第3章 5 裁剪算法
梁友栋裁剪算法

梁友栋裁剪算法
梁友栋裁剪算法是一种常用的计算机图形学算法,用于将线段或多边形裁剪成可见部分。
该算法由梁钰栋和友松教授于1978年提出,因此得名为梁友栋裁剪算法。
在计算机图形学中,裁剪是指将一个图形对象的一部分或全部从视图中删除,以便在屏幕上显示。
裁剪算法是计算机图形学中的一个重要问题,因为它可以提高图形渲染的效率和质量。
梁友栋裁剪算法的基本思想是将线段或多边形与裁剪窗口进行比较,确定它们的可见部分。
裁剪窗口是一个矩形,表示屏幕上显示的区域。
如果线段或多边形完全在裁剪窗口内部,则它们是可见的,否则需要进行裁剪。
梁友栋裁剪算法的具体步骤如下:
1. 将线段或多边形的两个端点坐标表示为(x1,y1)和(x2,y2)。
2. 计算线段或多边形与裁剪窗口的交点,得到交点坐标(x,y)。
3. 判断交点是否在裁剪窗口内部,如果是,则将交点加入可见部分的点集合中。
4. 重复步骤2和3,直到所有交点都被处理完毕。
5. 根据可见部分的点集合,绘制线段或多边形的可见部分。
梁友栋裁剪算法的优点是简单易懂,计算量小,适用于各种类型的线段和多边形。
它可以用于计算机图形学中的各种应用,如计算机辅助设计、计算机游戏、虚拟现实等。
梁友栋裁剪算法是计算机图形学中的一种重要算法,它可以提高图形渲染的效率和质量,是计算机图形学领域不可或缺的一部分。
简单多边形裁剪算法

摘 要 :为 了尽量 降低任意 多边形裁剪复杂度,提 出了一种基 于多边形顶点遍历 的简单 多边形裁 剪算 法。该 算法将 多边形
交 点插 入 到裁 剪 多边 形 和 被 裁 减 多边 形 顶 点 矢 量数 组 中 ,通 过 记 录 交 点及 其 前 驱 、 后 继 信 息 ,可 快 速 生 成 结 果 多边 形 。其
2 .C h i n a C e n t r e f o r R e s o u r c e s S a t e l l i t e Da t a a n d Ap p l i c a t i o n , B e i j i n g 1 0 0 0 9 4 , C h i n a ;3 .C h i n a C o a l Te c h n o l o g i e s G r o u p or C p o r a t i o n ,B e i j i n g 1 0 0 0 1 3 , C h i n a ; 4 .B e i j i n g I n s t i t u t e o f A p p l i e d Me t e o r o l o g y , B e i j i n g 1 0 0 0 2 9 , C h i n a )
中,时间复杂度 为 ( ) ( ( m+k ) ×k ) ,m 是两 多边形 中顶点数较 大者 ,k是 两 多边形的 交点数 。该算 法简化 了交点的数据 结 构 ,节省 了存储 空间,降低 了算法的时间复杂度 ,具有 简单 、易于编程 实现 、运行效 率高的特点 。
关 键 词 : 多边 形 裁 剪 ; 交点 ;前 驱 ;后 继 ;矢 量数 组 中图 法 分 类 号 :TP 3 9 1 文 献 标 识 号 :A 文章 编 号 :1 0 0 0 — 7 0 2 4( 2 0 1 4 )0 1 - 0 1 9 2 - 0 6
裁剪算法——cohen-sutherland算法

裁剪算法——cohen-sutherland算法实验环境:VC6.0算法思想: 延长窗⼝的边,将⼆维平⾯分成9个区域,每个区域赋予4位编码C t C b C r C l,裁剪⼀条线段P1P2时,先求出所在的区号code1,code2。
若code1=0,且code2=0,则线段P1P2在窗⼝内,应取之。
若按位与运算code1&code2,则说明两个端点同时在窗⼝的上⽅、下⽅、左⽅或右⽅,则可判断线段完全在窗⼝外,可弃之;否则,按第三种情况处理,求出线段与窗⼝某边的交点,在交点处把线段⼀分为⼆,其中必有⼀段在窗⼝外,可弃之,再对另⼀段重复上述处理。
100110001010000100000010010********* 多边形裁剪编码程序实现:#include "stdafx.h"#include<stdio.h>#include<conio.h>#include<graphics.h>#define LEFT 1#define RIGHT 2#define BOTTOM 4#define TOP 8void midpointLine(int x0,int y0,int x1,int y1,int color)//中点画线算法{int a,b,d1,d2,d,x,y;a=y0-y1;b=x1-x0;d=2*a+b;d1=2*a;d2=2*(a+b);x=x0;y=y0;putpixel(x,y,color);while(x<x1){if(d<0){x++;y++;d+=d2;}else{x++;d+=d1;}putpixel(x,y,color);}}int encode(int x,int y,int XL,int XR,int YB,int YT)//编码{int c=0;if(x<XL) c|=LEFT;if(x>XR) c|=RIGHT;if(y<YB) c|=BOTTOM;if(y>YT) c|=TOP;return c;}void C_SLineClip(int x1,int y1,int x2,int y2,int XL,int XR,int YB,int YT){int code1,code2,code,x,y;code1=encode(x1,y1,XL,XR,YB,YT);code2=encode(x2,y2,XL,XR,YB,YT);while((code1 != 0) || (code2 != 0)){if((code1 & code2) != 0){midpointLine(x1,y1,x2,y2,RGB(0, 255, 0));//如果直线在裁剪窗⼝外就⽤绿⾊画出printf("线段在窗⼝外!");return;}if(code1 != 0) code=code1;else code=code2;if((LEFT & code) != 0){x=XL;y=y1+(y2-y1)*(XL-x1)/(x2-x1);}else if((RIGHT & code) != 0){x=XR;y=y1+(y2-y1)*(XR-x1)/(x2-x1);}else if((BOTTOM & code) != 0){y=YB;x=x1+(x2-x1)*(YB-y1)/(y2-y1);}else if((TOP & code) != 0){y=YT;x=x1+(x2-x1)*(YT-y1)/(y2-y1);}if(code == code1){x1=x; y1=y; code1=encode(x,y,XL,XR,YB,YT);}else{x2=x; y2=y; code2=encode(x,y,XL,XR,YB,YT);}}midpointLine(x1,y1,x2,y2,RGB(255,0,0));//将裁减的直线⽤红⾊标注return;}int main(int argc, char* argv[]){int gdriver=DETECT,gmode;int x1=20,y1=30,x2=250,y2=300,XL=10,XR=200,YT=400,YB=30;initgraph(&gdriver,&gmode,"c:\\tc");//setbkcolor(WHITE);cleardevice();midpointLine(x1,y1,x2,y2,RGB(0,255,0));//将被裁剪直线⽤绿⾊画出rectangle(10,400,200,30);//rectangle(int left,int top,int right,int bottom);//裁剪窗⼝ C_SLineClip(x1,y1,x2,y2,XL,XR,YB,YT);// cohen sutherland算法getch();closegraph();return0;}显⽰效果:将在窗⼝内的线段设为红⾊,窗⼝外的线段设为绿⾊。
计算机图形学基础实验指导书

计算机图形学基础实验指导书目录实验一直线的生成 ............................................................... -..2.-实验二圆弧及椭圆弧的生成........................................................ -..3 -实验三多边形的区域填充 ......................................................... - (4)-实验四二维几何变换 ............................................................. -..5.-实验五裁剪算法 ................................................................. -..6.-实验六三维图形变换 ............................................................. -..7.-实验七BEZIER 曲线生成......................................................... -..8.-实验八交互式绘图技术实现........................................................ -..10-实验一直线的生成一、实验目的掌握几种直线生成算法的比较,特别是Bresenham 直线生成算法二、实验环境实验设备:计算机实验使用的语言: C 或Visual C++ 、OpenGL三、实验内容用不同的生成算法在屏幕上绘制出直线的图形,对不同的算法可设置不同的线形或颜色表示区别。
四、实验步骤直线Bresenham 生成算法思想如下1)画点(x i, y i), dx=x2-x i, dy=y2-y i,计算误差初值P i=2dy-dx , i=1;2)求直线下一点位置x i+i=x i+i 如果P i>0,贝U y i+i=y i+i,否则y i+i=y i;3)画点(x i+i ,y i+i );4)求下一个误差P i+i 点,如果P i>0,贝U P i+i=P i+2dy-2dx,否则P i+i=P i+2dy;i=i+i ,如果i<dx+i 则转步骤2,否则结束操作。
自学裁剪100例公式

自学裁剪100例公式自学裁剪公式是学习裁剪技术的基础,掌握了这些公式,可以帮助我们更好地理解裁剪的原理和技巧,提升我们的裁剪技能。
本文将介绍100个常用的自学裁剪公式,通过逐步思考和举例说明,帮助你掌握这些公式。
一、裁剪公式的基础知识在开始介绍具体的裁剪公式之前,我们先来了解一些基础知识。
裁剪公式是通过数学计算来确定裁剪点和线段的位置,以实现准确、精细的裁剪效果。
了解以下几个概念对于理解后续的裁剪公式非常重要:1. 坐标系:裁剪过程中需要使用坐标系来确定点的位置。
常用的坐标系有笛卡尔坐标系和极坐标系。
在笛卡尔坐标系中,x轴和y轴垂直,以原点为基准,用(x, y)表示点的位置;在极坐标系中,以原点为基准,用(r, θ)表示点的位置,其中r表示点到原点的距离,θ表示点与正方向x轴的夹角。
2. 裁剪窗口:裁剪窗口是一个定义了裁剪区域的矩形。
在裁剪时,只有位于裁剪窗口内的图形部分会被显示,位于裁剪窗口外的部分会被裁剪掉。
通常,裁剪窗口的左下角坐标为(w_min_x, w_min_y),右上角坐标为(w_max_x, w_max_y)。
3. 裁剪对象:裁剪对象是指需要进行裁剪操作的图形。
常见的裁剪对象包括线段、多边形、圆等。
二、裁剪公式的具体应用下面我们将具体介绍100个常用的自学裁剪公式,并结合示例进行说明。
这些公式涵盖了不同类型的裁剪对象,帮助你了解裁剪技术的全貌。
1. 线段裁剪公式:- Cohen-Sutherland裁剪算法- Liang-Barsky裁剪算法2. 多边形裁剪公式:- Sutherland-Hodgman裁剪算法- Weiler-Atherton裁剪算法3. 圆裁剪公式:- 椭圆裁剪算法4. 曲线裁剪公式:- Bezier曲线裁剪算法5. 文本裁剪公式:- 文本溢出裁剪算法以线段裁剪公式为例,我们来演示Cohen-Sutherland裁剪算法的应用。
这个算法将线段裁剪为窗口内的可见部分。
哈工大chapter 05裁剪、反走样

Pm B P1
中点分割裁剪算法
中点分割裁剪算法
ϒ 对分辩率为2N次。 ϒ 主要过程只用到加法和除法运算,适合硬件 实现,它可以用左右移位来代替乘除法,这 样就大大加快了速度。
梁友栋-Barsky算法
设要裁剪的线段是P0P1。 P0P1和 窗口边界交于A,B,C,D四点,见图。 算法的基本思想是从A,B和P0三点中 找出最靠近的P1点,图中要找的点 是P0。从C,D和P1中找出最靠近P0的 点。图中要找的点是C点。那么P0C 就是P0P1线段上的可见部分。
哪些落在显示区之外,以便只显示落在显示区 内的那部分图形。这个选择过程称为裁剪。
图形裁剪算法,直接影响图形系统的效率。
点的裁剪
ϒ 图形裁剪中最基本的问题。
为(xL,yB),右上角坐标 为(xR,yT),对于给定点 P(x,y),则P点在窗口内的条 件是要满足下列不等式: xL <= x <= xR (xL,yB ϒ 并且yB <= y <= yT ) 否则,P点就在窗口外。 ϒ 问题:对于任何多边形窗口, 如何判别?
第五章 裁剪、反走样 方法
反走样方法 裁剪算法
反走样
ϒ 用离散量表示连续量引起的失真现象称之为走样
(aliasing) 。 光栅图形的走样现象
阶梯状边界; 图形细节失真; 狭小图形遗失:动画序列中时隐时现,产生闪烁。
时间上的混淆现象
轮子的转速是:1r/s(1HZ)
每0.75s采一次样(1/0.75HZ)
1
P0P1至少部分可见的充分条件是 max(0, t 0) ≤ min(1, t1 ) 且可见部分的参数区间为[max(0, t 0 ),min(1, t1)]。
t0 Q0 0 P0 t1 Q1 1 P1
计算机图形学 第三章 二维图形的裁剪概述

3.2.3 梁友栋-Barsky裁剪算法
式中,Δx=x2-x1,Δy=y2-y1,参数u在0~1 之间取值,P(x,y)代表了该线段上的一个 点,其值由参数u确定,由公式可知,当u=0 时,该点为P1(x1,y1),当u=1时,该点 为P2(x2,y2)。如果点P(x,y)位于由 坐标(xwmin,ywmin)和(xwmax,ywmax)所 确定的窗口内,那么下式成立: xwmin≤x1+ u· Δx≤xwmax ywmin≤y1+ u· Δy≤ywmax(3-10)
3.2.1 Cohen-Sutherland算法
► Code(int ►{
x,int y,int *c)
*c=0; if(y>ymax) /*(xmin,ymin)和(xmax,ymax) 为窗口左下角、右上角坐标。*/ *c=*c|0x08; else if(y<ymin) *c=*c|0x04; if(x>xmax) *c=*c|0x02; else if(x<xmin) *c=*c|0x01; }
► 根据直线两点式方程:
►
2)
(3-
3.2 线段的裁剪
► 整理后得通用交点公式: ►
(3-3)
► ►
1、与上边界的求交公式: (3-4)
3.2 线段的裁剪
► ►
2、与下边界的求交公式:
(3-5)
►
► ►
3、与右边界的求交公式:
(3-6) 4、与左边界的求交公式:
►
(3-7)
3.2.1 Cohen-Sutherla2、判别 根据C1和C2的具体值,可以有三种情况: (1)C1=C2=0,表明两端点全在窗口内,因而 整个线段也在窗内,应予保留。 (2)C1&C2≠0(两端点代码按位作逻辑乘不为 0),即C1和C2至少有某一位同时为1,表明两端点 必定处于某一边界的同一外侧,因而整个线段全在 窗外,应予舍弃。 (3)不属于上面两种情况,均需要求交点。
多边形裁剪算法

则tu即为三者中离p0最近的 0
点的参数
– 若tu > tl,则可见线段区间 [tl , tu]
1
t3
梁友栋-Barsky算法
始边和终边的确定及交点计算:
令 QL= - △x
DL= x0-xLQR= △xDR= 来自R-x0QB= - △y
DB= y0-yB
QT= △y
DT= yT-y0
交点为
ti= Di / Qi
可弃之。然后对另一段重复上述处理。
1001
1000
1010
0001
0000
0010
0101
0100
0110
–
编码
P1 P3 P4
P2
线段裁剪
Cohen-Sutherland裁剪
如何判定应该与窗口的哪条边求交呢? 编码中对应位为1的边。
• 计算线段P1(x1,y1)P2(x2,y2)与窗口边界的交点 if(LEFT&code !=0) { x=XL; y=y1+(y2-y1)*(XL-x1)/(x2-x1);} else if(RIGHT&code !=0) { x=XR; y=y1+(y2-y1)*(XR-x1)/(x2-x1);} else if(BOTTOM&code !=0) { y=YB; x=x1+(x2-x1)*(YB-y1)/(y2-y1);} else if(TOP & code !=0) { y=YT; x=x1+(x2-x1)*(YT-y1)/(y2-y1);}
直接求交算法
直线与窗口边都 写成参数形式, 求参数值。
Cohen-Sutherland裁剪
• 基本思想:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xmin≤x0+ t· Δx≤xmax
ymin≤y0+ t· Δy≤ymax
t· Dk ≤Mk , k=1,2,3,4 其中: ① D1=-Δx, M1=x0-xmin ② D2= Δx, M2=xmax-x0 ③ D3=-Δy, M3=y0-ymin ④ D4= Δy, M4=ymax-y0 进行公式验证:
第一,当code1&code2≠0,能判断出直 线段显然在窗口之外. 然而这个条件
并没有包含所有的在窗口之外的直线段,比如: code1=0001,code2=0100,如图 中直线段P3P4,此时,
如何改进? code1&code2=0,但直线段也是完全在窗口之外.这就意
味着这类型的直线必须计算与窗口的边线求交,其实是 一种无意义操作;
Cohen-Sutherland算法的实现
算法优点: 1) 简单将不需剪裁的直线舍弃。法则是:若是
一条直线的两头在同一地区,则该直线不需裁剪, 不然,该直线为也许剪裁直线。
算法的缺点? 2) 对也许剪裁的直线缩小了与之求交的边框范
畴。法则是:若是直线的一个端点在上(下、左、 右)域,则此直线与上边框求交,然后移除上边框 以上的局部。该法则对直线的另一端点也实用。这 样,一条直线至多只需与两条边框求交。
第三章
裁剪是抽取数据的一部分,或者识别一个指定区域 内部或外部的画面或图片的成分的过程。
按照被裁剪的图形可以分为:二维裁剪算法和三维 裁剪算法
按照裁剪区域的形状可以分为:规则区域和不规则 区域
本章二维裁剪算法只考虑举行和多边形,裁剪的对 象只考虑点、线段、多边形、字符等。
三维裁剪算法只考虑正方体和平截头正四棱锥两种 裁剪盒,裁剪对象只考虑线段。
裁剪就是将指定窗口作为图形边界,将窗口内的图形保 留,而窗口外的图形则被舍弃。
裁剪处理过程
1、图元在窗口内外的判别;
2、图形元素与窗口的求交。
直线裁剪方法
◦ Cohen-Sutherland裁剪算法 ◦ 中点分割算法 ◦ 梁友栋-barskey算法
多边形裁剪方法
◦ Sutherland-Hodgman逐次多边形裁剪算法 ◦ Weiler-Atherton多边形裁剪算法
对于线段的裁剪基本思想是:
① 线段是否全不在窗口里,若是,转5 ② 线段是否全在窗口,若是,转4
③ 计算该线段与窗口边界的交点,以此将线段分为两部分, 丢弃不可见的部分,剩余线段转2
④ 保留并显示该线段 ⑤ 算法结束 可以看到算法的核心有两个:
① 判断线段与窗口的关系。 ② 获取线段与窗口的交点。
Dk =0
任何平行于窗口某边界的直线,其Dk=0,k值对应于相应 的边界(k=1,2,3,4对应于左、右、下、上边界)。如 果还满足Mk<0,则线段完全在边界外,应舍弃该线段。如 果Dk=0并且Mk≥0,则线段平行于窗口某边界并在窗口内, 见图中所示。
公式还告诉我们:
1、当Dk<0时,线段从裁剪边界延长线的外部延伸到内部; 2、当Dk>0时,线段从裁剪边界延长线的内部延伸到外部;
区域编码
◦ 由窗口四条边所在直线把二维平面分成9个区域,每个区域
赋予一个四位编码,CtCbCrCl,上下右左
例端如点Ct : 编1给码0 出。当el直yse线y mAaxB的
A
问端AB::题点C10b2的00:10区01给10 域定当码e一lyse,条该y线m如in段何
B
判断属于1 哪当一x 种 x情ma况x ?
算法的思想:
① 对线段p1p2进行编码,如果p1p2可以直接保留或者舍弃, 算法结束,否则进入步骤2.
② 从p1出发寻找离p1最远的可见点B; ③ 从p2出发寻找离p2最远的可见点A; ④ AB之间的线段就是可见的线段。
1. 输入线段端点P1,P2 对于端点P0:
① P2是否可见,若可见,则它为离P1最远的可见点,算法 结束
最后汇聚成一点。计算该点的编码。对 p2进行同样处理。
梁友栋-Barsky算法(Liang-Barsky算法) 写入图形学教科书的唯一中国人的算 法 梁有栋教授的贡献
Liang-Barsky算法 几何连续理论 从几何学与纤维缠绕理论到基因工程
梁友栋先生出生于1935年7月,福建福州人. 19561960年于复旦大学作为研究生,师从苏步青先生学 习几何理论,1960年研究生毕业后任教于浙江大学 数学系,1984-1990年任数学系主任.
问题1:用什么方法解决该问题?
区域编码
◦ 由窗口四条边所在直线把二维平面分成9个区域,每个区域
赋予一个四位编码,CtCbCrCl,上下右左
1
Ct
0
1 Cb 0
当y y max else 当y y min else
1 当x x max
Cr
0
else
1 当x x min Cl 0 else
1 Sutherlan-Cohen算法 2 中点分割算法
3 梁友栋-Barsky算法 4 Sutherlan-Hodgman逐边裁剪算法
裁剪的意义
为了描述图形对象,我们必须存储它的全部信息,但有时 为了达到分区描述或重点描述某一部分的目的,往往将 要描述的部分置于一个窗口内,而将窗口外的部分“剪 掉”,这个处理过程叫做裁剪,裁剪在计算机图形处理中 具有十分重要的意义。
右: x=XR
下:y=YB
y=k(XR-x1)+y1
x=x1+(1/k)(YB-y1)
◦ 对于那些非完全可见、又非显然不可见的线段, 需要求交(如,线段CD) 求交前先测试与窗口哪条边所在直线有交?
规则:判断端点编码中各位的值CtCbCrCl
分别对应:上、下、右和左边 端点码位值等于1时,说明线段与对应窗口边
1991年梁友栋先生为首完成的成果“计算机图形生 成与几何造型研究”获国家自然科学三等奖;
九十年代后期,六十多岁的他积极开展纤维缠绕几何 设计的研究,为我国几何设计与计算机图形学的研究 做出了杰出贡献.
鉴于梁友栋先生的杰出贡献和成就,中国工业与应用 数学学会几何设计与计算专委会授予梁友栋先生第 二届“中国几何设计与计算贡献奖”。
之。然后对另一段重复上述处理。
问题3:如何求交点?
问题4:如何才能使 算法效率高?
求交点:
① 已知线段的两个端点(x1,y1),(x2,y2),直线的方程 为y=k(x-x1)+y1,其中k=(y2-y1)/(x2-x1)
② 交点为: 左: x=XL
y=k(XL-x1)+y1
上:y=YT x=x1+(1/k)(YT-y1)
第二,对于p1p2,当code 码中同时有两位不等于0 时,求 交运算的次数多达四次. 如图2中直线P1P2 与窗口的四 条边的交点分别为A、B、C、D。而实际上,直线只与窗 口的两条边相交,另外两个交点发生在边的延长线上。
编码裁剪算法需要求线段与边界的交点
如果使用将线段一分为二,那么求交点的过程可以 用二分法逐渐逼近来得到
② Pa=p1,pb=p2,得papb的中点pm,若pm可见,pm代替p1, 否则pm代替p2.
③ 如果papb的长度小于系统设定的一个很小的数,该点即 为找到的点.
④ 算法必须对P2做相同的处理,找到点A。 ⑤ 计算AB的可见性,决定是否显示AB线段.
示例:
对于A线段, P1(0000).p2(0000),显示出来
p2
b
p1
p1
c
对于线段B P1(1000),p2(1000),非零,丢弃 对于线段C
p1
p2
p1
d a p2
P1(1000),p2(0010),“与”为零,不可判断,对P1
开始,pa=p1,pb=p2,求得pm1(1000),pb与pm1
p2
“与”为零,不可判断, pa=pm1,求得pm2(0010),Pb与pm2
“与”非零,丢弃,pb变为pm2。直到线段长度小于一个给定的值,计算该 点的 编码。对于p2做同样处理,最后得出线段C不可见。
对于选段D: P1(0001),p2(0100), “与”为零,不可判断。
从p1开始, pa=p1,pb=p2,pm1(0100),pbpm1丢弃,pm1代替pb,求 得pm2(0000),pm2与pb“与”,为零 ,pa=pm2,计算pm3(0000),
线段p1(x1,y1)p2(x2,y2)的参数方程可以表示为:
x=x1+t△x y=y1+t△y 其中,△x=x2-x1, △y=y2-y1,0<=t<=1
P(x,y)代表了该线段上的一个点,其值由参数t确定。 由公式可知,当t=0时,该点为P1(x1,y1),当t=1时,该
点为P2(x2,y2)。 如果点P(x,y)位于由坐标(xmin,ymin)和(xmax,ymax)
相交 次序:上、下、右和左边 以交点为界,丢弃外侧线段,
以交点为新端点判断另一线段, 重复上述过程
如:CD C:0000 D:1000 Dt位等于1,与上边相交
9
8
10
AB:与窗口左边相交,求交点H, AH和BH显然不可见
1
2 0
5
4
6
EF:与窗口上边交点I,弃EI
与窗口下边交点K,弃KF
与窗口右边交点J,弃KJ
CrLeabharlann 0else1 当x x min Cl 0 else
若P1P2完全在窗口内, code1=0,且code2=0,则“取”; 若P1P2明显在窗口外code1&code2≠0,则“弃” ; 若P1P2明显在窗口外code1&code2=0,则不确定 ; 在交点处把线段分为两段。其中一段完全在窗口外,可弃