代数方程求解,符号微分方程求解等。

此外,工具箱还支持可变精度运算,既支持符号运算并以指定的精度返回结果。

在一般的Matlab书籍中都会对Matlab的符号运算做一些介绍,本文将略去这些简单的部分,主要对比较复杂的部分做一些介绍,另外,限于篇幅,和前面几篇一样,在此也仅仅列出函数的名称和功能,至于其参数设置,可借助Matlab的帮助系统一、符号表达式的运算[n,d]=numden(a) 提取符号表达式a的分子和分母,并将其存放在n和d中n=numden(a) 提取符号表达式a的分子和分母,只将分子存放在n中symadd(a,b) 返回符号表达式a和b的和,也可直接用a+bsymsub(a,b) 返回符号表达式a和b的差,也可直接用a-bsymmul(a,b) 返回符号表达式a和b的积,也可直接用a*bsymdiv(a,b) 返回符号表达式a和b的商,也可直接用a/bsympow(a,b) 返回符号表达式a的b次幂,也可直接用a^bcompose(f,g) 返回复合函数f(g(y))compose(f,g,z) 返回自变量为z的复合函数f(g(z))compose(f,g,x,z) 返回复合函数f(g(z)),并使x成为f函数的独立变量。

即,如果f=cos(x/t),则compose(f,g,x,z)返回复合函数cos(g(z)/t),而compose(f,g,t,z)返回cos(x/g(z))compose(f,g,x,y,z) 返回复合函数f(g(z)),并且使x与y分别成为f与g函数的独立变量。

MATLAB基础及应用课件(下)第5-8章

MATLAB基础及应用课件(下)第5-8章
图5-4中间的下拉框可以选择拟合算法,可以 试用多种拟合算法,以找出最佳拟合图形。例 如选择Smoothing Spline(平滑样条函数), 观察Curve Fitting Tool窗口,如图5-5所示。
图5-5 拟合曲线
第5章 MATLAB数值计算
第5章 MATLAB数值计算
5.4.4 图形窗口的拟合和统计工具
第5章 MATLAB数值计算
在图5-6中的“绘制拟合图”中选择拟合方 法(可同时选多种);
“显示方程”复核框可以选择是否在图形上 显示拟合多项式;
“绘制残差图”复核框选中时会产生第二幅 图形,该图形显示了每一个数据点与计算出来的 拟合曲线之间的距离。
例如选择“线性”和“三次方”拟合方法, 同时选中两个复核框,产生图形如图5-7所示。
MATLAB的图形窗口中提供了简单方便的数 据拟合和基本统计工具。
数据拟合工具可以对所绘制的曲线使用多种 方法进行拟合;
基本统计工具可提供最小值、最大值、平均 值、中位值、标准差、数据范围等统计运算。
1.数据拟合工具
第5章 MATLAB数值计算
使用数据拟合工具首先需要创建一幅图形,在 命令行窗口输入以下程序:
两个矩阵x和y的相关系 数
第5章 MATLAB数值计算
5.2 数值运算 一、 多项式
名称
创建多项 式
求根
求值
多项式乘 法
多项式除 法
多项式求 导
函数格式 P=[ a0 a1 a2 …an-1
an] P=poly(A) roots(P) polyval(P,A)
polyvalm(P,m)
说明
P为多项式(以下各函数中P均为多项式),a0 a1 a2 … an-1 an为按降幂顺序排列的多项式系数 A为向量。创建以向量A中元素为根的多项式

MATLAB符号运算运用

MATLAB符号运算运用

MATLAB符号运算运用MATLAB 是一种数值计算和编程环境,它可以进行符号运算,即对代数表达式进行操作和计算。

在 MATLAB 中,符号运算的主要工具是符号计算工具箱(Symbolic Math Toolbox),它提供了一系列函数和命令,用于处理和求解符号表达式。

1.创建符号表达式首先,我们可以通过使用符号变量来创建符号表达式。

符号变量可以使用 sym 函数定义。

例如,创建一个符号变量 x:```syms x```然后,可以使用这个符号变量来创建符号表达式。

例如,创建一个简单的二次多项式表达式:```f=x^2+2*x+1;```2.符号表达式运算一旦有了符号表达式,就可以对其进行各种运算,包括求导、积分、求解方程等。

- 求导:使用 diff 函数可以对符号表达式进行求导。

例如,对上述的 f 求导:```df = diff(f, x);```- 积分:使用 int 函数可以对符号表达式进行积分。

例如,对 f 在区间 [0, 1] 上进行积分:```I = int(f, 0, 1);```- 求解方程:使用 solve 函数可以对符号表达式进行求解。

例如,求解方程 f = 0:```sol = solve(f == 0, x);```3.简化符号表达式有时,符号表达式可能过于复杂,可以使用 simplify 函数对其进行简化。

例如,简化一个复杂的三角函数表达式:```syms xf = sin(x)^2 + cos(x)^2;sf = simplify(f);```4.数值近似符号表达式可以通过使用 vpa 函数进行数值近似。

例如,将一个符号表达式近似为 5 位小数:```syms xf = exp(x);f_num = vpa(f, 5);```在MATLAB中,符号运算可以应用于各种数学问题,包括求解方程、微积分、矩阵计算等。

它提供了一种便捷的方式来处理代数表达式,而不需要将其转化为数值形式进行计算。

符号运算 matlab

符号运算 matlab

符号运算 matlab符号运算是一种在数学上进行推导和计算的重要方法,在Matlab 中也有相应的符号运算功能。

通过符号运算,可以进行高精度计算、求解方程、求导积分、代数化简等操作。

本文将介绍 Matlab 中符号运算的基本使用方法和相关函数。

1. 符号变量的定义和赋值在 Matlab 中,可以使用 syms 函数定义符号变量,并使用等号将其赋值。

例如,定义符号变量 x 和 y:syms x yx = 2;y = x + 3;这里,定义了两个符号变量 x 和 y,并将 x 赋值为 2,y 赋值为 x+3。

需要注意的是,符号变量和数值变量在 Matlab 中是不同的类型,不能直接进行运算。

2. 符号表达式的运算在 Matlab 中,可以使用符号表达式进行各种运算,包括加减乘除、幂运算、三角函数、指数函数等。

例如,定义符号表达式 f(x) = 2*x^3 + 3*x^2 - 5*x + 1:syms xf(x) = 2*x^3 + 3*x^2 - 5*x + 1;然后可以对 f(x) 进行各种运算,如求导、积分、代数化简等。

例如,求 f(x) 的一阶导数:diff(f(x), x)这里使用 diff 函数求 f(x) 的一阶导数,结果为 6*x^2 + 6*x - 5。

3. 方程求解在 Matlab 中,可以使用 solve 函数求解方程。

例如,求解方程 x^2 + 3*x + 2 = 0:syms xsolve(x^2 + 3*x + 2 == 0)solve 函数返回的是符号变量的解,需要使用 double 函数将其转换为数值变量。

4. 代数化简在 Matlab 中,可以使用 simplify 函数对符号表达式进行代数化简。

例如,代数化简表达式 (x^2 + 2*x + 1)/(x + 1):syms xsimplify((x^2 + 2*x + 1)/(x + 1))simplify 函数会自动将表达式化简为最简形式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档