中考数学必考题型《规律探索》分类专项练习题
中考数学规律探索题中考找规律题目有答案

中考规律探索1以下为全部整理类型;规律探索共两套试题;供参考学习使用一.选择题1.观察下列等式:31=3;32=9;33=27;34=81;35=243;36=729;37=2187… 解答下列问题:3+32+33+34…+32013的末位数字是 A .0 B .1 C .3 D .72. 把所有正奇数从小到大排列;并按如下规律分组:1;3;5;7;9;11;13;15;17;19;21;23;25;27;29;31;…;现用等式A M =i;j 表示正奇数M 是第i 组第j 个数从左往右数;如A 7=2;3;则A 2013= A .45;77 B .45;39 C .32;46 D .32;233.下表中的数字是按一定规律填写的;表中a 的值应是 .4.下列图形都是由同样大小的矩形按一定的规律组成;其中第1个图形的面积为2cm 2;第2个图形的面积为8 cm 2;第3个图形的面积为18 cm 2;……;第10个图形的面积为 A .196 cm 2B .200 cm 2C .216 cm 2D . 256 cm 25.如图;动点P 从0;3出发;沿所示的方向运动;每当碰到矩形的边时反弹;反弹时反射角等于入射角;当点P 第2013次碰到矩形的边时;点P 的坐标为 A 、1;4 B 、5;0 C 、6;4 D 、8;36.如图;下列各图形中的三个数之间均具有相同的规律.根据此规律;图形中M 与m 、n 的关系是A . M=mnB . M=nm+1C .M=mn+1D .M=mn+17.我们知道;一元二次方程12-=x 没有实数根;即不存在一个实数的平方等于-1;若我们规定一个新数“”;使其满足12-=i 即方程12-=x 有一个根为;并且进一步规定: 一切实数可以与新数进行四则运算;且原有的运算律和运算法则仍然成立;于是有,1i i =12-=i ;,).1(23i i i i i -=-=⋅=.1)1()(2224=-==i i 从而对任意正整数n;我们可得到,.)(.4414i i i i i i n n n ===+同理可得,1,,143424=-=-=++n n n i i i i 那么;20132012432i i i i i i +⋅⋅⋅++++的值为A .0B .1C .-1D .8.下列图形都是由同样大小的棋子按一定的规律组成;其中第①个图形有1颗棋子;第②个图形一共有6颗棋子;第③个图形一共有16颗棋子;…;则第⑥个图形中棋子的颗数为A .51B .70C .76D .81图① 图②图③···第8题图二.填空题1.观察下列图形中点的个数;若按其规律再画下去;可以得到第n个图形中所有的个数为用含n的代数式表示.2.如图;在直角坐标系中;已知点A﹣3;0、B0;4;对△OAB连续作旋转变换;依次得到△1、△2、△3、△4…;则△2013的直角顶点的坐标为.3.如图;正方形ABCD的边长为1;顺次连接正方形ABCD四边的中点得到第一个正方形A1B1C1D1;由顺次连接正方形A1B1C1D1四边的中点得到第二个正方形A2B2C2D2…;以此类推;则第六个正方形A6B6C6D6周长是.4.直线上有2013个点;我们进行如下操作:在每相邻两点间插入1个点;经过3次这样的操作后;直线上共有个点.5.如图;古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1;5;12;22…为五边形数;则第6个五边形数是.6 .如图;是用火柴棒拼成的图形;则第n个图形需根火柴棒.7.观察规律:1=12;1+3=22;1+3+5=32;1+3+5+7=42;…;则1+3+5+…+2013的值是.8.如图12;一段抛物线:y=-xx-30≤x≤3;记为C1;它与x轴交于点O;A1;将C1绕点A1旋转180°得C2;交x 轴于点A2;将C2绕点A2旋转180°得C3;交x 轴于点A3;……如此进行下去;直至得C13.若P37;m在第13段抛物线C13上;则m =_________.9.直线上有2013个点;我们进行如下操作:在每相邻两点间插入1个点;经过3次这样的操作后;直线上共有个点. 10.观察下列各式的计算过程:5×5=0×1×100+25;15×15=1×2×100+25;25×25=2×3×100+25;35×35=3×4×100+25;…………请猜测;第n个算式n为正整数应表示为____________________________.11.将连续的正整数按以下规律排列;则位于第7行、第7列的数x是__ __.12、如下图;每一幅图中均含有若干个正方形;第①幅图中含有1个正方形;第②幅图中含有5个正方形;……按这样的规律下去;则第6幅图中含有个正方形;••••••①②③13.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆; 第2个图形有10个小圆; 第3个图形有16个小圆; 第4个图形有24个小圆; ……;依次规律;第6个图形有 个小圆. 14.已知一组数2;4;8;16;32;…;按此规律;则第n 个数是 . 15、我们知道;经过原点的抛物线的解析式可以是y =ax 2+bxa ≠0 1对于这样的抛物线:当顶点坐标为1;1时;a =__________;当顶点坐标为m ;m ;m ≠0时;a 与m 之间的关系式是__________;2继续探究;如果b ≠0;且过原点的抛物线顶点在直线y =kxk ≠0上;请用含k 的代数式表示b ;3现有一组过原点的抛物线;顶点A 1;A 2;…;A n 在直线y =x 上;横坐标依次为1;2;…;n 为正整数;且n ≤12;分别过每个顶点作x 轴的垂线;垂足记为B 1;B 2;…;B n ;以线段A n B n 为边向右作正方形A n B n C n D n ;若这组抛物线中有一条经过D n ;求所有满足条件的正方形边长.16.如图;所有正三角形的一边平行于x 轴;一顶点在y 轴上;从内到外;它们的边长依次为2;4;6;8;…;顶点依次用1A 、2A 、3A 、4A 、…表示;其中12A A 与x 轴、底边12A A 与45A A 、45A A 与78A A 、…均相距一个单位;则顶点3A 的坐标是 ;22A 的坐标是 .第16题图17.如图;已知直线l :y=33x ;过点A 0;1作y 轴的垂线交直线l 于点B ;过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1;过点B 1作直线l 的垂线交y 轴于点A 2;……按此作法继续下去;则点A 2013的坐标为 .18、如图;在平面直角坐标系中;一动点从原点O 出发;按向上;向右;向下;向右的方向不断地移动;每移动一个单位;得到点A 1 0;1;A 21;1;A 31;0;A 42;0;…那么点A 4n +1n 为自然数的坐标为 用n 表示19.当白色小正方形个数n 等于1;2;3…时;由白色小正方形和和黑色小正方形组成的图形分别如图所示.则第n 个图形中白色小正方形和黑色小正方形的个数总和等于_____________.用n 表示;n 是正整数20. 2013 衢州4分如图;在菱形ABCD 中;边长为10;∠A=60°.顺次连结菱形ABCD 各边中点;可得四边形A 1B 1C 1D 1;顺次连结四边形A 1B 1C 1D 1各边中点;可得四边形A 2B 2C 2D 2;顺次连结四边形A 2B 2C 2D 2各边中点;可得四边形A 3B 3C 3D 3;按此规律继续下去….则四边形A 2B 2C 2D 2的周长是 ;四边形A 2013B 2013C 2013D 2013的周长是 .21.一组按规律排列的式子:a2;43a ;65a ;87a ;….则第n 个式子是________22.观察下面的单项式:a;﹣2a 2;4a 3;﹣8a 4;…根据你发现的规律;第8个式子是 . 23.如图;已知直线l :y=x;过点M2;0作x 轴的垂线交直线l 于点N;过点N 作直线l 的垂线交x 轴于点M 1;过点M 1作x轴的垂线交直线l 于N 1;过点N 1作直线l 的垂线交x 轴于点M 2;…;按此作法继续下去;则点M 10的坐标为 .24.为庆祝“六一”儿童节;某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律;摆第n图;需用火柴棒的根数为.答案:选择题:1、C 2、C 3、21 4、B 5、D 6、D 7、D 8、 C填空题:1、n+12 2、8052;0 3、0.5 4、16097 5、51 6、2n+1 7、1014049 8、 2 9、16097 10、10n-1+52=100nn-1+25 11、85 12、91 13、46 14、2n 15、1-1;a =-1m或am +1=0;2解:∵a ≠0 ∴y =ax 2+bx =ax +2b a2-24b a ∴顶点坐标为-2ba;-24b a∵顶点在直线y =kx 上∴k -2ba=-24b a∵b ≠0 ∴b =2k3解:∵顶点A n 在直线y =x 上 ∴可设A n 的坐标为n ;n ;点D n 所在的抛物线顶点坐标为t ;t由12可得;点D n 所在的抛物线解析式为y =-1tx 2+2x∵四边形A n B n C n D n 是正方形 ∴点D n 的坐标为2n ;n∴-1t2n 2+2×2n =n∴4n =3t∵t 、n 是正整数;且t ≤12;n ≤12∴n =3;6或9∴满足条件的正方形边长为3;6或916、0;31-;-8;-8. 17、()()201340260,40,2或注:以上两答案任选一个都对18、2n;1 19、n 2+4n 20、20;21、221na n n 为正整数22、-128a 8 23、884736;0 24、6n+2规律探索21、 我们平常用的数是十进制数;如2639=2×103+6×102+3×101+9×100;表示十进制的数要用10个数码又叫数字:0;1;2;3;4;5;6;7;8;9..在电子数字计算机中用的是二进制;只要两个数码:0和1..如二进制中101=1×22+0×21+1×20等于十进制的数5;10111=1×24+0×23+1×22+1×21+1×20等于十进制中的数23;那么二进制中的1101等于十进制的数 ..2、 从1开始;将连续的奇数相加;和的情况有如下规律:1=1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52;…按此规律请你猜想从1开始;将前10个奇数即当最后一个奇数是19时;它们的和是 .. 3、小王利用计算机设计了一个计算程序;输入和输出的数据如下表:输入 (1)2345… 输出……那么;当输入数据是8时;输出的数据是A 、618B 、638C 、658D 、6784、如下左图所示;摆第一个“小屋子”要5枚棋子;摆第二个要11枚棋子;摆第三个要17枚棋子;则摆第30个“小屋子”要 枚棋子.5、如下右图是某同学在沙滩上用石子摆成的小房子;观察图形的变化规律;写出第n 个小房子用了 块石子6、如下图是用棋子摆成的“上”字:第一个“上”字 第二个“上”字 第三个“上”字如果按照以上规律继续摆下去;那么通过观察;可以发现:1第四、第五个“上”字分别需用 和 枚棋子;2第n 个“上”字需用 枚棋子..7、如图一串有黑有白;其排列有一定规律的珠子;被盒子遮住一部分;则这串珠子被盒子遮住的部分有_______颗.(1)(2)(3)第4题第7题图⑴ ⑵ ⑶1 2 348、根据下列5个图形及相应点的个数的变化规律:猜想第6个图形有 个点;第n 个图形中有 个点.. 9、下面是按照一定规律画出的一列“树型”图:经观察可以发现:图2比图1多出2个“树枝”;图3比图2多出5个“树枝”;图4比图3多出10个“树枝”;照此规律;图7比图6多出 个“树枝”..10、观察下面的点阵图和相应的等式;探究其中的规律:1在④和⑤后面的横线上分别写出相应的等式;2通过猜想写出与第n 个点阵相对应的等式_____________________..11、用边长为1cm 的小正方形搭成如下的塔状图形;则第n 次所搭图形的周长是_______________cm 用含n 的代数式表示..12、如图;都是由边长为1例如第1个图形的表面积为6个平方单位;第2个图形的表面积为18个平方单位;第3个图形的表面积是36..个图形的表面积 个平方单位13、图1是一个水平摆放的小正方体木块;图2、3是由这样的小正方体木块叠放而成;按照这样的规律继续叠放下去;至第七个叠放的图形中;小正方体木块总数应是A 25B 66C 91D 12014、如图是由大小相同的小立方体木块叠入而成的几何体;图⑴中有1个立方体;图⑵中有4个立方体;图⑶中有9个立方体;……按这样的规律叠放下去;第8个图中小立方体个数是 .15、图1是棱长为a 的小正方体;图2、图3由这样的小正方体摆放而成.按照这样的方法继续摆放;由上而下分别叫第一层、第二层、…、第n 层;第n 层的小正方体的个数为s .解答下列问题:1按照要求填表:2写出当n =10时;s= .16、如图用火柴摆去系列图案;按这种方式摆下去;当每边摆10根时即10 n 时;需要的火柴棒总数为 根;n1 2 3 4… s 1 3 6……………①1=12; ②1+3=22;③1+3+5=32; ④ ;⑤ ;第 ··· ···图1 图2 图3B 17、用火柴棒按如图的方式搭一行三角形;搭一个三角形需3支火柴棒;搭2个三角形需5支火柴棒;搭3个三角形需7支火柴棒;照这样的规律下去;搭n 个三角形需要S 支火柴棒;那么用n 的式子表示S 的式子是 _______ n 为正整数.18、;请观察下图:则第n 个图形中需用黑色瓷砖 ____ 19题图19、如图;用同样规格的黑白两种正方形瓷砖铺设正方形地面;观察图形并猜想填空:当黑色瓷砖为20块时;白色瓷砖为 块;当白色瓷砖为n 2n 为正整数块时;黑色瓷砖为 块.20、观察下列由棱长为1的小立方体摆成的图形;寻找规律:如图1中:共有1 个小立方体;其中1个看得见;0个看不见;如图2中:共有8个小立方体;其中7个看得见;1个看不见;如图3中:共有27个小立方体;其中有19个看得8个看不见;……;则第6个图中;看不见的小立方体有 个..21、下面的图形是由边长为l 的正方形按照某种规律排列而组成的. 1观察图形;填写下表:2推测第n 个图形中;正方形的个数为________;周长为______________都用含n 的代数式表示.22、观察下图;我们可以发现:图⑴中有1个正方形;图⑵中有5个正方形;图⑶中共有14个正方形;按照这种规律继续下去;图⑹中共有_______个正方形..23、某正方形园地是由边长为1的四个小正方形组成的;现要在园地上建一个花坛阴影部分使花坛面积是园地面积的一半;以下图中设计不合要求....的是 第22题图 24;25<1>、 <3>26、2次把第1次铺的完全围起来;如图2;第3次把第23;…依此方法;第n 次铺完后;用字母n 表示第n 次镶嵌所使用的木块块数为 . n 为正整数27、用黑白两种颜色的正六边形地面砖按如下所示的规律;拼成若干个图案: ⑴ 第4个图案中有白色地面砖 块; ⑵ 第n 个图案中有白色地面砖 块..28、分析如下图①;②;④中阴影部分的分布规律;按此规律在图③中画出其中的阴影部分.29、将一圆形纸片对折后再对折;得到图2;然后沿着图中的虚线剪开;得到两部分;其中一部分展开后的平面图形是30.如图1;小强拿一张正方形的纸;沿虚线对折一次得图2;再对折一次得图3;然后用剪刀沿图3中的虚线剪去一个角;再DCB打开后的形状是A B C D31、 用一条宽相等的足够长的纸条;打一个结;如图1所示;然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE;其中∠BAC= 度.32、如图;一张长方形纸沿AB 对折;以AB 中点O 为顶点将平角五等分;并沿五等分的折线折叠;再沿CD 剪开;使展开后为正五角星正五边形对角线所构成的图形.则∠OCD 等于A .108°B .144°C .126°D .129°33、如图;把一个正方形三次对折后沿虚线剪下则得到的图形是A B C D 第35题图34、将一张长方形的纸对折;如图5所示可得到一条折痕图中虚线. 继续对折;对折时每次折痕与上次的折痕保持平行;连续对折三次后;可以得到7条折痕;那么对折四次可以得到 条折痕 .如果对折n 次;可以得到 _____________条折痕 ..35、观察图形:图中是边长为1;2;3 …的正方形:当边长n =1时;正方形被分成2个大小相等的小等腰直角三角形;当边长n =2时;正方形被分成8个大小相等的小等腰直角三角形;当边长n =3时;正方形被分成18个大小相等的小等腰直角三角形;以此类推:当边长为n 时;正方形被分成大小相等的小等腰直角三角形的个数是 ..36、水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如右图;是一个正方体的平面展开图;若图中的“似”表示正方体的前面; “锦”表示右面; “程”表示下面.则“祝”、 “你”、“前”分别表示正方体的___________________.37、如图是一块长方形ABCD 的场地;长AB =102m;宽AD =51m;从A 、B 两处入口的中路宽都为1m;两小路汇合处路宽为2m;其余部分种植草坪;则草坪面积为A5050m 2 B4900m 2 C5000m 2D4998m 238、读一读;想一想;做一做:国际象棋、中国象棋和围棋号称为世界三大棋种.国际象棋中的“皇后”的威力可比中国象棋中的“车”大得多:“皇后”不仅能控制她所在的行与列中的每一个小方格;而且还能控制“斜”方向的两条直线上的每一个小方格.如图甲是一个4×4的小方格棋盘;图中的“皇后Q ”能控制图中虚线所经过的每一个小方格.① 在如图乙的小方格棋盘中有一“皇后Q ”;她所在的位置可用“2;3”来表示;请说明“皇后Q ”所在的位置“2;3”的意义;并用这种表示法分别写出棋盘中不能被该“皇后Q ”所控制的四个位置.②如图丙也是一个4×4的小方格棋盘;请在这个棋盘中放入四个“皇后Q ”;使这四个“皇后Q ”之间互不受对方控制在图丙中的某四个小方格中标出字母Q 即可._沿虚线剪开 程前 你 祝 似 锦 AS D S CSB S 图1DEBA图23 甲行乙3丙参考答案1、132、1003、C4、1795、 3n+1-3+nn+1或n+12+2n-16、118、22 24n+27、278、31;n2-n-19、8010、1+3+5+7=42;1+3+5+7+9=52;1+3+5+……+2n-1=n2 11、 4n 12、9013、C 14、64 5、110 21+2+3+……+n=nn+1/2 16、16517、s=2n+1 18、4n+6 19、16;4n+420、125 21、113、18;28、38; 25n+3;10n+8 22 、9123、B 24、B 25、A 26、8n-6 27、118 ;24n+228、29、C30、 C31、3632、A 33、C34、15 ;2n-1 35、 2n2 36、后面、上面、左面 37、C38、1 1;1;3;1;4;2;4;4;2。
中考数学重难点突破专题一:规律探索型问题试题(含答案)

精品基础教育教学资料,仅供参考,需要可下载使用!专题一 规律探索问题类型1 数字规律1.甲、乙、丙三位同学进行报数游戏,游戏规则为:甲报1,乙报2,丙报3,再甲报4,乙报5,丙报6,…依次循环反复下去,当报出的数为2020时游戏结束,若报出的数是偶数,则该同学得1分.当报数结束时甲同学的得分是__337__分.解析:甲报的数中第一个数为1,第2个数为1+3=4,第3个数为1+3×2=7,第4个数为1+3×3=10,…,第n 个数为1+3(n -1)=3n -2,3n -2=2020,则n =674,甲报出了674个数,一奇一偶,所以偶数有674÷2=337个,得337分.2.如图,给正五边形的顶点依次编号为1,2,3,4,5,若从某一顶点开始,沿五边形的边顺时针行走,顶点编号是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第10次“移位”,则他所处顶点的编号为__3__.3.(2017·六盘水)计算1+4+9+16+25+…的前29项的和是__8555__.解析:12+22+32+42+52+…+292+…+n 2=0×1+1+1×2+2+2×3+3+3×4+4+4×5+5+…(n -1)n +n=(1+2+3+4+5+…+n)+[0×1+1×2+2×3+3×4+…+(n -1)n]=n (n +1)2+{13(1×2×3-0×1×2)+13(2×3×4-1×2×3)+13(3×4×5-2×3×4)+…+13[(n -1)·n·(n +1)-(n -2)·(n -1)·n]}=n (n +1)2+13[(n -1)·n·(n +1)]=n (n +1)(2n +1)6, ∴当n =29时,原式=29×(29+1)×(2×29+1)6=8555. 类型2 图形规律4.(2017·天水)观察下列的“蜂窝图”则第n 个图案中的“”的个数是__3n +1__.(用含有n 的代数式表示)5.(2017·临沂)将一些相同的“○“按如图所示摆放,观察每个图形中的“○“的个数,若第n 个图形中“○“的个数是78,则n 的值是( B )A .11B .12C .13D .14解:第1个图形有1个小圆;第2个图形有1+2=3个小圆;第3个图形有1+2+3=6个小圆;第4个图形有1+2+3+4=10个小圆;第n 个图形有1+2+3+…+n =n (n +1)2个小圆;∵第n 个图形中“○“的个数是78,∴78=n (n +1)2,解得:n 1=12,n 2=-13(不合题意舍去).6.(2017·德州)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为( C )A .121B .362C .364D .729解:图1挖去中间的1个小三角形,图2挖去中间的(1+3)个小三角形,图3挖去中间的(1+3+32)个小三角形,…则图6挖去中间的(1+3+32+33+34+35)个小三角形,即图6挖去中间的364个小三角形,类型3 坐标变化规律7.在平面直角坐标系中,对于平面内任一点(a ,b),若规定以下三种变换:①△(a ,b)=(-a ,b);②○(a ,b)=(-a ,-b);③Ω(a ,b)=(a ,-b),按照以上变换例如:△(○(1,2))=(1,-2),则○(Ω(3,4))等于__(-3,4)__.8.(2017·衢州)如图,正△ABO 的边长为2,O 为坐标原点,A 在x 轴上,B 在第二象限,△ABO 沿x 轴正方向作无滑动的翻滚,经一次翻滚后得到△A 1B 1O ,则翻滚3次后点B的对应点的坐标是__(5,3)__,翻滚2017次后AB 中点M 经过的路径长为 (134633+896)π .解析:如图作B 3E ⊥x 轴于E ,易知OE =5,B 3E =3,∴B 3(5,3),观察图象可知三次一个循环,一个循环点M 的运动路径为120·π·3180+120π·1180+120π·1180=(23+43)π,∵2017÷3=672…1,∴翻滚2017次后AB 中点M 经过的路径长为672·(23+43)π+233π=(134633+896)π.9.(2017·菏泽)如图,AB ⊥y 轴,垂足为B ,将△ABO 绕点A 逆时针旋转到△AB 1O 1的位置,使点B 的对应点B 1落在直线y =-33x 上,再将△AB 1O 1绕点B 1逆时针旋转到△A 1B 1O 2的位置,使点O 1的对应点O 2落在直线y =-33x 上,依次进行下去…若点B 的坐标是(0,1),则点O 12的纵坐标为__(-9-93,9+33)__.解:观察图象可知,O 12在直线y =-33x 时,OO 12=6·OO 2=6(1+3+2)=18+63, ∴O 12的横坐标=-(18+63)·cos30°=-9-93,O 12的纵坐标=12OO 12=9+33,∴O 12(-9-93,9+33). 10.定义:直线l 1与l 2相交于点O ,对于平面内任意一点M ,点M 到直线l 1、l 2的距离分别为p 、q ,则称有序实数对(p ,q)是点M 的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是( C )A .2B .3C .4D .5解析:如图,∵到直线l 1的距离是l 的点在与直线l 1平行且与l 1的距离是1的两条平行线a 1、a 2上,到直线l 2的距离为2的点在与直线l 2平行且与l 2的距离是2的两条平行线b 1、b 2上,∴“距离坐标”是(1,2)的点是M 1,M 2,M 3,M 4,一共4个.11.(2017·绍兴模拟)在平面直角坐标系中,对图形F 给出如下定义:如图形F 上的所有点都在以原点为顶点的角的内部或边界上,在所有满足条件的角中,其度数的最小值称为图形的坐标角度.例如,图中的矩形ABCD 的坐标角度是90°.现将二次函数y =ax 2(1≤a ≤3)的图象在直线y =1下方的部分沿直线y =1向上翻折,则所得图形的坐标角度α的取值范围是( B )A .30°≤α≤60°B .60°≤α≤90°C .90°≤α≤120°D .120°≤α≤150°12.(2017·昆山二模)赵爽弦图是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,若这四个全等直角三角形的两条直角边分别平行于x 轴和y 轴,大正方形的顶点B 1,C 1,C 2,C 3,…,C n 在直线y =-12x +72上,顶点D 1,D 2,D 3,…,D n 在x 轴上,则第n 个阴影小正方形的面积为__(23)2n -2__.解:设第n 个大正方形的边长为a n ,则第n 个阴影小正方形的边长为55a n,当x =0时,y =-12x +72=72,∴72=55a 1+52a 1,∴a 1= 5.∵a 1=a 2+12a 2,∴a 2=235,同理可得:a 3=23a 2,a 4=23a 3,a 5=23a 4,…,∴a n =(23)n -1a 1=5(23)n -1,∴第n 个阴影小正方形的面积为(55a n )2=[(23)n -1]2=(23)2n -2.。
含答案 中考数学复习专题六 规律探索题

专题六 规律探索题类型一 数式规律1. 设a n 为正整数n 4的末位数,如a 1=1,a 2=6,a 3=1,a 4=6,…,则a 1+a 2+a 3+…+a 2019+a 2020+a 2021=________.2. 如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.则第5个台阶上的数x =________,从下到上前35个台阶上数的和=________.第2题图3. 将从1开始的连续奇数按如图所示的规律排列,例如:位于第4行第3列的数为27,则位于第32行第13列的数是________.第3题图4. 如图,下列各正方形中的四个数具有相同的规律,根据规律,x 的值为________.第4题图5. 已知a >0,S 1=1a ,S 2=-S 1-1,S 3=1S 2,S 4=-S 3-1,S 5=1S 4,…(即当n 为大于1的奇数时,S n =1S n -1;当n 为大于1的偶数时,S n =-S n -1-1),按此规律,S 2018=________(用含a 的代数式表示).6. 观察下列等式:(x -1)(x +1)=x 2-1;(x -1)(x 2+x +1)=x 3-1;(x -1)(x 3+x 2+x +1)=x 4-1;(x -1)(x 4+x 3+x 2+x +1)=x 5-1;…根据以上规律,计算22020+22019+22018+…+23+22+2+1的结果是________,个位数字是________.7. 人们把5-12这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设a =5-12,b =5+12,得ab =1,记S 1=11+a +11+b ,S 2=11+a 2+11+b 2,…,S 10=11+a 10+11+b 10.则S 1+S 2+…+S 10=________. 8.如图,某校礼堂的座位分为四个区域,前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是________.第8题图9.观察下列等式:x 1=1+112+122=32=1+11×2; x 2=1+122+132=76=1+12×3; x 3=1+132+142=1312=1+13×4; …根据以上规律,计算x 1+x 2+x 3+…+x 2020-2021=________.10.“干支纪年法”是我国历法的一种传统纪年法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”;子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”;“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为甲子、乙丑、丙寅…癸酉;甲戌、乙亥、丙子…癸未;甲申、乙酉、丙戌…癸巳;…共得到60个组合,称六十甲子,周而复始,无穷无尽.2021年是“干支纪年法”中的辛丑年,那么2050年是“干支纪年法”中的________.类型二 图形变化规律1. 如图,在平面直角坐标系中,函数y =3x 和y =-x 的图象分别为直线l 1,l 2,过点(1,0)作x 轴的垂线交l 1于点A 1,过点A 1作y 轴的垂线交l 2于点A 2,过点A 2作x 轴的垂线交l 1于点A 3,过点A 3作y 轴的垂线交l 2于点A 4,…,依次进行下去,则点A 6的坐标为________,点A2022的坐标为________.第1题图2. 如图,菱形ABCD中,∠ABC=120°,AB=1,延长CD至A1,使DA1=CD,以A1C为一边,在BC的延长线上作菱形A1CC1D1,连接AA1,得到△ADA1;再延长C1D1至A2,使D1A2=C1D1,以A2C1为一边,在CC1的延长线上作菱形A2C1C2D2,连接A1A2,得到△A1D1A2,…,按此规律,得到△A2020D2020A2021,记△ADA1的面积为S1,△A1D1A2的面积为S2,…,△A2020D2020A2021的面积为S2021,则S2021=________.第2题图3. 如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=1,且AC在直线l上,将△ABC 绕点A顺时针旋转到①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+3;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+3,…,按此规律继续旋转,直到点P2020为止,则AP2020等于________.第3题图4. 已知菱形A1B1C1D1的边长为2,∠A1B1C1=60°,对角线A1C1,B1D1相交于点O.以点O 为坐标原点,分别以OA1,OB1所在直线为x轴、y轴,建立如图所示的平面直角坐标系.以B1D1为对角线作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2为对角线作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2为对角线作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此规律继续作下去,在x轴的正半轴上得到点A1,A2,A3,…,A n,则点A n的坐标为________.第4题图5. 如图,在矩形ABCD 中,AB =1,BC =2,连接AC ,过点D 作DC 1⊥AC 于C 1;以C 1A 、C 1D 为邻边作矩形AA 1DC 1,连接A 1C 1,交AD 于O 1,过点D 作DC 2⊥A 1C 1于C 2,交AC 于M 1,以C 2A 1,C 2D 为邻边作矩形A 1A 2DC 2,连接A 2C 2,交A 1D 于O 2,过点D 作DC 3⊥A 2C 2于C 3,交A 1C 1于M 2;以C 3A 2,C 3D 为邻边作矩形A 2A 3DC 3,连接A 3C 3,交A 2D 于O 3,过点D 作DC 4⊥A 3C 3于C 4,交A 2C 2于M 3;…若四边形AO 1C 2M 1的面积为S 1,四边形A 1O 2C 3M 2的面积为S 2,四边形A 2O 3C 4M 3的面积为S 3,…,四边形A n -1O n C n +1M n 的面积为S n ,则S n =________.(结果用含正整数n 的式子表示)第5题图6. 如图,在平面直角坐标系中,菱形OABC 的边OC 在x 轴的正半轴上,且点C 的坐标为(2,0),∠OCB =45°,将菱形OABC 绕点O 顺时针旋转45°后得到菱形OA 1B 1C 1,…,依此方式,绕点O 连续旋转2021次后得到菱形OA 2021B 2021C 2021,则点A 2021的坐标为________.第6题图7. 如图,在平面直角坐标系中,AB ⊥y 轴,垂足为B ,将△ABO 绕点A 逆时针旋转到△AB 1O 1的位置,使点B 的对应点B 1落在直线y =-34x 上,再将△AB 1O 1绕点B 1逆时针旋转到△A 1B 1O 2的位置,使点O 1的对应点O 2也落在直线y =-34x 上,以此进行下去…,若点B 的坐标为(0,3),则点B 21的纵坐标...为________.第7题图专题六 规律探索题类型一 数式规律1. 6667 【解析】∵a 1=1,a 2=6,a 3=1,a 4=6,a 5=5,a 6=6,a 7=1,a 8=6,a 9=1,a 10=0,…,即每10个数一循环,∴a 1+a 2+a 3+…+a 10=1+6+1+6+5+6+1+6+1+0=33,2021÷10=202……1,∴33×202+1=6667.2. -5;18 【解析】第1个至第4个台阶上数的和为-5+(-2)+1+9=3,∵任意相邻四个台阶上数的和都相等,∴-2+1+9+x =3,解得x =-5,则第5个台阶上的数x 是-5.由题意知,台阶上的数字每4个一循环,∵35÷4=8……3,∴从下到上前35个台阶上数的和为8×3-5-2+1=18.3. 2023 【解析】观察数字的变化,发现规律:第n 行,第n 列的数为2n (n -1)+1,∴第32行,第32列的数为2×32×(32-1)+1=1985,根据排列规律,偶数行的数从右往左依次增加2,∴第32行,第13列的数为1985+2×(32-13)=2023.4. 170 【解析】分析题目可得4=2×2,6=3×2,8=4×2;2=1+1,3=2+1,4=3+1;∴18=2b ,b =a +1.∴a =8,b =9.∵9=2×4+1,20=3×6+2,35=4×8+3,∴x =18b +a =18×9+8=170.5. -a +1a 【解析】S 1=1a ,S 2=-1a -1=-a +1a ,S 3=-a a +1,S 4=-1a +1,S 5=-(a +1),S 6=a ,S 7=1a ,…,∴每6个数是一个循环,∵2018÷6=336……2,∴S 2018=S 2=-a +1a .6. 22021-1 ;1 【解析】根据题意得:(x -1)(x n +x n -1+…+x +1)=x n +1-1,∵(2-1)×(22020+22019+…+2+1)=22020+1-1,∴22020+22019+…+2+1=22021-1,∵21=2,个位数字是2,22=4,个位数字是4,23=8,个位数字是8,24=16,个位数字是6,25=32,个位数字是2,…,∵2021÷4=505……1,∴22021的个位数字是2,∴22021-1的个位数字是1. 7. 10 【解析】∵a =5-12,b =5+12,∴ab =5-12×5+12=1,∵S n =11+a n +11+b n =2+a n +b n (1+a n )(1+b n )=2+a n +b n 1+(ab )n +a n +b n =2+a n +b n2+a n +b n =1,∴S 1=S 2=S 3=…=S n =1,∴S 1+S 2+S 3+…+S 10=10.8. 556个 【解析】∵前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,∴前区最后一排座位数为20+2×(8-1)=34,∴前区座位数为(20+34)×8÷2=216,∵前区最后一排与后区各排的座位数相同,后区一共有10排,∴后区的座位数为10×34=340,∴该礼堂的座位总数是216+340=556个.9. -12021 【解析】x 1=1+11×2=1+1-12,x 2=1+12×3=1+12-13,x 3=1+13×4=1+13-14,…,x n =1+1n (n +1)=1+1n -1n +1,∴x 1+x 2+x 3+…+x n =1+1-12+1+12-13+1+13-14+…+1+1n -1n +1=n +1-1n +1,∴x 1+x 2+x 3+…+x 2020-2021=2020+1-12021-2021=-12021.10. 庚午年 【解析】公元纪年换算成干支纪年方法如下:天干算法:用公元纪年数减3,除以10(不管商数)所得余数,就是天干所对应的位数,地支算法:用公元纪年数减3,除以12(不管商数)所得余数,就是地支所对应的位数,2050-3=2047,2047÷10余数为7,∴天干为“庚”,2047÷12余数为7,∴地支为“午”,∴2050年为“庚午”年.类型二 图形变化规律1. (-27,27),(-31011,31011) 【解析】当x =1时,y =3x =3,∴点A 1的坐标为(1,3);当y =-x =3时,x =-3,∴点A 2的坐标为(-3,3);同理可得A 3(-3,-9),A 4(9,-9),A 5(9,27),A 6(-27,27),A 7(-27,-81),…,∴A 4n +1(32n ,32n +1),A 4n +2(-32n +1,32n +1),A 4n +3(-32n +1,-32n +2),A 4n +4(32n +2,-32n +2)(n 为自然数).∵2022=505×4+2,∴点A 2022的坐标为(-31011,31011).2. 24038· 3 【解析】∵四边形ABCD 是菱形,∴AB =AD =BC =CD =1,AD ∥BC ,AB ∥CD ,∵∠ABC =120°,∴∠BCD =60°,∴∠ADA 1=∠BCD =60°,∵DA 1=CD ,∴DA 1=AD ,∴△ADA 1为等边三角形,同理可得△A 1D 1A 2,…,△A 2020D 2020A 2021都为等边三角形,如解图,过点B 作BE ⊥CD 于点E ,∴BE =BC ·sin ∠BCD =32=A 1D ,∴S 1=12A 1D ·BE =34A 1D 2=34,同理可得,S 2=34A 2D 12=34×22=3,S 3=34A 3D 22=34×42=43,…,∴由此规律可得,S n =3·22n -4,∴S 2021=3×22×2021-4=24038· 3.第2题解图3. 2021+673 3 【解析】∵∠ACB =90°,∠B =30°,AC =1,∴AB =2,BC =3,∴将△ABC 绕点A 顺时针旋转到①,可得到点P 1,此时AP 1=2;将位置①的三角形绕点P 1顺时针旋转到位置②,可得到点P 2,此时AP 2=2+3;将位置②的三角形绕点P 2顺时针旋转到位置③,可得到点P 3,此时AP 3=3+3,…,∵2020÷3=673……1,∴AP 2020=673×(3+3)+2=2021+673 3.4. (3n -1,0) 【解析】根据题意得△A 1B 1C 1是等边三角形,∴A 1C 1=2,则点A 1的坐标是(1,0),B 1O =3,在Rt △A 2OB 1中,tan30°=B 1O A 2O ,得A 2O =3,则点A 2的坐标为(3,0),同理求出点A 3的坐标是(9,0),A 4的坐标是(27,0),…,即点A 3(32,0),A 4(33,0),…,∴点A n 的坐标为(3n -1,0)5. 9×4n -15n +1 【解析】∵在矩形ABCD 中,AB =1,BC =2,∴AC =5,∵DC 1⊥AC ,∴DC 1=AD ·CD AC =255,∴CC 1=CD 2-DC 21=12-(255)2=55,∴AC 1=455,∵四边形AA 1DC 1是矩形,∴AA 1=DC 1=255,∵DC 2⊥A 1C 1,∴∠AC 1A 1=∠C 1DM 1,∴tan ∠AC 1A 1=tan ∠C 1DM 1=AA 1AC 1=C 1C 2DC 2=12,∴由勾股定理可得C 1C 2=25,∴M 1C 2=15,∵点O 1是矩形AA 1DC 1对角线的交点,∴点O 1到AC 1的距离=12DC 1=55,∴S 1=S △AO 1C 1-S △C 1C 2M 1=12×455×55-12×15×25=925=9×152;同理可得A 1C 2=85,DC 2=45,C 2C 3=4525,M 2C 3=2525,点O 2到A 1C 1的距离=12DC 2=25,∴S 2=S △A 1O 2C 2-S △C 2C 3M 3=12×85×25-12×4525×2525=36125=9×453;同理可得S 3=9×4254,S 4=9×4355,…,以此类推可得S n =9×4n -15n +1.6. (0,-2) 【解析】如解图,∵四边形OABC 是菱形,且OC =2,∴OA =2,又∵∠OCB =45°,∴∠OAB =45°,∴A (-1,1),由旋转的性质得OA =OA 1=OA 2=…=OA 7= 2.∵菱形OABC 绕点O 顺时针旋转45°后得到菱形OA 1B 1C 1,相当于将线段OA 绕点O 顺时针旋转45°得到线段OA 1,易知点A 与A 2关于y 轴对称,点A 2与A 4关于x 轴对称,点A 与点A 6关于x 轴对称,其余点均在x 轴、y 轴上,∴A (-1,1),A 1(0,2),A 2(1,1),A 3(2,0),A 4(1,-1),A 5(0,-2),A 6(-1,-1),A 7(-2,0),….∵360°÷45°=8,∴图形在旋转过程中每8次为一个循环,∵2021÷8=252……5,∴点A 2021的坐标与点A 5的坐标相同,∴点A 2021的坐标为(0,-2).第6题解图7. 3875 【解析】∵AB ⊥y 轴,点B (0,3),∴OB =3,则点A 的纵坐标为3,将y =3代入y =-34x ,解得x =-4,即A (-4,3),∴OB =3,AB =4,OA =32+42=5,由旋转可知:OB =O 1B 1=O 2B 1=O 2B 2=...=3,OA =O 1A =O 2A 1=...=5,AB =AB 1=A 1B 1=A 2B 2= (4)∴OB 1=OA +AB 1=5+4=9,B 1B 3=3+4+5=12,∴OB 21=OB 1+B 1B 21=9+(21-1)÷2×12=129,设B 21(a ,-34a ),则OB 21=a 2+(-34a )2=129, 解得a =-5165或5165(舍),则-34a =-34×(-5165)=3875, 即点B 21的纵坐标为3875.。
中考规律探索题与答案

探索规律题类型一数字规律1、下面是按一定规律排列的一列数:,那么第n个数是.解析∵分子分别为1、 3 、5 、 7 ,⋯,∴第 n 个数的分子是2n ﹣ 1 。
∵4 ﹣ 3=1=1 2 ,7﹣3=4=2 2 ,12﹣3=9=3 2 ,19﹣3=16=42,⋯,∴第n 个数的分母为n 2 +3。
∴第n个数是。
2、观察下列等式:,,,,,,。
试猜想,的个位数字是 __ ___。
解析本题主要考查规律探索。
观察等式:,,,,,可得,次方的个位数字是,次方的个位数字是,次方的个位数字是,次方的个位数字是,次方的个位数字是,个位数字的变化是以、、、为周期,即周期为,又因为,所以的个位数字与的个位数字相同为。
故本题正确答案为。
考点规律探索。
3 、古希腊数学家把数1,3,6,10,15,21,叫做三角形数, 它有一定的规律性 , 若把第一个三角形数记为, 第二个三角形数记为,第n个三角形数记为, 则.答案解 :,═,,═,═, ⋯,,则,因此,本题正确答案是:.解析根据三角形数得到,,,,, 即三角形数为从 1 到它的顺号数之间所有整数的和, 即、,然后计算可得 .4 、按一定规律排列的一列数:,,,,,,,,请你仔细观察,按照此规律对应的数字应为_____。
答案解析本题主要考查规律探索。
将中间两个化为分数之后为:,,,,,,,,观察可知分子是从开始不断递增的奇数,分母是从开始不断递增的质数,那么根据这个规律即可得到。
故本题正确答案为。
考点规律探索。
5 、如图 , 下列各图形中的三个数之间均具有相同的规律, 依此规律 , 那么第 4个图形中的,一般地 , 用含有 m,n 的代数式表示 y, 即.答案解:观察,发现规律:,,,,因此,本题正确答案是:63;解析观察给定图形 , 发现右下的数字=右上数字( 左下数字, 依此规律即可得出结论 .6 、观察下列数据:,,,,,,它们是按一定规律排列的,依照此规律,第个数据是 _____ 。
中考数学专题训练:规律探索——数式规律(附参考答案)

中考数学专题训练:规律探索——数式规律(附参考答案)1.按一定规律排列的单项式:a,√2a2,√3a3,√4a4,√5a5,…,第n个单项式是( ) A.√n B.√n−1a n-1C.√n a n D.√n a n-12.在如图所示的运算程序中,若开始输入x的值为48,我们发现第一次输出的结果为24,第二次输出的结果为12……则第2 023次输出的结果为( )A.6 B.3C.622 021D.322 0223.将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是( )A.2 025 B.2 023C.2 021 D.2 0194.根据图中数字的规律,若第n个图中的q=143,则p的值为( )A.100 B.121C.144 D.1695.按一定规律排列的单项式:a2,4a3,9a4,16a5,25a6,…,第n个单项式是( ) A.n2a n+1B.n2a n-1C.n n a n+1D.(n+1)2a n6.根据图中数字的排列规律,在第⑦个图中,a-b-c的值是( )A.62 B.64C.-66 D.-1907.将从1开始的连续自然数按以下规律排列:若有序数对(n,m)表示第n行,从左到右第m个数,如(3,2)表示6,则表示99的有序数对是______________.8.根据图中数字的规律,则x+y的值是_______..例9.对于正整数a,我们规定:若a为奇数,则f(a)=3a+1;若a为偶数,则f(a)=a2=5.若a1=8,a2=f(a1),a3=f(a2),a4=f(a3),…,如f(15)=3×15+1=46,f(10)=102依此规律进行下去,得到一列数a1,a2,a3,a4,…,a n,…,(n为正整数),a1+a2+a3+…+a2 022=__________.参考答案1.C 2.A 3.B 4.B 5.A 6.A 7.(10,18) 8.593 9.4 725。
中考数学专题训练01:规律探索题(含答案)

专题训练(一)[规律探索题]1.如图1-1所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第n 个图形中有120朵玫瑰花,则n的值为()图1-1A.28B.29C.30D.312.观察下列等式:71=7,72=49,73=343,74=2401,75=16807,76=117649,…,那么计算71+72+73+…+72020的结果的个位数字是()A.9B.7C.6D.03.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值为 ()图1-2A.180B.182C.184D.1864.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为()图1-3A.73B.81C.91D.1095.请你计算:(1-x)(1+x),(1-x)(1+x+x2),(1-x)(1+x+x2+x3),…,猜想(1-x)(1+x+x2+…+x n)的结果是()A.1-x n+1B.1+x n+1C.1-x nD.1+x n6.图1-4中的图形都是由同样大小的棋子按一定的规律组成的,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,…,则第⑥个图形中棋子的颗数为()图1-4A.51B.70C.76D.817.如图1-5,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,依此下去,第n个正方形的面积为()图1-5A.(√2)n-1B.2n-1C .(√2)nD .2n8.按一定规律排列的一列数依次为:23,1,87,119,1411,1713,…,按此规律,这列数中的第100个数是 .9.已知a 1=-32,a 2=55,a 3=-710,a 4=917,a 5=-1126,…,则a 8= .10.如图1-6,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…;按照此规律,第n 个图中正方形和等边三角形的个数之和为 个.图1-611.观察下面的单项式:a ,-2a 2,4a 3,-8a 4,…,根据你发现的规律,第8个式子是 .12.观察下列各式:√1+13=2√13,√2+14=3√14,√3+15=4√15,…,请你将所发现的规律用含自然数n (n ≥1)的代数式表达出来: .13.图1-7是将正三角形按一定规律排列的,则第五个图形中正三角形的个数是 .图1-714.观察下列等式:42-12=3×5;52-22=3×7;62-32=3×9;72-42=3×11;…,则第n (n 是正整数)个等式为 .15.如图1-8,在平面直角坐标系中,△ABC 的顶点坐标为A (-1,1),B (0,-2),C (1,0).点P (0,2)绕点A 旋转180°得到点P 1,点P 1绕点B 旋转180°得到点P 2,点P 2绕点C 旋转180°得到点P 3,点P 3绕点A 旋转180°得到点P 4,…,按此作法进行下去,则点P 2017的坐标为 .图1-816.如图1-9,直线l为y=√3x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,…,按此作法进行下去,则点A n的坐标为.图1-917.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如图1-10所示的方式放置.点A1,A2,A3…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B n的坐标是.(n为正整数)图1-10参考答案1.C[解析] 第1个图形有(4×1)朵,第2个图形有(4×2)朵,第3个图形有(4×3)朵, …,第n个图形有4n朵,所以由4n=120得n=30.2.D3.C[解析] 观察各正方形中的4个数可知,1+14=3×5,3+32=5×7,5+58=7×9,故11+m=(11+2)×(11+4),解得m=184.4.C[解析] 整个图形可以看作是由两部分组成,各自的变化规律我们可以用一个表格来呈现:第①个第②个第③个第④个…第个上半1=124=229=3216=42…n2部分下半2=1+1 3=2+1 4=3+1 5=4+1 …n+1部分由此推断出这组图形中菱形个数的变化规律为:n2+n+1.当n=9时,有n2+n+1=92+9+1=91,∴第⑨个图形中菱形的个数为91.5.A[解析] 利用多项式乘多项式法则计算,归纳总结得到一般性规律,即可得到结果.观察可知,第一个式子的结果是:1-x2,第二个式子的结果是:1-x3,第三个式子的结果是:1-x4,…,第n个式子的结果是:1-x n+1.6.C[解析] 通过观察图形得到第①个图形中棋子的颗数为1=1+5×0;第②个图形中棋子的颗数为1+5×1=6;第③个图形中棋子的颗数为1+5+10=1+5×3=16;…所以第个图形中棋子的颗数为1+5n (n -1)2,然后把n=6代入计算即可.7.B 8.299201 [解析] 分别寻找分子、分母蕴含的规律,第n 个数可以表示为3n -12n+1,当n=100时,第100个数是299201.9.1765 [解析] 由前5项可得a n =(-1)n ·2n+1n 2+1,当n=8时,a 8=(-1)8·2×8+182+1=1765.10.(9n+3) [解析] 由图形及数字规律可知,第n 个图中正方形的个数为5n+1,等边三角形的个数为4n+2,所以其和为5n+1+4n+2=9n+3.11.-128a 8 [解析] 根据单项式可知n 为双数时a 的前面要加上负号,而a 的系数为2n-1,a 的指数为n.第8个式子为-27a 8=-128a 8.12.√n +1n+2=(n+1)√1n+2 [解析] 观察所给出的二次根式,确定变化规律:左边被开方数由两项组成,第一项为序号,第二项为序号加2的倒数;右边也为两部分,根号外为序号加1,根号内为序号加2的倒数的算术平方根,即√n +1n+2=(n+1)√1n+2.13.485 [解析] 由图可以看出:第一个图形中有5个正三角形,第二个图形中有5×3+2=17(个)正三角形,第三个图形中有17×3+2=53(个)正三角形,由此得出第四个图形中有53×3+2=161(个)正三角形,第五个图形中有161×3+2=485(个)正三角形.14.(n+3)2-n 2=3×(2n+3) [解析] 确定规律,写出一般式.∵42-12=3×5;52-22=3×7;62-32=3×9;72-42=3×11;∴第n 个式子为:(n+3)2-n 2=3×(2n+3).15.(-2,0) [解析] 根据旋转可得:P 1(-2,0),P 2(2,-4),P 3(0,4),P 4(-2,-2),P 5(2,-2),P 6(0,2),故6次旋转为一个循环,2017÷6=336……1,故P 2017(-2,0).16.(2n-1,0) [解析] 由点A 1坐标为(1,0),过点A 1作x 轴的垂线交直线y=√3x 于点B 1,可知B 1点的坐标为(1,√3).以原点O为圆心,OB1长为半径画弧与x轴交于点A2,所以OA2=OB1,所以OA2=√12+(√3)2=2,因此点A2的坐标为(2,0),同理,可求得B2的坐标为(2,2√3),点A3的坐标为(4,0),B3(4,4√3)……所以点A n的坐标为(2n-1,0).17.(2n-1,2n-1)[解析] 当x=0时,y=x+1=1,∴点A1的坐标为(0,1).∵四边形A1B1C1O为正方形,∴点B1的坐标为(1,1).当x=1时,y=x+1=2,∴点A2的坐标为(1,2).∵四边形A2B2C2C1为正方形,∴点B2的坐标为(3,2).同理,可得点A3的坐标为(3,4),点B3的坐标为(7,4),…,点A n的坐标为(2n-1-1,2n-1),点B n的坐标为(2n-1,2n-1).故答案为(2n-1,2n-1).。
中考数学真题《规律探究题》专项测试卷(附答案)

中考数学真题《规律探究题》专项测试卷(附答案)学校:___________班级:___________姓名:___________考号:___________(26题)一 、单选题1.(2023·重庆·统考中考真题)用长度相同的木棍按如图所示的规律拼图案 其中第①个图案用了9根木棍 第①个图案用了14根木棍 第①个图案用了19根木棍 第①个图案用了24根木棍 …… 按此规律排列下去,则第①个图案用的木棍根数是( )A .39B .44C .49D .542.(2023·重庆·统考中考真题)用圆圈按如图所示的规律拼图案 其中第①个图案中有2个圆圈 第①个图案中有5个圆圈 第①个图案中有8个圆圈 第①个图案中有11个圆圈 … 按此规律排列下去,则第①个图案中圆圈的个数为( )A .14B .20C .23D .263.(2023·云南·统考中考真题)按一定规律排列的单项式:23452345,a a a a a 第n 个单项式是( )A nB 11n n a --C n naD 1n na -4.(2023·山东烟台·统考中考真题)如图,在直角坐标系中 每个网格小正方形的边长均为1个单位长度 以点P 为位似中心作正方形123PA A A 正方形456,PA A A ⋯ 按此规律作下去 所作正方形的顶点均在格点上 其中正方形123PA A A 的顶点坐标分别为()()()123,0,2,1,1,0P A A --- ()32,1A --,则顶点100A 的坐标为( )A .()31.34B .()31,34-C .()32,35D .()32,05.(2023·山东·统考中考真题)已知一列均不为1的数123n a a a a ,,,,满足如下关系:1223121111a a a a a a ++==--, 34131111nn na a a a a a +++==--,, 若12a =,则2023a 的值是( ) A .12-B .13C .3-D .26.(2023·四川达州·统考中考真题)如图,四边形ABCD 是边长为12的正方形 曲线11112DA B C D A 是由多段90︒的圆心角的圆心为C 半径为1CB 11C D 的圆心为D 半径为11111111,DC DA A B B C C D 、、、的圆心依次为A B C D 、、、循环,则20232023A B 的长是( )A .40452πB .2023πC .20234πD .2022π7.(2023·湖南常德·统考中考真题)观察下边的数表(横排为行 竖排为列) 按数表中的规律 分数202023若排在第a 行b 列,则a b -的值为( ) 11122113 22 31 1423 32 41…… A .2003 B .2004C .2022D .20238.(2023·四川内江·统考中考真题)对于正数x 规定2()1x f x x =+ 例如:224(2)213f ⨯==+ 1212212312f ⨯⎛⎫== ⎪⎝⎭+ 233(3)312f ⨯==+ 1211313213f ⨯⎛⎫== ⎪⎝⎭+ 计算:11111(1)1011009932f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++++⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)(3)(99)(100)(101)f f f f f +++++=( )A .199B .200C .201D .2029.(2023·山东日照·统考中考真题)数学家高斯推动了数学科学的发展 被数学界誉为“数学王子” 据传 他在计算1234100+++++时 用到了一种方法 将首尾两个数相加 进而得到100(1100)12341002⨯++++++=.人们借助于这样的方法 得到(1)12342n n n ++++++=(n 是正整数).有下列问题 如图,在平面直角坐标系中的一系列格点(),i i i A x y 其中1,2,3,,,i n = 且,i i x y 是整数.记n n n a x y =+ 如1(0,0)A 即120,(1,0)a A = 即231,(1,1)a A =- 即30,a =以此类推.则下列结论正确的是( )A .202340a =B .202443a =C .2(21)26n a n -=-D .2(21)24n a n -=-二 填空题10.(2023·四川成都·统考中考真题)定义:如果一个正整数能表示为两个正整数m n 的平方差 且1m n ->,则称这个正整数为“智慧优数”.例如 221653=- 16就是一个智慧优数 可以利用22()()m n m n m n -=+-进行研究.若将智慧优数从小到大排列,则第3个智慧优数是 第23个智慧优数是 .11.(2023·四川遂宁·统考中考真题)烷烃是一类由碳 氢元素组成的有机化合物 在生产生活中可作为燃料 润滑剂等原料 也可用于动 植物的养护.通常用碳原子的个数命名为甲烷 乙烷 丙烷 …… 癸烷(当碳原子数目超过10个时即用汉文数字表示 如十一烷 十二烷……)等 甲烷的化学式为4CH 乙烷的化学式为26C H 丙烷的化学式为38C H …… 其分子结构模型如图所示 按照此规律 十二烷的化学式为 .12.(2023·湖南岳阳·统考中考真题)观察下列式子:21110-=⨯ 22221-=⨯ 23332-=⨯ 24443-=⨯ 25554-=⨯ …依此规律,则第n (n 为正整数)个等式是 .13.(2023·湖北随州·统考中考真题)某天老师给同学们出了一道趣味数学题:设有编号为1-100的100盏灯 分别对应着编号为1-100的100个开关 灯分为“亮”和“不亮”两种状态 每按一次开关改变一次相对应编号的灯的状态 所有灯的初始状态为“不亮”.现有100个人 第1个人把所有编号是1的整数倍的开关按一次 第2个人把所有编号是2的整数倍的开关按一次 第3个人把所有编号是3的整数倍的开关按一次 …… 第100个人把所有编号是100的整数倍的开关按一次.问最终状态为“亮”的灯共有多少盏?几位同学对该问题展开了讨论:甲:应分析每个开关被按的次数找出规律:乙:1号开关只被第1个人按了1次 2号开关被第1个人和第2个人共按了2次 3号开关被第1个人和第3个人共按了2次 ……丙:只有按了奇数次的开关所对应的灯最终是“亮”的状态.根据以上同学的思维过程 可以得出最终状态为“亮”的灯共有 盏.14.(2023·湖北十堰·统考中考真题)用火柴棍拼成如下图案 其中第①个图案由4个小等边三角形围成1个小菱形 第①个图案由6个小等边三角形围成2个小菱形 …… 若按此规律拼下去,则第n 个图案需要火柴棍的根数为 (用含n 的式子表示).15.(2023·山西·统考中考真题)如图是一组有规律的图案 它由若干个大小相同的圆片组成.第1个图案中有4个白色圆片 第2个图案中有6个白色圆片 第3个图案中有8个白色圆片 第4个图案中有10个白色圆片 …依此规律 第n 个图案中有 个白色圆片(用含n 的代数式表示)16.(2023·黑龙江绥化·统考中考真题)在求123100++++的值时 发现:1100101+= 299101+=从而得到123100++++=101505050⨯=.按此方法可解决下面问题.图(1)有1个三角形 记作11a =分别连接这个三角形三边中点得到图(2) 有5个三角形 记作25a = 再分别连接图(2)中间的小三角形三边中点得到图(3) 有9个三角形 记作39a = 按此方法继续下去,则123n a a a a ++++= .(结果用含n 的代数式表示)17.(2023·湖南怀化·统考中考真题)在平面直角坐标系中 AOB 为等边三角形 点A 的坐标为()1,0.把AOB 按如图所示的方式放置 并将AOB 进行变换:第一次变换将AOB 绕着原点O 顺时针旋转60︒ 同时边长扩大为AOB 边长的2倍 得到11A OB △ 第二次旋转将11A OB △绕着原点O 顺时针旋转60︒ 同时边长扩大为11A OB △ 边长的2倍 得到22A OB △ ….依次类推 得到20332033A OB ,则20232033A OB △的边长为点2023A 的坐标为 .18.(2023·山东临沂·统考中考真题)观察下列式子 21312⨯+=22413⨯+= 23514⨯+=……按照上述规律 2n =.19.(2023·山东枣庄·统考中考真题)如图,在反比例函数8(0)y x x=>的图象上有1232024,,,P P P P 等点 它们的横坐标依次为1 2 3 … 2024 分别过这些点作x 轴与y 轴的垂线 图中所构成的阴影部分的面积从左到右依次为1232023,,,,S S S S ,则1232023S S S S ++++= .20.(2023·山东聊城·统考中考真题)如图,图中数字是从1开始按箭头方向排列的有序数阵.从3开始 把位于同一列且在拐角处的两个数字提取出来组成有序数对:()3,5 ()7,10 ()13,17 ()21,26 ()31,37…如果单把每个数对中的第一个或第二个数字按顺序排列起来研究 就会发现其中的规律.请写出第n 个数对: .21.(2023·湖南张家界·统考中考真题)如图,在平面直角坐标系中 四边形ABOC 是正方形 点A 的坐标为(1,1) 1AA 是以点B 为圆心 BA 为半径的圆弧 12A A 是以点O 为圆心 1OA 为半径的圆弧 23A A 是以点C 为圆心 2CA 为半径的圆弧 34A A 是以点A 为圆心 3AA 为半径的圆弧 继续以点B O C A 为圆心按上述作法得到的曲线12345AA A A A A 称为正方形的“渐开线”,则点2023A 的坐标是 .22.(2023·山东东营·统考中考真题)如图,在平面直角坐标系中 直线l :33y x =x 轴交于点1A 以1OA 为边作正方形111A B C O 点1C 在y 轴上 延长11C B 交直线l 于点2A 以12C A 为边作正方形2221A B C C 点2C 在y 轴上 以同样的方式依次作正方形3332A B C C … 正方形2023202320232022A B C C ,则点2023B 的横坐标是 .23.(2023·湖北恩施·统考中考真题)观察下列两行数 探究第①行数与第①行数的关系:2- 4 8- 16 32- 64 ……①0 7 4- 21 26- 71 ……①根据你的发现 完成填空:第①行数的第10个数为 取每行数的第2023个数,则这两个数的和为 .24.(2023·山东泰安·统考中考真题)已知 12345678,,,OA A A A A A A A △△△都是边长为2的等边三角形 按下图所示摆放.点235,,,A A A 都在x 轴正半轴上 且2356891A A A A A A ====,则点2023A 的坐标是 .25.(2023·四川广安·统考中考真题)在平面直角坐标系中 点1234A A A A 、、、在x 轴的正半轴上 点123B B B 、、在直线()0y x =≥上 若点1A 的坐标为()2,0 且112223334A B A A B A A B A △、△、△均为等边三角形.则点2023B 的纵坐标为 .26.(2023·黑龙江·统考中考真题)如图,在平面直角坐标系中 ABC 的顶点A 在直线13:l y x =上 顶点B 在x 轴上 AB 垂直x 轴 且22OB = 顶点C 在直线2:3l y x 上 2BC l ⊥ 过点A 作直线2l 的垂线 垂足为1C 交x 轴于1B 过点1B 作11A B 垂直x 轴 交1l 于点1A 连接11A C 得到第一个111A B C △ 过点1A 作直线2l 的垂线 垂足为2C 交x 轴于2B 过点2B 作22A B 垂直x 轴 交1l 于点2A 连接22A C 得到第二个222A B C △ 如此下去 ……,则202320232023A B C 的面积是 .参考答案一 单选题1.(2023·重庆·统考中考真题)用长度相同的木棍按如图所示的规律拼图案 其中第①个图案用了9根木棍 第①个图案用了14根木棍 第①个图案用了19根木棍 第①个图案用了24根木棍 …… 按此规律排列下去,则第①个图案用的木棍根数是( )A .39B .44C .49D .54【答案】B【分析】根据各图形中木棍的根数发现计算的规律 由此即可得到答案. 【详解】解:第①个图案用了459+=根木棍 第①个图案用了45214+⨯=根木棍 第①个图案用了45319+⨯=根木棍 第①个图案用了45424+⨯=根木棍 ……第①个图案用的木棍根数是45844+⨯=根 故选:B .【点睛】此题考查了图形类规律的探究正确理解图形中木棍根数的变化规律由此得到计算的规律是解题的关键.2.(2023·重庆·统考中考真题)用圆圈按如图所示的规律拼图案其中第①个图案中有2个圆圈第①个图案中有5个圆圈第①个图案中有8个圆圈第①个图案中有11个圆圈… 按此规律排列下去,则第①个图案中圆圈的个数为()A.14B.20C.23D.26【答案】B【分析】根据前四个图案圆圈的个数找到规律即可求解.=⨯-【详解】解:因为第①个图案中有2个圆圈2311=⨯-第①个图案中有5个圆圈5321=⨯-第①个图案中有8个圆圈8331=⨯-第①个图案中有11个圆圈11341…⨯-=所以第①个图案中圆圈的个数为37120故选:B.n-是解题的【点睛】本题考查了图形类规律探究根据前四个图案圆圈的个数找到第n个图案的规律为31关键.3.(2023·云南·统考中考真题)按一定规律排列的单项式:2345,a第n个单项式是()B1n-C n D1n-A【答案】C字母为a指数为1开始的自然数据此即可求解.【分析】根据单项式的规律可得【详解】解:按一定规律排列的单项式:2345,a第n n故选:C.【点睛】本题考查了单项式规律题找到单项式的变化规律是解题的关键.4.(2023·山东烟台·统考中考真题)如图,在直角坐标系中每个网格小正方形的边长均为1个单位长度以点P 为位似中心作正方形123PA A A 正方形456,PA A A ⋯ 按此规律作下去 所作正方形的顶点均在格点上 其中正方形123PA A A 的顶点坐标分别为()()()123,0,2,1,1,0P A A --- ()32,1A --,则顶点100A 的坐标为( )A .()31.34B .()31,34-C .()32,35D .()32,0【答案】A【分析】根据图象可得移动3次完成一个循环 从而可得出点坐标的规律()323n A n n --,.【详解】解:①()121A -, ()412A -, ()703A , ()1014A ,①()323n A n n --,①1003342=⨯-,则34n =①()1003134A , 故选:A .【点睛】本题考查了点的规律变化 解答本题的关键是仔细观察图象 得到点的变化规律. 5.(2023·山东·统考中考真题)已知一列均不为1的数123n a a a a ,,,,满足如下关系:1223121111a a a a a a ++==--, 34131111nn na a a a a a +++==--,, 若12a =,则2023a 的值是( ) A .12-B .13C .3-D .2【答案】A【分析】根据题意可把12a =代入求解23a =-,则可得312a =- 413a = 52a =…… 由此可得规律求解.【详解】解:①12a =①212312a +==-- 3131132a -==-+ 411121312a -==+51132113a +==- ……. 由此可得规律为按2 3- 12- 13四个数字一循环①20234505.....3÷= ①2023312a a ==- 故选A .【点睛】本题主要考查数字规律 解题的关键是得到数字的一般规律.6.(2023·四川达州·统考中考真题)如图,四边形ABCD 是边长为12的正方形 曲线11112DA B C D A 是由多段90︒的圆心角的圆心为C 半径为1CB 11C D 的圆心为D 半径为11111111,DC DA A B B C C D 、、、的圆心依次为A B C D 、、、循环,则20232023A B 的长是( )A .40452πB .2023πC .20234πD .2022π【答案】A【分析】曲线11112DA B C D A …是由一段段90度的弧组成的 半径每次比前一段弧半径12+ 得到1114(1)22n n AD AA n -==⨯-+ 14(1)12n n BA BB n ==⨯-+ 得出半径 再计算弧长即可.【详解】解:由图可知 曲线11112DA B C D A …是由一段段90度的弧组成的 半径每次比前一段弧半径12+∴112AD AA ==111BA BB == 1132CB CC == 112DC DD ==12122AD AA ==+2221BA BB ==+ 22322CB CC ==+ 2222DC DD ==+ ⋯⋯1114(1)22n n AD AA n -==⨯-+ 14(1)12n n BA BB n ==⨯-+故20232023A B 的半径为()202320231420231140452BA BB ==⨯⨯-+=∴20232023A B 的弧长90404540451802ππ=⨯=. 故选A【点睛】此题主要考查了弧长的计算 弧长的计算公式:180n rl π= 找到每段弧的半径变化规律是解题关键. 7.(2023·湖南常德·统考中考真题)观察下边的数表(横排为行 竖排为列) 按数表中的规律 分数202023若排在第a 行b 列,则a b -的值为( ) 11122113 22 31 1423 32 41…… A .2003 B .2004 C .2022 D .2023【答案】C【分析】观察表中的规律发现 分数的分子是几,则必在第几列 只有第一列的分数 分母与其所在行数一致.【详解】观察表中的规律发现 分数的分子是几,则必在第几列 只有第一列的分数 分母与其所在行数一致 故202023在第20列 即20b = 向前递推到第1列时 分数为201912023192042-=+ 故分数202023与分数12042在同一行.即在第2042行,则2042a =. ①2042202022.a b -=-= 故选:C .【点睛】本题考查了数字类规律探索的知识点 解题的关键善于发现数字递变的周期性和趋向性.8.(2023·四川内江·统考中考真题)对于正数x 规定2()1x f x x =+ 例如:224(2)213f ⨯==+ 1212212312f ⨯⎛⎫== ⎪⎝⎭+ 233(3)312f ⨯==+ 1211313213f ⨯⎛⎫== ⎪⎝⎭+ 计算:11111(1)1011009932f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++++⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)(3)(99)(100)(101)f f f f f +++++=( )A .199B .200C .201D .202【答案】C【分析】通过计算11(1)1,(2)2,(3)223f f f f f ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭⋯可以推出11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭结果. 【详解】解:2(1)1,11f ==+ 12441212(2),,(2)2,112323212f f f f ⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+ 122331113(3),,(3)2,113232313f f f f ⨯⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+ …2100200(100)1100101f ⨯==+ 1212100()11001011100f ⨯==+1(100)()2100f f += 11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭21001=⨯+ 201=故选:C .【点睛】此题考查了有理数的混合运算 熟练掌握运算法则 找到数字变化规律是解本题的关键. 9.(2023·山东日照·统考中考真题)数学家高斯推动了数学科学的发展 被数学界誉为“数学王子” 据传 他在计算1234100+++++时 用到了一种方法 将首尾两个数相加 进而得到100(1100)12341002⨯++++++=.人们借助于这样的方法 得到(1)12342n n n ++++++=(n 是正整数).有下列问题 如图,在平面直角坐标系中的一系列格点(),i i i A x y 其中1,2,3,,,i n = 且,i i x y 是整数.记n n n a x y =+ 如1(0,0)A 即120,(1,0)a A = 即231,(1,1)a A =- 即30,a = 以此类推.则下列结论正确的是( )A .202340a =B .202443a =C .2(21)26n a n -=-D .2(21)24n a n -=-【答案】B【分析】利用图形寻找规律()211,1n A n n --- 再利用规律解题即可. 【详解】解:第1圈有1个点 即1(0,0)A 这时10a = 第2圈有8个点 即2A 到()91,1A 第3圈有16个点 即10A 到()252,2A 依次类推 第n 圈 ()211,1n A n n ---由规律可知:2023A 是在第23圈上 且()202522,22A ,则()202320,22A 即2023202242a =+= 故A 选项不正确 2024A 是在第23圈上 且()202421,22A 即2024212243a =+= 故B 选项正确第n 圈 ()211,1n A n n --- 所以2122n a n -=- 故C D 选项不正确 故选B .【点睛】本题考查图形与规律 利用所给的图形找到规律是解题的关键.二 填空题10.(2023·四川成都·统考中考真题)定义:如果一个正整数能表示为两个正整数m n 的平方差 且1m n ->,则称这个正整数为“智慧优数”.例如 221653=- 16就是一个智慧优数 可以利用22()()m n m n m n -=+-进行研究.若将智慧优数从小到大排列,则第3个智慧优数是 第23个智慧优数是 . 【答案】 15 45【分析】根据新定义 列举出前几个智慧优数 找到规律 进而即可求解.【详解】解:依题意 当3m = 1n =,则第1个一个智慧优数为22318-= 当4m = 2n =,则第2个智慧优数为224214-= 当4m = 1n =,则第3个智慧优数为224115-= 当5m = 3n =,则第5个智慧优数为225316-= 当5m = 2n =,则第6个智慧优数为225221-= 当5m = 1n =,则第7个智慧优数为225324-= ……6m =时有4个智慧优数 同理7m =时有5个 8m =时有6个12345621+++++=第22个智慧优数 当9m =时 7n = 第22个智慧优数为2297814932-=-= 第23个智慧优数为9,6m n ==时 2296813645-=-= 故答案为:15 45.【点睛】本题考查了新定义 平方差公式的应用 找到规律是解题的关键.11.(2023·四川遂宁·统考中考真题)烷烃是一类由碳 氢元素组成的有机化合物 在生产生活中可作为燃料 润滑剂等原料 也可用于动 植物的养护.通常用碳原子的个数命名为甲烷 乙烷 丙烷 …… 癸烷(当碳原子数目超过10个时即用汉文数字表示 如十一烷 十二烷……)等 甲烷的化学式为4CH 乙烷的化学式为26C H 丙烷的化学式为38C H …… 其分子结构模型如图所示 按照此规律 十二烷的化学式为 .【答案】1226C H【分析】根据碳原子的个数 氢原子的个数 找到规律 即可求解. 【详解】解:甲烷的化学式为4CH 乙烷的化学式为26C H 丙烷的化学式为38C H ……碳原子的个数为序数 氢原子的个数为碳原子个数的2倍多2个十二烷的化学式为1226C H 故答案为:1226C H .【点睛】本题考查了规律题 找到规律是解题的关键. 12.(2023·湖南岳阳·统考中考真题)观察下列式子:21110-=⨯ 22221-=⨯ 23332-=⨯ 24443-=⨯ 25554-=⨯ …依此规律,则第n (n 为正整数)个等式是 .【答案】()21n n n n -=-【分析】根据等式的左边为正整数的平方减去这个数 等式的右边为这个数乘以这个数减1 即可求解. 【详解】解:①21110-=⨯ 22221-=⨯ 23332-=⨯ 24443-=⨯ 25554-=⨯ …①第n (n 为正整数)个等式是()21n n n n -=-故答案为:()21n n n n -=-.【点睛】本题考查了数字类规律 找到规律是解题的关键.13.(2023·湖北随州·统考中考真题)某天老师给同学们出了一道趣味数学题:设有编号为1-100的100盏灯 分别对应着编号为1-100的100个开关 灯分为“亮”和“不亮”两种状态 每按一次开关改变一次相对应编号的灯的状态 所有灯的初始状态为“不亮”.现有100个人 第1个人把所有编号是1的整数倍的开关按一次 第2个人把所有编号是2的整数倍的开关按一次 第3个人把所有编号是3的整数倍的开关按一次 …… 第100个人把所有编号是100的整数倍的开关按一次.问最终状态为“亮”的灯共有多少盏?几位同学对该问题展开了讨论:甲:应分析每个开关被按的次数找出规律:乙:1号开关只被第1个人按了1次 2号开关被第1个人和第2个人共按了2次 3号开关被第1个人和第3个人共按了2次 ……丙:只有按了奇数次的开关所对应的灯最终是“亮”的状态.根据以上同学的思维过程 可以得出最终状态为“亮”的灯共有 盏. 【答案】10【分析】灯的初始状态为“不亮” 按奇数次,则状态为“亮” 按偶数次,则状态为“不亮” 确定1-100中 各个数因数的个数 完全平方数的因数为奇数个 从而求解.【详解】所有灯的初始状态为“不亮” 按奇数次,则状态为“亮” 按偶数次,则状态为“不亮”因数的个数为奇数的自然数只有完全平方数 1-100中 完全平方数为1 4 9 16 25 36 49 64 81 100 有10个数 故有10盏灯被按奇数次 为“亮”的状态 故答案为:10.【点睛】本题考查因数分解 完全平方数 理解因数的意义 完全平方数的概念是解题的关键. 14.(2023·湖北十堰·统考中考真题)用火柴棍拼成如下图案 其中第①个图案由4个小等边三角形围成1个小菱形 第①个图案由6个小等边三角形围成2个小菱形 …… 若按此规律拼下去,则第n 个图案需要火柴棍的根数为 (用含n 的式子表示).【答案】66n +/66n +【分析】当1n =时 有()2114+=个三角形 当2n =时 有()2216+=个三角形 当3n =时 有()2318+=个三角形 第n 个图案有()2122n n +=+个三角形 每个三角形用三根计算即可.【详解】解:当1n =时 有()2114+=个三角形 当2n =时 有()2216+=个三角形 当3n =时 有()2318+=个三角形 第n 个图案有()2122n n +=+个三角形 每个三角形用三根故第n 个图案需要火柴棍的根数为66n +. 故答案为:66n +.【点睛】本题考查了整式的加减的数字规律问题 熟练掌握规律的探索方法是解题的关键.15.(2023·山西·统考中考真题)如图是一组有规律的图案 它由若干个大小相同的圆片组成.第1个图案中有4个白色圆片 第2个图案中有6个白色圆片 第3个图案中有8个白色圆片 第4个图案中有10个白色圆片 …依此规律 第n 个图案中有 个白色圆片(用含n 的代数式表示)【答案】()22n +【分析】由于第1个图案中有4个白色圆片4221=+⨯ 第2个图案中有6个白色圆片6222=+⨯ 第3个图案中有8个白色圆片8223=+⨯ 第4个图案中有10个白色圆片10224=+⨯ ⋯ 可得第(1)n n >个图案中有白色圆片的总数为22n +.【详解】解:第1个图案中有4个白色圆片4221=+⨯ 第2个图案中有6个白色圆片6222=+⨯ 第3个图案中有8个白色圆片8223=+⨯ 第4个图案中有10个白色圆片10224=+⨯⋯①第(1)n n >个图案中有()22n +个白色圆片. 故答案为:()22n +.【点睛】此题考查图形的变化规律 通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素 然后推广到一般情况.解题关键是总结归纳出图形的变化规律. 16.(2023·黑龙江绥化·统考中考真题)在求123100++++的值时 发现:1100101+= 299101+=从而得到123100++++=101505050⨯=.按此方法可解决下面问题.图(1)有1个三角形 记作11a =分别连接这个三角形三边中点得到图(2) 有5个三角形 记作25a = 再分别连接图(2)中间的小三角形三边中点得到图(3) 有9个三角形 记作39a = 按此方法继续下去,则123n a a a a ++++= .(结果用含n 的代数式表示)【答案】22n n -/22n n -+【分析】根据题意得出()14143n a n n =+-=- 进而即可求解. 【详解】解:依题意 ()1231,5,9,14143n a a a a n n ===⋅⋅⋅=+-=-, ①123n a a a a ++++=()21432122n n n n n n +-==-=- 故答案为:22n n -.【点睛】本题考查了图形类规律 找到规律是解题的关键.17.(2023·湖南怀化·统考中考真题)在平面直角坐标系中 AOB 为等边三角形 点A 的坐标为()1,0.把AOB 按如图所示的方式放置 并将AOB 进行变换:第一次变换将AOB 绕着原点O 顺时针旋转60︒ 同时边长扩大为AOB 边长的2倍 得到11A OB △ 第二次旋转将11A OB △绕着原点O 顺时针旋转60︒ 同时边长扩大为11A OB △ 边长的2倍 得到22A OB △ ….依次类推 得到20332033A OB ,则20232033A OB △的边长为 点2023A 的坐标为 .【答案】 20232 ()202220222,2【分析】根据旋转角度为60︒ 可知每旋转6次后点A 又回到x 轴的正半轴上 故点2023A 在第四象限 且202320232OA = 即可求解.【详解】解:①AOB 为等边三角形 点A 的坐标为()1,0 ①1OA =①每次旋转角度为60︒ ①6次旋转360︒第一次旋转后 1A 在第四象限 12OA =第二次旋转后 2A 在第三象限 222OA =第三次旋转后 3A 在x 轴负半轴 332OA =第四次旋转后 4A 在第二象限 442OA =第五次旋转后 5A 在第一象限 552OA =第六次旋转后 6A 在x 轴正半轴 662OA =……如此循环 每旋转6次 点A 的对应点又回到x 轴正半轴①202363371÷=点2023A 在第四象限 且202320232OA =如图,过点2023A 作2023A H x ⊥轴于H在2023Rt OHA 中 202360HOA ∠=︒①202320232022202320231cos 2cos60222OH OA HOA =⋅∠=⨯︒=⨯=202320222023202320233sin 232A H OA HOA =⋅∠= ①点2023A 的坐标为()202220222,32.故答案为:20232 ()202220222,32.【点睛】本题考查图形的旋转 解直角三角形的应用.熟练掌握图形旋转的性质 根据旋转角度找到点的坐标规律是解题的关键.18.(2023·山东临沂·统考中考真题)观察下列式子 21312⨯+=22413⨯+= 23514⨯+=……按照上述规律 2n =. 【答案】()()111n n -++【分析】根据已有的式子 抽象出相应的数字规律 进行作答即可. 【详解】解:①21312⨯+= 22413⨯+=23514⨯+=……①()()2211n n n ++=+①()()2111n n n -++=.故答案为:()()111n n -++【点睛】本题考查数字类规律探究.解题的关键是从已有的式子中抽象出相应的数字规律. 19.(2023·山东枣庄·统考中考真题)如图,在反比例函数8(0)y x x=>的图象上有1232024,,,P P P P 等点 它们的横坐标依次为1 2 3 … 2024 分别过这些点作x 轴与y 轴的垂线 图中所构成的阴影部分的面积从左到右依次为1232023,,,,S S S S ,则1232023S S S S ++++= .【答案】2023253【分析】求出1234,,,P P P P …的纵坐标 从而可计算出1234,,,S S S S …的高 进而求出1234,,,S S S S … 从而得出123n S S S S +++⋯+的值.【详解】当1x =时 1P 的纵坐标为8 当2x =时 2P 的纵坐标为4 当3x =时 3P 的纵坐标为83当4x =时 4P 的纵坐标为2当5x =时 5P 的纵坐标为85…则11(84)84S =⨯-=- 2881(4)433S =⨯-=-3881(2)233S =⨯-=-481(2)2558S =⨯-=- (881)n S n n =-+ 1238888888844228335111n n S S S S n n n n +++⋯+=-+-+-+-++-=-=+++ ①12320238202320242532023S S S S ⨯+++⋯+==. 故答案为:2023253. 【点睛】本题考查了反比例函数与几何的综合应用 解题的关键是求出881n S n n =-+. 20.(2023·山东聊城·统考中考真题)如图,图中数字是从1开始按箭头方向排列的有序数阵.从3开始 把位于同一列且在拐角处的两个数字提取出来组成有序数对:()3,5 ()7,10 ()13,17 ()21,26 ()31,37…如果单把每个数对中的第一个或第二个数字按顺序排列起来研究 就会发现其中的规律.请写出第n 个数对: .【答案】()221,22n n n n ++++【分析】根据题意单另把每个数对中的第一个或第二个数字按顺序排列起来研究 可发现第n 个数对的第一个数为:()11n n ++ 第n 个数对的第二个位:()211n ++ 即可求解.【详解】解:每个数对的第一个数分别为3 7 13 21 31 … 即:121⨯+ 231⨯+ 341⨯+ 451⨯+ 561⨯+ … 则第n 个数对的第一个数为:()2111n n n n ++=++ 每个数对的第二个数分别为5 10 17 26 37 … 即:221+ 231+ 241+ 251+ 261+… 则第n 个数对的第二个位:()221122n n n ++=++①第n 个数对为:()221,22n n n n ++++ 故答案为:()221,22n n n n ++++.【点睛】此题考查数字的变化规律 找出数字之间的排列规律 利用拐弯出数字的差的规律解决问题. 21.(2023·湖南张家界·统考中考真题)如图,在平面直角坐标系中 四边形ABOC 是正方形 点A 的坐标为(1,1) 1AA 是以点B 为圆心 BA 为半径的圆弧 12A A 是以点O 为圆心 1OA 为半径的圆弧 23A A 是以点C 为圆心 2CA 为半径的圆弧 34A A 是以点A 为圆心 3AA 为半径的圆弧 继续以点B O C A 为圆心按上述作法得到的曲线12345AA A A A A 称为正方形的“渐开线”,则点2023A 的坐标是 .【答案】()2023,1-【分析】将四分之一圆弧对应的A 点坐标看作顺时针旋转90︒ 再根据A 1A 2A 3A 4A 的坐标找到规律即可.【详解】①A 点坐标为()1,1 且1A 为A 点绕B 点顺时针旋转90︒所得 ①1A 点坐标为()2,0又①2A 为1A 点绕O 点顺时针旋转90︒所得 ①2A 点坐标为()0.2-又①3A 为2A 点绕C 点顺时针旋转90︒所得 ①3A 点坐标为()3,1-又①4A 为3A 点绕A 点顺时针旋转90︒所得 ①4A 点坐标为()1,5由此可得出规律:n A 为绕B O C A 四点作为圆心依次循环顺时针旋转90︒ 且半径为1 2 3 n每次增加1. ①202355053÷=故2023A 为以点C 为圆心 半径为2022的2022A 顺时针旋转90︒所得 故2023A 点坐标为()2023,1-. 故答案为:()2023,1-.【点睛】本题考查了点坐标规律探索 通过点的变化探索出坐标变化的规律是解题的关键.22.(2023·山东东营·统考中考真题)如图,在平面直角坐标系中 直线l :33y x =x 轴交于点1A 以1OA 为边作正方形111A B C O 点1C 在y 轴上 延长11C B 交直线l 于点2A 以12C A 为边作正方形2221A B C C 点2C 在y 轴上 以同样的方式依次作正方形3332A B C C … 正方形2023202320232022A B C C ,则点2023B 的横坐标是 .【答案】20221⎛ ⎝⎭【分析】分别求出点点1B 的横坐标是1 点2B 的横坐标是1 点3B 2413⎛+= ⎝⎭找到规律 得到答案见即可.【详解】解:当0y = 0= 解得1x = ①点()11,0A ,①111A B C O 是正方形 ①11111OA A B OC === ①点()11,1B ①点1B 的横坐标是1当1y =时 1 解得1x =+①点21A ⎛⎫⎪ ⎪⎝⎭①2221A B C C 是正方形①2212211A B C C A C ===①点212B ⎛ ⎝⎭即点2B 的横坐标是1当2y =时 2= 解得)223x =①点34,23A ⎝⎭①3332A B C C 是正方形①33233243A B C C A C ===①点3B 2413⎛= ⎝⎭……以此类推,则点2023B 的横坐标是202231⎛ ⎝⎭故答案为:202231⎛ ⎝⎭【点睛】此题是点的坐标规律题 考查了二次函数的图象和性质 正方形的性质等知识 数形结合是是解题的关键.23.(2023·湖北恩施·统考中考真题)观察下列两行数 探究第①行数与第①行数的关系:2- 4 8- 16 32- 64 ……①0 7 4- 21 26- 71 ……①根据你的发现 完成填空:第①行数的第10个数为 取每行数的第2023个数,则这两个数的和为 .【答案】 1024 202422024-+【分析】通过观察第一行数的规律为(2)n - 第二行数的规律为(2)1n n -++ 代入数据即可. 【详解】第一行数的规律为(2)n - ①第①行数的第10个数为10(2)1024-= 第二行数的规律为(2)1n n -++①第①行数的第2023个数为2023(2)- 第①行数的第2023个数为2023(2)2024-+ ①202422024-+故答案为:1024 202422024-+.【点睛】本题主要考查数字的变化 找其中的规律 是今年考试中常见的题型. 24.(2023·山东泰安·统考中考真题)已知 12345678,,,OA A A A A A A A △△△都是边长为2的等边三角形 按下图所示摆放.点235,,,A A A 都在x 轴正半轴上 且2356891A A A A A A ====,则点2023A 的坐标是 .。
专题02规律探究(中考数学特色专题训练卷)(原卷版)

专题02 规律探究(中考数学特色专题训练卷)1.(2021•济宁)按规律排列的一组数据:12,35,□,717,926,1137,…,其中□内应填的数是( )A .23B .511C .59D .122.(2021•攀枝花)观察依次排列的一串单项式x ,﹣2x 2,4x 3,﹣8x 4,16x 5,…,按你发现的规律继续写下去,第8个单项式是( ) A .﹣128x 7B .﹣128x 8C .﹣256x 7D .﹣256x 83.(2021•十堰)将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是( )A .2025B .2023C .2021D .20194.(2021•镇江)如图,小明在3×3的方格纸上写了九个式子(其中的n 是正整数),每行的三个式子的和自上而下分别记为A 1,A 2,A 3,每列的三个式子的和自左至右分别记为B 1,B 2,B 3,其中,值可以等于789的是( )A .A 1B .B 1C .A 2D .B 35.(2020•西藏)观察下列两行数: 1,3,5,7,9,11,13,15,17,… 1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…,若第n 个相同的数是103,则n 等于( )A.18B.19C.20D.216.(2021•玉林)观察下列树枝分叉的规律图,若第n个图树枝数用Y n表示,则Y9﹣Y4=()A.15×24B.31×24C.33×24D.63×247.(2021•随州)根据图中数字的规律,若第n个图中的q=143,则p的值为()A.100B.121C.144D.1698.(2021•阜新)如图,弧长为半圆的弓形在坐标系中,圆心在(0,2).将弓形沿x轴正方向无滑动滚动,当圆心经过的路径长为2021π时,圆心的横坐标是()A.2020πB.1010π+2020C.2021πD.1011π+20209.(2020•常德)如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是()A.C、E B.E、F C.G、C、E D.E、C、F10.(2021•铜仁市)观察下列各项:112,214,318,4116,…,则第n 项是 .11.(2021•江西)如图在我国宋朝数学家杨辉1261年的著作《详解九章算法》中提到过,因而人们把这个表叫做杨辉三角,请你根据杨辉三角的规律补全表第四行空缺的数字是 .12.(2021•荆门)如图,将正整数按此规律排列成数表,则2021是表中第 行第 列.13.(2021•怀化)观察等式:2+22=23﹣2,2+22+23=24﹣2,2+22+23+24=25﹣2,…,已知按一定规律排列的一组数:2100,2101,2102,…,2199,若2100=m ,用含m 的代数式表示这组数的和是 .14.(2021•呼和浩特)若把第n 个位置上的数记为x n ,则称x 1,x 2,x 3,…,x n 有限个有序放置的数为一个数列A .定义数列A 的“伴生数列”B 是:y 1,y 2,y 3,…,y n ,其中y n 是这个数列中第n 个位置上的数,n =1,2,…,k 且y n ={0,x n−1=x n+11,x n−1≠x n+1并规定x 0=x n ,x n +1=x 1.如果数列A 只有四个数,且x 1,x 2,x 3,x 4依次为3,1,2,1,则其“伴生数列”B 是 .15.(2021•眉山)观察下列等式:x 1=√1+112+122=32=1+11×2; x 2=√1+122+132=76=1+12×3; x 3=√1+132+142=1312=1+13×4; …根据以上规律,计算x 1+x 2+x 3+…+x 2020﹣2021= .16.(2021•凉山州)如图,用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍;拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;…照这样拼图,则第n个图形需要根火柴棍.17.(2021•鄂尔多斯)将一些相同的“〇”按如图所示的规律依次摆放,观察每个“龟图”的“〇”的个数,则第30个“龟图”中有个“〇”.18.(2021•绥化)下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图①中有5个三角形,图①中有11个三角形,图①中有19个三角形…依此规律,则第n个图形中三角形个数是.19.(2021•常德)如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有1×1个小正方形,所有线段的和为4,第二个图形有2×2个小正方形,所有线段的和为12,第三个图形有3×3个小正方形,所有线段的和为24,按此规律,则第n个网格中所有线段的和为.(用含n的代数式表示)20.(2021•恩施州)古希腊数学家定义了五边形数,如下表所示,将点按照表中方式排列成五边形点阵,图形中的点的个数即五边形数;图形…五边形数1512223551… 将五边形数1,5,12,22,35,51,…,排成如下数表;观察这个数表,则这个数表中的第八行从左至右第2个数为 .21.(2020•遂宁)如图所示,将形状大小完全相同的“①”按照一定规律摆成下列图形,第1幅图中“①”的个数为a 1,第2幅图中“①”的个数为a 2,第3幅图中“①”的个数为a 3,…,以此类推,若2a 1+2a 2+2a 3+⋯+2a n=n 2020.(n 为正整数),则n 的值为 .22.(2021•宁夏)如图,在平面直角坐标系中,等腰直角三角形OAB ,①A =90°,点O 为坐标原点,点B 在x 轴上,点A 的坐标是(1,1).若将①OAB 绕点O 顺时针方向依次旋转45°后得到①OA 1B 1,①OA 2B 2,①OA 3B 3,…,可得A 1(√2,0),A 2(1,﹣1),A 3(0,−√2),…则A 2021的坐标是 .23.(2021•兴安盟)如图,点B1在直线l:y=12x上,点B1的横坐标为1,过点B1作B1A1①x轴,垂足为A1,以A1B1为边向右作正方形A1B1C1A2,延长A2C1交直线l于点B2;以A2B2为边向右作正方形A2B2C2A3,延长A3C2交直线l于点B3;…;按照这个规律进行下去,点B2021的坐标为.24.(2021•黑龙江)如图,正方形A0B0C0A1的边长为1,正方形A1B1C1A2的边长为2,正方形A2B2C2A3的边长为4,正方形A3B3C3A4的边长为8…依次规律继续作正方形A n B n①n A n+1,且点A0,A1,A2,A3,…,A n+1在同一条直线上,连接A0C1交,A1B1于点D1,连接A1C2,交A2B2于点D2,连接A2C3,交A3B3于点D3,…记四边形A0B0C0D1的面积为S1,四边形A1B1C1D2的面积为S2,四边形A2B2C2D3的面积为S3,…,四边形A n﹣1B n﹣1C n﹣1D n的面积为S n,则S2021=.25.(2021•泰安)如图,点B1在直线l:y=12x上,点B1的横坐标为2,过点B1作B1A1①l,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3,延长B4C3交x轴于点A4;…;照这个规律进行下去,则第n个正方形A n B n B n+1①n的边长为(结果用含正整数n的代数式表示).26.(2021•锦州)如图,①MON=30°,点A1在射线OM上,过点A1作A1B1①OM交射线ON于点B1,将①A1OB1沿A1B1折叠得到①A1A2B1,点A2落在射线OM上;过点A2作A2B2①OM交射线ON于点B2,将①A2OB2沿A2B2折叠得到①A2A3B2,点A2落在射线OM上;…按此作法进行下去,在①MON内部作射线OH,分别与A1B1,A2B2,A3B3,…,A n B n交于点P1,P2,P3,…P n,又分别与A2B1,A3B2,A4B3,…,A n+1B n,交于点Q 1,Q 2,Q 3,…,Q n .若点P 1为线段A 1B 1的中点,OA 1=√3,则四边形A n P n Q n A n +1的面积为 (用含有n 的式子表示).27.(2021•砀山县一模)如图,下列各正方形中的四个数之间具有相同的规律.根据此规律,回答下列问题:(1)第5个图中4个数的和为 . (2)a = ;c = .(3)根据此规律,第n 个正方形中,d =2564,则n 的值为 .28.(2021•黄山区二模)观察所示图形的面积:图1的面积可表示为13=12;图2的面积可表示为13+23=32;图3的面积可表示为13+23+33=62.(1)猜想:13+23+33+…+n 3= = (用含有n 的代数式表示); (2)计算:23+43+63+⋯+20032022.29.(2021•安徽)某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列.[观察思考]当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3);以此类推.[规律总结](1)若人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加块;(2)若一条这样的人行道一共有n(n为正整数)块正方形地砖,则等腰直角三角形地砖的块数为(用含n的代数式表示).[问题解决](3)现有2021块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要正方形地砖多少块?30.(2021•青岛一模)[问题提出]:将一个边长为n(n≥2)的菱形的四条边n等分,连接各边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形个数分别是多少?[问题探究]:要研究上面的问题,我们不妨先从特例入手,进而找到一般规律.探究一:将一个边长为2的菱形的四条边分别2等分,连接各边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形个数分别是多少?如图1,从上往下,共有2行,我们先研究平行四边形的个数:(1)第一行有斜边长为1,底长为1~2的平行四边形,共有2+1=3个;(2)第二行有斜边长为1,底长为1~2的平行四边形,共有2+1=3个;为了便于归纳分析,我们把平行四边形下面的底在第二行的所有平行四边形均算作第二行的平行四边形,以下各行类同第二行.因此底第二行还包括斜边长为2,底长为1~2的平行四边形,共有2+1=3个.即:第二行平行四边形共有2×3个.所以如图1,平行四边形共有2×3+3﹣9﹣(2+1)2.我们再研究菱形的个数:分析:边长为1的菱形共有22个,边长为2的菱形共有12个,所以:如图1,菱形共有22+12=5=16×2×3×5个探究二:将一个边长为3的菱形的四条边分别3等分,连接各边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形个数分别是多少?如图2,从上往下,共有3行,我们先研究平行四边形的个数:(1)第一行有斜边长为1,底长为1~3的平行四边形,共有3+2+1=6个;(2)第二行有斜边长为1,底长为1~2的平行四边形,共有3+2+1=6个;底在第二行还包括斜边长为2,底长为1~3的平行四边形,共有3+2+1=6个,即:第二行平行四边形共有2×6个.(3)第三行有斜边长为1,底长为1~3的平行四边形,共有3+2+1=6个;底在第三行还包括斜边长为2,底长为1~3的平行四边形,共有3+2+1=6个.底在第三行还包括斜边长为3,底长为1~3的平行四边形,共有3+2+1=6个.即:第三行平行四边形共有3×6个.所以:如图2,平行四边形共有3×6+2×6+6=(3+2+1)×6=(3+2+1)2.我们再研究菱形的个数:分析:边长为1的菱形共有32个,边长为2的菱形共有22个,边长为3的菱形共有12个.所以:如图2,菱形共有32+22+12=14=16×3×4×7个.探究三:将一个边长为4的菱形的四条边4等分,连接对边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形的个数分别是多少呢?如图3,从上往下,共有4行,我们先研究平行四边形的个数:(1)第一行有斜边长为1,底长为1~4的平行四边形,共有4+3+2+1=10个.(2)第二行有斜边长为1,底长为1~4的平行四边形,共有4+3+2+1=10个.底在第二行还包括斜边长为2,底长为1~4的平行四边形,共有4+3+2+1=10个.即:第二行平行四边形总共有2×10个.(3)模仿上面的探究,第三行平行四边形总共有个;(4)按照以上规律,第四行平行四边形总共有个.所以:如图3,平行四边形总共有个.我们再研究菱形的个数:分析:边长为1的菱形共有42个,边长为2的菱形共有32个,边长为3的菱形共有22个,边长为4的菱形共有12个.所以:如图3,菱形共有42+32+22+12=30=16× 个.(仿照前面的探究,写成三个整数相乘的形式)【问题解决】将一个边长为n (n ≥2)的菱形的四条边n 等分,连接对边对应的等分点,根据上边的规律,得出该菱形被剖分的网格中的平行四边形的个数是 和菱形的个数分别是16× .(用含n 的代数式表示). 【问题应用】将一个边长为n (n ≥2)的菱形的四条边n 等分,连接各边对应的等分点,若得出该菱形被剖分的网格中的平行四边形的个数是441个,则n = .【拓展延伸】将一个边长为n (n ≥2)的菱形的四条边n 等分,连接各边对应的等分点,当该菱形被剖分的网格中的平行四边形的个数与菱形的个数之比是135:19时,则n = .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
类型一 数式规律1. 我国战国时期提出了“一尺之棰,日取其半,万世不竭”这一命题,用所学知识来解释可理解为:设一尺长的木棍,第一天折断一半,其长为12尺,第二天再折断一半,其长为14尺,…,第n 天折断一半后得到的木棍长应为________尺. 12n2. 如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是________.第2题图41【解析】由图形可知,第n 行最后一个数为1+2+3+…+n =n (n +1)2,∴第8行最后一个数为8×92=36=6,则第9行从左至右第5个数是36+5=41. 3. 观察下列关于自然数的式子: 第一个式子:4×12-12 ①第二个式子:4×22-32 ② 第三个式子:4×32-52 ③ …根据上述规律,则第2019个式子的值是______.8075 【解析】∵4×12-12=3①,4×22-32=7②,4×32-52=11③,…,4n 2-(2n -1)2=4n -1,∴第2019个式子的值是4×2019-1=8075. 4. 将数1个1,2个12,3个13,…,n 个1n (n 为正整数)顺次排成一列:1,12,12,13,13,13,…,1n ,1n ,…,记a 1=1,a 2=12,a 3=12,…,S 1=a 1,S 2=a 1+a 2,S 3=a 1+a 2+a 3,…,S n =a 1+a 2+…+a n ,则S 2019=________.63364 【解析】根据题意,将该数列分组,1个1的和为1,2个12的和为1,3个13的和为1,…;∵1+2+3+…+63=2016个数,则第2019个数为64个164的第3个数,则此数列中,S 2019=1×63+3×164=63364.类型二 图形规律5. 如图,在平面直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3,…,已知A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).观察每次变换前后的三角形的变化,按照变换规律,则点A n的坐标是________.第5题图(2n,3)【解析】∵A(1,3),A1(2,3),A2(4,3),A3(8,3),…,∴纵坐标不变,为3,横坐标都和2有关,为2n,即点An的坐标是(2n,3).6. 如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置,…,则正方形铁片连续旋转2019次后,点P的坐标为________.第6题图(6058,1) 【解析】∵铁片OABC 为正方形,A (3,0),P (1,2),∴正方形铁片OABC 的边长为3,如解图第一个循环周期内的点P 1,P 2,P 3,P 4的坐标分别为(5,2),(8,1),(10,1),(13,2),每增加一个循环,对应的点的横坐标就增加12.而2019÷4=504……3,即504个循环周期后点P 2016的横坐标为504×12+1=6049,纵坐标为2,所以点P 2019的横坐标为6049+9=6058,纵坐标为1.故P 2019(6058,1).第6题解图7. 如图,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…,组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2019秒时,点P 的坐标是________.第7题图(2019,-1) 【解析】∵圆的半径都为1,∴半圆的周长=π,以时间为点P 的下标.观察发现规律:P 0(0,0),P 1(1,1),P 2(2,0),P 3(3,-1),P 4(4,0),P 5(5,1),…,∴P 4n (4n ,0),P 4n +1(4n +1,1),P 4n+2(4n +2,0),P 4n +3(4n +3,-1).∵2019÷4=504……3,∴第2019秒时,点P的坐标为(2019,-1).8. 如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为________.第8题图(-1,-1)【解析】∵菱形OABC的顶点O(0,0),B(2,2),∴BO 与x轴的夹角为45°,∵菱形的对角线互相垂直平分,∴点D是线段OB的中点,∴点D的坐标是(1,1),∵菱形绕点O逆时针旋转,每秒旋转45°,360°÷45°=8,∴每旋转8秒,菱形的对角线交点就回到原来的位置(1,1),∵60÷8=7……4,∴第60秒时是把菱形绕点O 逆时针旋转了7周回到原来位置后,又旋转了4秒,即又旋转了4×45°=180°,∴点D的对应点落在第三象限,且对应点与点D关于原点O成中心对称,∴第60秒时,菱形的对角线交点D的坐标为(-1,-1).9. 如图,∠MON=60°,作边长为1的正六边形A1B1C1D1E1F1,边A1B1、F1E1分别在射线OM、ON上,边C1D1所在的直线分别交OM、ON于点A2、F2,以A2F2为边作正六边形A2B2C2D2E2F2,边C2D2所在的直线分别交OM、ON于点A3、F3,再以A3F3为边作正六边形A3B3C3D3E3F3,…,依此规律,经第n次作图后,点B n到ON的距离是________.第9题图3n-13【解析】由题可知,∠MON=60°,设B n到ON的距离为h n,∵正六边形A1B1C1D1E1F1的边长为1,∴A1B1=1,易知△A1OF1为等边三角形,∴A1B1=OA1=1,∴OB1=2,则h1=2×32=3,又∵OA2=A2F2=A2B2=3,∴OB2=6,则h2=6×32=33,同理可得:OB3=18,则h3=18×32=93,…,依此可得OB n=2×3n-1,则h n=2×3n-1×3 2=3n-1 3.∴B n到ON的距离h n=3n-1 3.10. 如图,正方形AOBO2的顶点A的坐标为A(0,2),O1为正方形AOBO2的中心;以正方形AOBO2的对角线AB为边,在AB的右侧作正方形ABO3A1,O2为正方形ABO3A1的中心;再以正方形ABO3A1的对角线A 1B 为边,在A 1B 的右侧作正方形A 1BB 1O 4,O 3为正方形A 1BB 1O 4的中心;再以正方形A 1BB 1O 4的对角线A 1B 1为边,在A 1B 1的右侧作正方形A 1B 1O 5A 2,O 4为正方形A 1B 1O 5A 2的中心;…;按照此规律继续下去,则点O 2018的坐标为________.第10题图(21010-2,21009) 【解析】由A (0,2)和A 1(2,4)可知直线AA 1的解析式为y =x +2,由图可知点A 1,A 2,…,A n 的纵坐标分别为22,23,…,2n +1,将y =2n +1代入y =x +2,得2n +1=x +2,∴x =2n +1-2,∴点A n 的坐标为(2n +1-2,2n +1),由图可知O 2n 横坐标与A n 的横坐标相同,O 2n 纵坐标是A n 的纵坐标的12,∴O 2n 的坐标为(2n +1-2,2n ),∴当n =1009时,O 2018的坐标为(21010-2,21009). 真题反馈:1. 观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第n 个数是 .2. 如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n 个图案中有2017个白色纸片,则n 的值为( )A.671 B.672 C.673 D.6743. 观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是( )A.43 B.45 C.51 D.534. 请你计算:(1-x)(1+x),(1-x)(1+x+x2),…,猜想(1-x)(1+x+x2+…+x n)的结果是( ).A. 1-x n+1B. 1+x n+1C. 1-x nD. 1+x n5. 如图,已知正方形ABCD,顶点A(1,3),B(1,1),C(3,1).规定“把正方形ABCD 先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2019次变换后,正方形ABCD的对角线交点M的坐标变为().A. (-2012,2)B. (-2012,-2)C. (-2013,-2)D. (-2013,2)6. 观察下列数据:-2,52,-103,174,-265,…,它们是按一定规律排列的,依照此规律,第11个数据是.7. 观察下列数据:-2,52,-103,174,-265,…,它们是按一定规律排列的,依照此规律,第11个数据是.8. 正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是.9. 如图,将若干个正三角形、正方形和圆按一定规律从左向右排列,那么第2015个图形是.10. 如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC 的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n次碰到矩形的边时的点为P n,则点P3的坐标是;点P2 019的坐标是.11.观察下列关于自然数的等式:32-4×12=5 ①52-4×22=9 ②72-4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.12.(1)证明三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半;[要求根据图(1)写出已知、求证、证明;在证明过程中,至少有两处写出推理依据(“已知”除外)(2)如图(2),在▱ABCD中,对角线焦点为O,A1,B1,C1,D1分别是OA,OB,OC,OD的中点,A2,B2,C2,D2分别是OA1,OB1,OC1,OD1的中点,…,以此类推.若▱ABCD的周长为1,直接用算式表示各四边形的周长之和l;(3)借助图形(3)反映的规律,猜猜l可能是多少?(1)(2) (3)。