matlab符号运算(二)
matlab数值运算和符号运算

《深度探讨:从数值运算到符号运算的MATLAB应用》在科学计算领域中,MATLAB无疑是一个不可或缺的工具。
它被广泛应用于数学建模、数据分析、图形可视化和算法开发等领域。
在MATLAB中,数值运算和符号运算是两个核心概念,它们分别在不同的领域中发挥着重要作用。
本文将从数值运算和符号运算两个方面展开讨论,带您深入探索MATLAB的应用价值。
一、数值运算1. MATLAB中的数值数据类型在MATLAB中,常见的数值数据类型包括整数、浮点数和复数等。
它们在科学计算中有着广泛的应用,例如在矩阵运算、微分方程求解和优化算法中。
2. 数值计算函数的应用MATLAB提供了丰富的数值计算函数,包括线性代数运算、插值和拟合、统计分布和随机数生成等。
这些函数为科学计算提供了强大的支持,使得复杂的数值计算变得更加简单高效。
3. 数值方法在实际问题中的应用通过具体的案例,我们可以深入了解MATLAB在实际问题中的数值计算方法。
通过有限元分析解决结构力学问题、通过数值积分求解物理方程、通过数值微分求解工程问题等。
二、符号运算1. MATLAB中的符号计算工具MATLAB提供了符号计算工具包,可以进行符号变量的定义、代数运算、微分积分和方程求解等。
这为数学建模、符号推导和精确计算提供了强大的支持。
2. 符号计算函数的应用通过具体的例子,我们可以深入了解MATLAB中符号计算函数的应用。
利用符号计算求解微分方程、利用符号变量定义复杂的代数表达式等。
3. 符号计算在科学研究中的应用通过详细的案例,我们可以了解符号计算在科学研究中的应用。
利用符号计算推导物理模型、利用符号运算求解工程问题等。
总结与展望:通过本文的深度探讨,我们对MATLAB中的数值运算和符号运算有了全面的了解。
数值运算为我们提供了高效的数值计算工具,而符号运算则为我们提供了精确的符号计算工具。
这两者相辅相成,在不同的领域中发挥着重要的作用。
希望通过本文的阐述,读者可以更加深入地理解MATLAB中数值运算和符号运算的应用,提升科学计算的能力和水平。
MATLAB2 - 符号运算

二、符号表达式的代数运算
符号运算与数值运算的区别主要有以下几点: 1. 传统的数值型运算因为要受到计算机所保留的有效位数的 限制,它的内部表示法总是采用计算机硬件提供的 8位浮 点表示法,因此每一次运算都会有一定的截断误差,重复 的多次数值运算就可能会造成很大的累积误差。符号运算 不需要进行数值运算,不会出现截断误差,因此符号运算 是非常准确的。 2. 符号运算可以得出完全的封闭解或任意精度的数值解。
三、 符号表达式的操作和转换
符号表达式中自由变量的确定
1. 自由变量的确定原则 MATLAB将基于以下原则选择一个自由变量:
(1) 小写字母i和j不能作为自由变量。 (2) 符号表达式中如果有多个字符变量,则按照以下顺序 选择自由变量:首先选择x作为自由变量;如果没有x,则 选择在字母顺序中最接近x的字符变量;如果与x相同距离, 则在x后面的优先。 (3) 大写字母比所有的小写字母都靠后。
符号矩阵
用sym和syms命令也可以创建符号矩阵。
例如,使用syms命令创建相同的符号矩阵:
syms a b c d A=[a b; c d] A =[ a, b] [ c, d] 例3 比较符号矩阵与字符串矩阵的不同。 A=sym('[a,b; c,d]') %创建符号矩阵 A =[ a, b] [ c, d] B='[a,b;c,d]' %创建字符串矩阵 B =[a,b; c,d] A*2 v.s. B*2
例9 三种形式的符号表达式的表示。
符号表达式的化简
同一个数学函数的符号表达式的可以表示成三种形式,例 如以下的f(x)就可以分别表示为:
(1) 多项式形式的表达方式:f(x)=x3-6x2+11x-6 (2) 因式形式的表达方式:f(x)=(x-1)(x-2)(x-3) (3) 嵌套形式的表达方式:f(x)=x(x(x-6)+11)-6
Matlab中的符号及符号表达式计算方法介绍

Matlab中的符号及符号表达式计算方法介绍概述:在数字计算和科学工程领域,Matlab是一种非常常用的工具。
它被广泛用于进行数据分析、数值计算和模拟。
除了传统的数值计算,Matlab还提供了符号计算功能,这使得用户可以进行符号表达式的建模和计算。
本文将介绍Matlab中的符号计算功能,包括符号和符号表达式的定义、建模和计算方法。
一、符号计算的定义和背景:符号计算是一种将数学问题表示为符号表达式进行求解的方法。
与传统的数值计算相比,符号计算不仅可以处理具体数值,还可以处理未知变量和符号表达式。
这意味着符号计算可以进行精确的数学求解,提供准确的符号化结果。
在Matlab中,符号计算可以通过Symbolic Math Toolbox实现。
通过该工具箱,用户可以定义符号变量、符号表达式和符号函数,并进行各种符号计算。
二、符号变量的定义和使用:在Matlab中,可以使用"syms"命令定义一个或多个符号变量。
符号变量是不具体数值的变量,可以代表任意数值或符号。
下面是一个示例:syms x y z; %定义符号变量x、y和z定义完成后,我们可以将符号变量用于构建符号表达式,并进行各种符号计算。
例如,可以定义一个简单的符号表达式,并计算其导数:f = x^2 + y^2 + z^2; %定义符号表达式fdf_dx = diff(f, x); %计算f对x的导数三、符号表达式的建模和操作:在Matlab中,可以使用定义的符号变量构建复杂的符号表达式,并进行各种符号操作。
例如,可以定义一个二次方程,并求解其根:syms a b c x;equation = a*x^2 + b*x + c; %定义二次方程roots = solve(equation, x); %求解方程的根除了求解方程的根,还可以进行符号表达式的展开、因式分解、合并等操作。
这些符号操作扩展了Matlab的数学建模能力,使得用户能够更加灵活和方便地进行符号计算。
2第五讲MATLAB符号运算

(二)符号表达式运算
1.符号表达式的四则运算
符号表达式的加、减、乘、除运算可直接由算 符’+’,’-’*’,’/’,’\’ 来实现,幂运算可以由’^n’来实现。
算符’.*’,’./’,’.\’,’.^’,分别实现元素对元素的数组的乘、 左除、右除、和幂的运算。
MATLAB中没有ln运算符遇到它用log运算符代替。 另外log2(x),log10(y)表示求x和y的以2为底和以10为 底的对数。
实例演示
• 作符号计算(解方程组,其中a,b为常数,
x,y为变量):
• a,b,x,y均为符号运算量。在符号运算前,
应先将a,b,x,y定义为符号运算量。
实例演示
a=sym('a'); %定义‘a’为符号运算量,输出 变量名为a
b=sym('b');x=sym('x');y=sym('y');
(四)符号替换
• MATLAB软件提供的符号替换命令为subs,通常使 用下面三种形式(对数组也适用): • (1) subs(s,new) 用new替换s中的自由变量; • (2) subs(s,old,new) 用new替换s中的变量old; • (3) subs(s) 用当前内存中的已赋值变量去代 替s中的同名变量; • 例:执行命令 • subs(a+b,a,4) • 执行结果为 • 4+b
学习内容 • 一、符号对象
• 二、符号运算与高等数学 • 三、符号方程的求解
符号运算与高等数学
一、极限的计算
二、导数的运算
三、积分的运算
四、级数求和问题
五、函数的极值和零点
一、极限的计算
• 求极限问题解析解的MATLAB命令格式: • Limit(f)
第6讲 符号计算(2)

• • • •
C=triu(A) C= [ sin(x), cos(x)] [ 0, asin(x)]
三、符号导数
• •
1、符号函数的极限 limit(f, x, a),计算当变量x趋近于常数a时,f(x)函数的 极限值。 limit(f, a),求符号函数f(x)的极限值,符号函数f(x)的 变量为函数findsym(f)确定的默认自变量,即变量x趋 近于a。 limit(f),系统默认变量趋近于0,即a=0的极限。 limit(f, x, a, 'right'),变量x从右边趋近于a时符号函数f(x) 的极限值。 limit(f, x, a, 'left'),变量x从左边趋近于a时符号函数的 极限值。
符号运算
• • • •
3、因式分解和展开 factor(S),对S分解因式,S是符号表达式 或符号矩阵。 expand(S),对S进行展开,S是符号表达 式或符号矩阵。 collect(S),对S合并同类项,S是符号表 达式或符号矩阵。 collect(S, v),对S按变量v合并同类项,S 是符号表达式或符号矩阵。
• d4=diff(f2)/diff(f1);
• f=x*exp(y)/y^2; • d5=diff(f,x) %z对x求偏导数 • d6=diff(f,y)
• • • •
d5 = exp(y)/y^2 d6 = x*exp(y)/y^2-2*x*exp(y)/y^3
• • • • • • •
f=x^2+y^2+z^2-a^2; zx=diff(f,x)/diff(f,z)%按隐函数求导 zy=diff(f,y)/diff(f,z) zx = x/z zy = y/z
matlab中的数学符号与运算

matlab中的数学符号与运算MATLAB(Matrix Laboratory)是一种用于数值计算和科学工程应用的高级编程语言和环境。
MATLAB中包含了丰富的数学符号和运算,用于进行矩阵操作、线性代数、微积分等数学计算。
以下是MATLAB中一些常见的数学符号和运算:1. 数学符号:-矩阵:MATLAB 中的基本数据类型是矩阵,可以使用方括号`[]` 来表示。
例如,`A = [1, 2; 3, 4]` 表示一个2x2的矩阵。
-向量:向量可以表示为一维矩阵,例如,`v = [1, 2, 3]` 表示一个包含3个元素的行向量。
-转置:使用单引号`'` 来进行转置操作。
例如,`A'` 表示矩阵A的转置。
-点乘和叉乘:点乘使用`.*`,叉乘使用`.*`。
例如,`A .* B` 表示矩阵A和B的对应元素相乘,`A * B` 表示矩阵A和B的矩阵乘法。
2. 数学运算:-基本算术运算:MATLAB支持基本的算术运算,如加法、减法、乘法和除法。
例如,`result = 2 + 3`。
-元素-wise 运算:MATLAB 支持元素-wise 的运算,即对矩阵或向量中的每个元素进行运算。
例如,`C = A .* B` 表示矩阵A和B的对应元素相乘。
-矩阵操作:MATLAB 提供了许多用于矩阵操作的函数,如`inv`(求逆矩阵)、`det`(求行列式)、`eig`(求特征值)等。
-积分和微分:MATLAB 提供了`int`(积分)和`diff`(微分)等函数,用于进行积分和微分运算。
-方程求解:MATLAB 提供了`solve` 函数,用于求解方程组。
这些是MATLAB中一些常见的数学符号和运算。
MATLAB 的强大之处在于它的矩阵操作能力,使得它非常适用于数学和工程领域的计算和建模。
如果你有特定的数学运算需求,可以查阅MATLAB 的官方文档或在线资源以获取详细信息。
第2章 matlab的符号运算

>>p0 = sym(‘(1+sqrt(5))/2’)
p0 = (1+sqrt(5))/2 >>pr = sym((1+sqrt(5))/2,'r') pr =7286977268806824*2^(-52) >>e32r = vpa(abs(p0-pr),16) e32r = 0
%广义有理表示
Matlab程序设计
Matlab程序设计
2.2 符号数字 sc = sym(‘Num’) %符号常数sc的值精确等于Num 例:a = pi + sqrt(5) %a为数值类常量 sa = sym(‘pi + sqrt(5)’) %sa为符号数字常量
% sa = pi + sqrt(5), sym型; eval(sa) 为5.3777, double型
k = sym('k','positive');
Matlab程序设计
2.4 符号变量
符号变量与符号参数的创建方法相同,但表达式或 方程中作用不同. 确定自由符号变量: findsym(EXPR , N) %确认EXPR中距离x最近的N个自由符号变
量, 略去N表示全部
例2.1-1 用符号计算研究方程uz2+vz+w=0的解 syms u v w z Eq=u*z^2+v*z+w; %符号方程 r_1=solve(Eq) %一个方程只能解一个未知数w(离x最近) findsym(Eq,1) %只找一个自由符号变量,则找到w r_2=solve(Eq,z)
3.3 符号表达式的操作 例:化简 S=(x2+y2)2+(x2-y2)2 syms x y; S=(x^2+y^2)^2+(x^2-y^2)^2 simple(S) %系统自动试探各种函数化简 simple(ans) %使用多次找到最少字母的简化式 例2.2-3:对符号矩阵进行特征向量分解. syms a b c d W [V,D]=eig([a b;c d]) [RVD,W]=subexpr([V;D],W)
MATLAB符号运算运用

MATLAB符号运算运用MATLAB 是一种数值计算和编程环境,它可以进行符号运算,即对代数表达式进行操作和计算。
在 MATLAB 中,符号运算的主要工具是符号计算工具箱(Symbolic Math Toolbox),它提供了一系列函数和命令,用于处理和求解符号表达式。
1.创建符号表达式首先,我们可以通过使用符号变量来创建符号表达式。
符号变量可以使用 sym 函数定义。
例如,创建一个符号变量 x:```syms x```然后,可以使用这个符号变量来创建符号表达式。
例如,创建一个简单的二次多项式表达式:```f=x^2+2*x+1;```2.符号表达式运算一旦有了符号表达式,就可以对其进行各种运算,包括求导、积分、求解方程等。
- 求导:使用 diff 函数可以对符号表达式进行求导。
例如,对上述的 f 求导:```df = diff(f, x);```- 积分:使用 int 函数可以对符号表达式进行积分。
例如,对 f 在区间 [0, 1] 上进行积分:```I = int(f, 0, 1);```- 求解方程:使用 solve 函数可以对符号表达式进行求解。
例如,求解方程 f = 0:```sol = solve(f == 0, x);```3.简化符号表达式有时,符号表达式可能过于复杂,可以使用 simplify 函数对其进行简化。
例如,简化一个复杂的三角函数表达式:```syms xf = sin(x)^2 + cos(x)^2;sf = simplify(f);```4.数值近似符号表达式可以通过使用 vpa 函数进行数值近似。
例如,将一个符号表达式近似为 5 位小数:```syms xf = exp(x);f_num = vpa(f, 5);```在MATLAB中,符号运算可以应用于各种数学问题,包括求解方程、微积分、矩阵计算等。
它提供了一种便捷的方式来处理代数表达式,而不需要将其转化为数值形式进行计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因式分解、展开、合并、简化及通分等
计算极限 limit(f,x,a): 计算 lim f ( x )
xa
limit(f,a): 计算默认自变量趋向于a时f的极限 limit(f): 计算 a=0 时的极限 limit(f,x,a,’right’):右极限 limit(f,x,a,’left’):左极限
1 2 n 1 n
,以及其前10项的部分和。
>> syms n >> S=symsum(1/n^2,n,1,inf) >> S10=symsum(1/n^2,n,1,10)
x 2 n 1 n
S=1/6*pi^2 S10=1968329/1270080
例:求函数级数
S
>> syms n x >> S=symsum(x/n^2,n,1,inf)
符号矩阵中元素的引用和修改
>> A=sym(’[1+x, sin(x); 5, exp(x)]’) >> A(1,2) >> A(2,2)=sym(’cos(x)’)
Matlab 符号运算(二)
符号矩阵的基本运算
符号矩阵的基本运算与数值矩阵的基本运算相类似。
1) 基本运算符:+、-、*、\、/、
ans=10
ans=2*x+y
ans=10 ans=[2+y,4+y,6+y] ans=[7 10 13]
ans=3*a+b
?
Matlab 符号运算(二)
符号矩阵
使用sym函数直接生成
>> A=sym(’[1+x, sin(ห้องสมุดไป่ตู้); 5, exp(x)]’)
将数值矩阵转化成符号矩阵
>> B=[2/3, sqrt(2); 5.2, log(3)] >> C=sym(B) 能否用sym(‘B’)?
Matlab 符号运算(二)
六大常见符号运算
因式分解、展开、合并、简化及通分等
计算极限 计算导数 计算积分 符号求和
symsum(f,v,a,b): 求和
f (v )
va
b
symsum(f,a,b): 关于默认自变量 求和。
Matlab 符号运算(二)
例:求级数 S
S=1/6*x*pi^2
Matlab 符号运算(二)
六大常见符号运算
因式分解、展开、合并、简化及通分等
计算极限 计算导数 计算积分 符号求和
解代数方程和微分方程(见实验三、六)
Matlab 符号运算(二)
其它运算
复合函数计算:compose
compose(f,g): 返回f(g(y)),其中f=f(x),g=g(y), x,y 分别是 f 和 g 的默认自变量。 compose(f,g,z):返回f(g(z)),其中x,y 分别是 f,g 的默认自变量,最后用符号变量z代替y。 compose(f,g,v,z):返回f(g(z)),v为f中指定的自变量, 令v=g(z),代入 f=f(v)。 compose(f,g,v,w,z):返回f(g(z)),其中v,w分别为f,g 的指定自变量,即将v=g(w)代入f(v),最后用z代替w。
>> C=diff(y,x,2)
>> D=diff(y,a,2)
Matlab 符号运算(二)
六大常见符号运算
因式分解、展开、合并、简化及通分等
计算极限 计算导数 计算积分 int(f,v,a,b):计算定积分
b
a
f (v)dv
int(f,a,b): 计算 f 关于默认自变量 的定积分
>> a=sym(‘a’); >> b=sym(‘5’); >> c=sym(5); b、c有区别吗? hint:help sym
Matlab 符号运算(二)
相关函数 findsym: 查找符号表达式中的符号变量 findsym(f)
按字母顺序列出符号表达式 f 中的所有自由变量
findsym(f,N) 列出 f 中距离 x 最近的 N 个自由变量(i,j 除外)
Matlab 符号运算(二)
例: f cos(x / t ), g sin(y/u)
>> >> >> >> >> >> >> >> >> >> syms x y z u t f=cos(x/t); y=sin(y/u); compose(f,g) compose(g,f) compose(f,g,z) compose(f,g,x,z) compose(f,g,t,z) compose(f,g,t,y,z) compose(f,g,t,u) compose(f,g,t,u,z) ans=cos(sin(y/u)/t)
Matlab 符号运算(二)
六大常见符号运算
因式分解、展开、合并、简化及通分等
因式分解:factor >> syms x >> f=x^6 +1 >> s=factor(f)
s =(1+x^2)*(x^4-x^2+1)
factor 也可用于正整数的分解
Matlab 符号运算(二)
大整数的分解
Matlab 符号运算(二)
例:求极限 L lim
ln( x h) ln( x ) h 0 h n x M lim 1 n n
L=1/x M=exp(-x)
>> syms h n x >> L=limit((log(x+h)-log(x))/h,h,0) >> M=limit((1-x/n)^n,n,inf)
Matlab 符号运算(二)
例: f ( x) 2 x y
>> >> >> >> >>
>> >> >> >> >> >> >> >>
syms x y f=2*x+y; x=3,y=4; subs(f) subs(f,x,’a’)
syms x y a b f=2*x+y; subs(f,[x,y],[3,4]) subs(f,{x,y},{3,4}) subs(f,x,[1:3]) subs(f,{x,y},{[1:3],[5:7]}) subs(f,{x,y},{a+b,a-b}) subs(f,{x,y},{x+y,x-y})
^ 、三角函数与反三角函数: .*、.\、./、.^、’ 、.’sin、cos、 2)
tan 、… … 3) 指数、对数函数:sqrt、exp、log、… …
4) 复数函数:real、imag、conj、 abs 5) 矩阵函数:det、inv、rank、 … … (没有norm) 6) 矩阵元素的抽取:diag、tril、triu
findsym(f,1)
Matlab 符号运算(二)
简化函数: simple 和 simplify
simple(f): 对 f 尝试多种不同的算法简化, 返回其中最短的简化形式;
[R,HOW]=simple(f): R为f的最短简化形式, HOW中记录的为简化过程中使用的主要方法。
simple函数示例 f 2*cos(x)^2-sin(x)^2 (x+1)*x*(x-1) x^3+3*x^2+3*x+1 x^3-x (x+1)^3 R 3*cos(x)^2-1 HOW simplify combine(trig) factor
中所有出现的相同的变量,并进行简化计算。 subs(f,x,a):用 a 替换 f 中的 x ;a 是可以是 数/ 数值变量/表达式 或 符号变量/表达式。 若x与a为相同大小的向量或矩阵,则用a中相应的元 素替换x中的元素; 若f,x为标量,而a是向量或矩阵,则f与x将扩展为 与a相同形状的向量或矩阵。
int(f,v):计算不定积分 f ( v )dv int(f):计算 f 关于默认自变量 的不定积分
Matlab 符号运算(二)
x2 1 dx, 例:求积分 I 2 2 ( x 2 x 2)
J
>> >> >> >> >> >> >>
/2
0
cos x dx, sin x cos x
例: >> a=sym('a');x=sym('x');k=sym('3'); >> f=k*x+a; >> findsym(f) 默认自变量=findsym(f,1)
ans=a,x
Matlab 符号运算(二)
相关函数 subs:符号替换 subs(f): 用当前工作空间中存在的变量值,替换 f
Matlab 符号运算(二)
Matlab 符号运算介绍
Matlab 符 号 运 算 是 通 过 符 号 数 学 工 具 箱 (Symbolic Math Toolbox)来实现的。
符号对象的建立:sym 和 syms
例: >> syms x y z <==> >> x=sym(‘x’); >> y=sym(‘y’); >> z=sym(‘z’);