【机械专业文献翻译】故障切除继电保护装置

合集下载

继电保护装置的维护与故障处理

继电保护装置的维护与故障处理

继电保护装置的维护与故障处理摘要:继电保护是电力系统中的基本设备,是为了保证电力系统的正常供电,因此要对其进行专业而有效的维护,对其故障也要进行及时处理。

以继电保护的概念为基础,同时提出了对继电保护装置进行维护、管理的措施以及对继电保护进行故障处理的方式,为继电保护的技术发展提供了一定的理论基础。

关键词:继电保护维护故障处理Abstract: the relay protection is the electric power system of basic equipment, is to ensure that the power system of normal power supply, so in its professional and effective maintenance, the fault but also handle in time. With the concept of relay protection for the foundation, at the same time puts forward to relay protection device for maintenance and management of the measures and the relay protection fault the means of processing, relay protection technology for development to provide some theoretical basis.Keywords: relay protection maintenance fault handling电力系统是用发电装置把自然界中的能源转化成为电能,然后通过输电、变电和配电的流程将电能提供给各个用电单位。

一般情况下,电力系统的线路都是处在正常的运转状态中,但是总会出现一些异常状况(如送电的减少或停止),如果出现异常状况而没有及时地进行纠正和更改,它就会逐步发展成为故障,导致出现电气设备损坏或人员伤亡的事故甚至整个电网的瘫痪,造成不可估量的损失。

继电保护装置讲解

继电保护装置讲解

继电保护装置讲解继电保护装置是一种用于保护电力系统设备的重要装置。

它的作用是在电力系统发生故障时,迅速断开故障电路,以保护电力设备的安全运行。

本文将从继电保护装置的基本原理、分类以及应用场景等方面进行讲解。

一、继电保护装置的基本原理继电保护装置基于电力系统中的电流、电压等物理量的变化来判断系统是否发生故障。

当电力系统中发生故障时,电流和电压等物理量会发生异常变化,继电保护装置会通过对这些异常变化进行监测和分析,判断故障的类型和位置,并通过控制开关来实现对故障电路的断开。

二、继电保护装置的分类根据不同的保护对象和保护功能,继电保护装置可以分为过电流保护、差动保护、距离保护、过压保护等多种类型。

其中,过电流保护是最常见的一种保护方式,它通过检测电流的大小来判断电力系统中是否存在过电流故障。

差动保护则是通过对电流差值进行监测,判断系统中是否存在线路接地或相间短路等故障。

距离保护则是根据电力系统中电流和电压之间的相对关系,来判断故障的位置。

过压保护则是用于检测电力系统中是否存在过电压故障。

三、继电保护装置的应用场景继电保护装置广泛应用于电力系统的发电、输配电等环节,以保护电力设备的安全运行。

在发电环节,继电保护装置可用于保护发电机、变压器等设备的安全运行。

在输电和配电环节,继电保护装置可用于保护线路、变电站等设备的安全运行。

此外,继电保护装置还可以应用于工业生产、铁路、矿山等领域,以确保电力设备的正常工作。

继电保护装置是一种重要的电力设备保护装置,它通过监测和分析电力系统中的物理量变化,判断系统是否发生故障,并通过控制开关来实现对故障电路的断开。

根据不同的保护对象和保护功能,继电保护装置可分为多种类型,并广泛应用于电力系统的各个环节。

它的作用在于保护电力设备的安全运行,确保电力系统的稳定运行。

电力专业英语10-故障+继电保护

电力专业英语10-故障+继电保护

解释说明 In terms of of concern far ~er than
根据,按照,在……方面 被关注,值得关注 远…于
参考译文
根据故障后果的严重性,短路远远比断路更值得关注,尽管某些断路 会给人员带来潜在危害。
Faults and their Damage
故障及其危害
重点关注
Faults may lead to explosions which may occur in equipment containing insulating oil during a short circuit aserious hazard to personnel and damage to other equipment.
解释说明 solid-state analog circuit logic gate
固态 模拟电路 逻辑门
Types of Relays
继电器的种类
The five relay classes often to be considered are:
Magnitude relays Directional relays Ratio relays Differential relays Pilot relays
inexpensive inflexible
不昂贵 不灵活
Types of Relays
继电器的种类
重点关注
These relays are robust, inexpensive, but their response time is somewhat slow, and also their design is somewhat inflexible in terms of burden capability, and tap settings . 解释说明

继电保护装置

继电保护装置

继电保护装置当电力系统中的电力元件(如发电机、线路等)或电力系统本身发生了故障危及电力系统安全运行时,能够向运行值班人员及时发出警告信号,或者直接向所控制的断路器发出跳闸命令以终止这些事件发展的一种自动化措施和设备。

实现这种自动化措施的成套设备,一般通称为继电保护装置。

继电保护装置的任务①、监视电力系统的正常运行,当被保护的电力系统元件发生故障时,应该由该元件的继电保护装置迅速准确地给脱离故障元件最近的断路器发出跳闸命令,使故障元件及时从电力系统中断开,以最大限度地减少对电力系统元件本身的损坏,降低对电力系统安全供电的影响。

当系统和设备发生的故障足以损坏设备或危及电网安全时,继电保护装置能最大限度地减少对电力系统元件本身的损坏,降低对电力系统安全供电的影响。

(如:单相接地、变压器轻、重瓦斯信号、变压器温升过高等)。

②、反应电气设备的不正常工作情况,并根据不正常工作情况和设备运行维护条件的不同发出信号,提示值班员迅速采取措施,使之尽快恢复正常,或由装置自动地进行调整,或将那些继续运行会引起事故的电气设备予以切除。

反应不正常工作情况的继电保护装置允许带一定的延时动作。

③、实现电力系统的自动化和远程操作,以及工业生产的自动控制。

如:自动重合闸、备用电源自动投入、遥控、遥测等。

继电保护装置的基本要求继电保护装置应满足可靠性、选择性、灵敏性和速动性的要求:这四“性”之间紧密联系,既矛盾又统一。

A、动作选择性---指首先由故障设备或线路本身的保护切除故障,当故障设备或线路本身的保护或断路器拒动时,才允许由相邻设备保护、线路保护或断路器失灵保护来切除故障。

上、下级电网(包括同级)继电保护之间的整定,应遵循逐级配合的原则,以保证电网发生故障时有选择性地切除故障。

切断系统中的故障部分,而其它非故障部分仍然继续供电。

B、动作速动性---指保护装置应尽快切除短路故障,其目的是提高系统稳定性,减轻故障设备和线路的损坏程度,缩小故障波及范围,提高自动重合闸和备用设备自动投入的效果。

电力系统继电保护毕业论文中英文资料外文翻译文献

电力系统继电保护毕业论文中英文资料外文翻译文献

电力系统继电保护论文中英文资料Relay protection development present situation[Abstract ]reviewed our country electrical power system relay protection technological devil orpiment process,has outlined the microcomputer relay protection technology achievement, pro posed the future relay protection technological development tendency will be: Computerizes, n networked,protects, the control,the survey,the data communication integration and the artificial I intellectualization.[Key word ]relay protection present situation development,relay protections future development1 relay protection development present situationThe electrical power system rapid development to the relay protection proposed unceasingly t he new request,the electronic technology,computer technology and the communication rapid development unceasingly has poured into the new vigor for the relay protection technology de velopment,therefore,the relay protection technology is advantageous, has completed the deve lopment 4 historical stage in more than 40 years time。

继电保护外文翻译

继电保护外文翻译

外文资料APPLICATION OF THE THEORY OF PATTERN RECOGNITION IN DEVELOPING RELAY PROTECTION AND CONTROLV.E.GLazyrinNovosibirsk State Technical UniversityReliable and timely recognition of emergency states in electrical systems requires solutions that are adequate for the technical equipment being used. For more than ten years discrete computing devices have been widely implemented in relay protection and control. The appearance of microprocessors has given developers extremely powerful tools for using new principles and algorithms in designing relay systems. Despite this, the design strategy remains practically unchanged, though the new element base exceeds the capabilities of the conventional one to the degree that it is simply on a qualitatively higher level. In connection with this, the necessity has ripened for qualitatively new approaches to designing relay systems.Conventional design methods very much depend on the intuition and experience of the developer. The execution of the work is frequently unpredictable, since the developer must simultaneously represent the state of many (sometimes more than ten) parameters. At the same time, a person has a limited capacity to simultaneously keep in mind many objects. This causes not only complexity in developing new devices, but also causes the subjective phenomenon of a group of relay protection experts which have on an intuitive level mastered a combination a several groups of concepts.This reduces the number of objects which must be kept in mind simultaneously, but the formation of these combined groups has not been formalized, which hinders mutual understanding.During the development of new complex devices of relay systems, the quantity of parameters,with which the developer has to work simultaneously increases even more. This not only complicates the design, but also increases the probability of errors, whichsimultaneously hinders the control of the accuracy of the execution of activities for creating algorithms, designing devices, writing programs and conducting correction tests. In the conventional design approach, a successive analysis of signals is made and decisions are made as they are received. In so doing the evaluation of the current state of the examined object is carried out by the successive analysis of transitions of measuring from one condition to another. This approach to developing algorithms has also become a constraining factor in developing effective algorithms.As an example, we shall consider one of the complex relay system devices, detectors of asynchronous operation. The most developed are those detectors having remote units and units for direction of power. An asynchronous mode is recognized by analyzing the sequence of transitions of the measured resistance value which is defined by the relationship with the voltage and current inputted into the measuring units. During the operation of the object, the end of the vector Z, can move relative to the operating ranges of the units depending on the character of the operational mode.The standard device consists of three relay assembly of resistance, having various characteristics of switching, of maximum relay assembly of power and of counter of cycles of asynchronous operation. In addition, it contains a unit for determining the sign of the slip, circuits for registering the asynchronous mode in the first cycle, circuits for controlling the period of asynchronous operation, a unit for additional time. grading, unit for resetting the device, and also circuits for registering a fault in the device, the signaling system , and the output circuits. The device consists of three stages, each of which has output circuit .The first stage is intended for the fastest detection (in the first cycle) of an asynchronous mode in the controlled section and the sign of the slip. The second stage is intended for the detection of an asynchronous mode in the controlled section and the sign of the slip at the end of the second, third or fourth cycles. The third stage is intended for liquidation of the asynchronous mode after executing measures for resynchronization, if during the additional time lag a specific quantity of cycles of the asynchronous mode are registered. Besides that,in order to make sure the device does not operate during short-circuits a unit of reverse sequence for blocking thedevice in asymmetrical modes is advisable.Thus, it is clear, that the device contains a great number of units working jointly. It should also work in various ways depending not only on the combination of the states of its units, but also on the relationship between the times that input units are found in various states. That means that the behavior of the device should depend on a combination of the states of a large number of operational units, and the time relationships of appearance and disappearance of signals from various units also must be taken into consideration. The description of the logic of the operation of such a device constructed using a conventional element base is adduced in and takes more than 20 pages. The device itself is made in the form of a standard relay panel. Attempts to make a formal description of the logic of the device's operation, which would be convenient to use to create an effective program for a microprocessor, have turned out to be very labor-consuming and have not given a reliable outcome.To overcome this difficulty a special mathematical apparatus has been applied that has received the title "theory of a pattern recognition". It has broad application in other areas of science and engineering, such as radio-location, echo-location, processing the outcomes of air photography for agricultural needs, and also for technical diagnostics. Applying the method of pattern recognition assumes parallel information processing. The prototype for such processing is human perception, which takes the entire input data and practically instantly comes to the most valid solution which determines its response to changes in its external environment.For the design of a microprocessor detector of asynchronous modes the following characteristics of operation of measuring devices were adopted. For remote devices the characteristics of operation are adopted as anti-parallel programs, whose bases coincide and lateral legs are located in such a manner that the sensitive device envelops a larger area, than the rough one, and middle lines coincide. The power direction unit has the characteristic of a straight line running along the middle line and its extensions. The position of operational zones of remote devices in a complex plane of resistance is selected so that they envelop a financial calculation center of hunting.In such an arrangement of operational characteristics, the entire complex plane of resistance is broken into 6 zones. If the resistance 2, falls into the operating range of any unit, then it corresponds to a "1" in the appropriate position of the unit state register. Otherwise "0" is installed in this position. Thus, for the full description of the state 2, relative to the operating ranges it is enough to have three positions, which are combined into "a code of the state of measuring devices" (CSMD). Since for the detection of an asynchronous mode it is not important in what zone is 2, at the given moment but in what order and with what speed it passes these zones, a 16-digit word is formed, in which current CSMD values are recorded in turn at the moment of transition of 2,from one zone to another (before recording CSMD in rightmost positions of the word there is a logical shift to the left by three positions). Thus, the information on the trajectory of motion of the end of vector 2, during the period it passes by four boundaries between zones is stored in one 16-digit word.Possible paths of motion of the end of vector 2, during asynchronous mode correspond to a rather limited dictionary of indicators, which allows, not only an asynchronous mode to be discovered but also allows the determination of the direction of relative motion of EMF, vectors in an asynchronous mode.Research of the behavior of the microprocessor detector, using' this method of analysis of the system state, has shown that detection of an asynchronous mode in the first cycle is impossible without taking into account the duration of time of the presence of the end of vector Z, in each zone. Therefore, for a more full characteristic of a transient image, a check of the duration of the presence of the end of vector 2in each zone is entered in the algorithm. If its duration in an appropriate zone turns out to be more than a given threshold, then the fact of its exceeding the limit is recorded in an additional register "code of a timer conditions" (CTC). Similarly to CSMD, values formed in CTC at the moment of transition from one zone to another, are recorded in a word of time states (whose formation is implemented by a logical shift of the previous value and an adding of the new value).The introduction of additional information has permitted expansion of the dictionary, by including in it combinations which take into account not only trajectory of motion, but also theduration of the end of vector Z, in each zone. To realize an operational algorithm of the asynchronous mode detector it is enough to register an excess of duration of the end of vector Z, in the given zone above the threshold value.The use of time thresholds allows to reliably determine, whether the preceding mode was a long normal mode of joint activity of power systems. Because of this, the "first stage" of an asynchronous mode detector is realized, since the first cycle of an asynchronous mode will always come after a long working mode. For detection of a long working mode it is enough to make sure that over a large enough time span the end of vector Z has been outside of the operating ranges of remote devices.The control of the duration of the end of vector Z in one of the zones is also necessary for detection of a distinctive feature of an asynchronous mode which is exhibited most clearly in the first cycle, substantial difference in the time between the entrance of the end of vector Z, in the operating range of the sensitive remote device and its entrance into the operating range of the rough one.The use of this indicator allows to reliably distinguish a short-circuit mode, in which the transition from the normal mode zone into the operating range of the rough remote device happens practically instantly.One more important factor that limits the efficiency of using conventional asynchronous mode detectors is the large switching time of analog measuring devices near a operational zone boundary. This is the reason for failures in operation when the slip is large. The application of digital algorithms in the construction of remote devices and power direction device enables this shortcoming to be overcome.In selecting device parameter settings for liquidation of an asynchronous mode a big difficulty is selecting operating zones of measuring devices because the selected thresholds should satisfy the whole set of operational modes of the considered section. Frequently selecting thresholds for one set of measuring devices turns out to be difficult. Using several detectors to detect an asynchronous mode in one section is not usually considered because of the cost of this solution. But, implementing microprocessors using the theory of patternrecognition can provide the necessary quantity of detectors, which have various zones of measuring device operation, without additional hardware costs. Hence, enough detectors can be realized in the microprocessor system, that the necessary properties can be achieved.It should be noted that the approach to detecting abnormal and emergency operation in relay systems using the theory of pattern recognition is not limited only to asynchronous mode detectors. It would be expedient to investigate the possibility of using this approach in the synthesis of algorithms and other kinds of complex devices of relay systems.中文翻译继电保护发展和控制中图样识别理论的应用V.E.GLazyrin俄罗斯新西伯利亚州工业大学电力系统紧急情况状态的可靠和实时性识别要求对使用的技术设备作出恰当的反应。

浅谈电力系统继电保护装置的故障与处理对策

浅谈电力系统继电保护装置的故障与处理对策

浅谈电力系统继电保护装置的故障与处理对策电力系统继电保护装置是电力系统中非常重要的组成部分,它们在电力系统中起着保护和控制的作用。

在实际运行中,继电保护装置也会出现各种故障,给电力系统的安全稳定运行带来威胁。

对继电保护装置的故障进行有效的处理对策是非常重要的。

本文将从继电保护装置故障的类型、原因和处理对策等方面进行浅谈。

一、继电保护装置的故障类型1.硬件故障:继电保护装置的硬件故障包括元器件损坏、线路连接故障等,这些故障会直接影响继电保护装置的正常工作,导致保护的失效。

2.软件故障:软件故障包括程序错误、操作系统崩溃等,这些故障会影响继电保护装置的运行逻辑,导致保护的误动作或漏动作。

3.通信故障:继电保护装置之间需要进行通信才能协调保护动作,如果通信故障会导致保护的失效。

4.外部干扰:外部干扰包括雷电击打、电磁干扰等,这些干扰会引起继电保护装置误动作,导致保护的失效。

1.设计不合理:继电保护装置的设计不合理是导致故障的根本原因,包括元器件选择不当、结构不合理、系统集成不完善等。

2.制造质量问题:继电保护装置在制造过程中存在质量问题,例如材料缺陷、工艺不合格等。

3.运行环境影响:电力系统的运行环境对继电保护装置的影响也是故障的原因之一,例如温度、湿度、电磁场等。

4.人为操作失误:人为操作失误也可能导致继电保护装置的故障,例如误操作、维护不当等。

1.定期检测维护:对继电保护装置进行定期的检测维护是预防故障的重要手段,可以及时发现问题并进行处理。

2.严格质量控制:在继电保护装置的设计、制造过程中需要严格控制质量,确保每个环节的质量都符合要求。

3.强化操作培训:对操作人员进行强化操作培训,提高他们的技术水平和安全意识,减少人为操作失误。

4.改进设计优化结构:对继电保护装置的设计进行改进优化,提高其稳定性和可靠性,减少硬件故障的发生。

5.应对外部干扰:针对外部干扰可能引起的故障,需要采取相应的防护措施,例如增加雷电防护装置,减少电磁干扰。

电力系统继电保护中英文对照表

电力系统继电保护中英文对照表

1 Directional protection 方向保护2 Distance protection 距离保护3 Over current protection 过流保护4 Pilot protection高频保护5 Differential protection 差动保护6 Rotor earth-fault protection 转子接地保护7 Stator earth-fault protection 定子接地保护8 Over fluxing protection 过励磁保护9 Back-up protection 后备保护11 Sequential tripping 顺序跳闸12 Start up/Pick up 起动13 Breaker断路器14 Disconnecting switch 隔离开关15 Current transformer 电流互感器16 Potential transformer 电压互感器17 Dead zone/Blind spot 死区18 Vibration/Oscillation 振荡19 Reliability可靠性20 Sensitivity灵敏性21 Speed速动性22 Selectivity选择性23 Step-type distance relay 分段距离继电器24 Time delay延时25 Escapement/interlock/blocking 闭锁26 Incorrect tripping误动27 Phase to phase fault 相间故障28 Earth fault接地故障29 Through- fault穿越故障30 Permanent fault 永久性故障31 Temporary fault瞬时性故障32 Overload 过负荷34 Contact multiplying relay 触点多路式继电器35 Timer relay 时间继电器40 Ground fault relay 接地故障继电器41 Recloser 重合闸42 Zero-sequence protection 零序保护43 Soft strap 软压板44 Hard strap 硬压板45 High resistance 高阻46 Second harmonic escapement 二次谐波制动47 CT line-break CT 断线48 PT line-breakPT 断线49 Secondary circuit 二次回路50 AC circuit breaker 交流开关电路51 AC directional over current relay 交流方向过流继电器52 Breaker point wrench 开关把手53 Breaker trip coil 断路器跳闸线圈54 Bus bar 母线; 导电条55 Bus bar current transformer 母线电流变压器56Bus bar disconnecting switch 分段母线隔离开关57Bus compartment 母线室; 汇流条隔离室58Bus duct 母线槽; 母线管道59 Bus hub 总线插座60 Bus line 汇流线61Bus insulator 母线绝缘器62Bus request cycle 总线请求周期Bus reactor 母线电抗器64Bus protection 母线保护65Bus rings 集电环66Bus rod 汇流母线67Bus section reactor 分段电抗器68Bus structure母线支架; 总线结构69Bus tie switch 母线联络开关70Bus-bar chamber 母线箱71Bus-bar fault 母线故障72Bus-bar insulator 母线绝缘子73Busbar sectionalizing switch 母线分段开关Current attenuation 电流衰减75Current actuated leakage protector 电流起动型漏电保护器76Current balance type current differential relay 电流平衡式差动电流继电器;差动平衡式电流继电器77Current changer 换流器78Current compensational ground distance relay 电流补偿式接地远距继电器79Current consumption 电流消耗80Coil adjuster 线圈调节器81Coil curl 线圈82Coil current 线圈电流83Coil end leakage reactance 线圈端漏电抗84Coil inductance 线圈电感Current transformer phase angle 电流互感器相角86Distance relay; impedance relay 阻抗继电器87Power rheostat电力变阻器88Electrically operated valve电动阀门89Electrical governing system 电力调速系统90Field application relay 励磁继电器; 激励继电器91High tension electrical porcelain insulator 高压电瓷绝缘子92Option board任选板; 选配电路板; 选择板93Oscillator coil振荡线圈94Over-V oltage relay过压继电器95Power factor relay功率因素继电器Protection against overpressure 超压防护97Protection against unsymmetrical load 不对称负载保护装置98 Protection device 保护设备; 防护设备99Protection reactor 保护电抗器100 Protection screen 保护屏101 Protection switch 保护开关102 Insulator cap 绝缘子帽; 绝缘子帽103 Insulator chain 绝缘子串; 绝缘子串104 Insulator arc-over 绝缘子闪络; 绝缘子闪络105Insulator arcing horn 绝缘子角形避雷器; 绝缘子角形避雷器106 Insulator bracket 绝缘子托架; 绝缘子托架Impedance compensator 阻抗补偿器108 Resistance grounded neutral system 中心点电阻接地方式109 Reactance bond电抗耦合; 接合扼流圈110 Reactance of armature reaction 电枢反应电抗111 Under-Voltage relay 欠压继电器112 Voltage differential relay 电压差动继电器114 Relay must-operate value 继电器保证启动值115 Relay act trip继电器操作跳闸116 Relay overrun继电器超限运行117 Longitudinal differential protection 纵联差动保护118 Phase-angle of voltage transformer 电压互感器的相角差119 Zero-sequence current/residual current 零序电流120 Residual current relay 零序电流继电器121 Bus bar protection/bus protection 母线保护122 Breaker contact point 断路器触点123 Cut-off push断路器按钮124 Gaseous shield瓦斯保护装置125 Neutral-poi nt earthi ng 中性点接地126 In ternal fault内部故障127 Auxiliary con tacts辅助触点128 Neutral auto-tra nsformer中性点接地自耦变压器129 Fuse box/fusible cutout 熔断器130 Pulse relay/surge relay 冲击继电器七戒旅长存*2005 七2007-10-26 11:14131 Auxiliary relay/intermediate relay中间继电器132 Common-m ode voltage 共模电压133 Impeda nee mismatch 阻抗失配134 Intermittent fillet weld间断角缝焊接135 Loss of synchronism protect ion 失步保护136 Closing coil 合闸线圈137 Electro polarized relay 极化继电器138 Power direction relay 功率方向继电器139 Direct-to-ground capacity 对地电容140 Shunt running潜动141 Trip/opening跳闸142 Trip switch跳闸开关143 Receiver machine收信机144 High-frequency direction finder 高频测向器145 Capacity charge电容充电146 time over-current 时限过电流148 Surge guard冲击防护149 Oscillatory surge振荡冲击150 Fail safe interlock五防装置151 Differential motion差动152 Capacitive current 电容电流154 Time delay延时156 Normal inverse 反时限157 Definite time定时限158 Multi-zone relay 分段限时继电器159 Fail-safe unit五防161 Unbalance current 不平衡电流162 Blocking autorecloser 闭锁重合闸163 Primary protection 主保护164 Tap分接头165 YC (telemetering) 遥测167 Fault clearing time 故障切除时间168 Critical clearing time 极限切除时间169 Switch station 开关站170 Traveling wave行波171 Protection feature 保护特性172 Fault phase selector 故障选线元件173 Fault type 故障类型174 Inrush 励磁涌流175 Ratio restrain 比率制动176 Laplace and Fourier transforms 拉氏和傅利叶变换177 Short circuit calculations 短路计算178 Load flow calculations 潮流计算179 Oscillatory reactivity perturbation 振荡反应性扰动180 Quasi-steady state 准稳态181 Automatic quasi-synchronization 自动准同步182 Protective relaying equipment 继电保护装置183 AC directional overcurrent relay 交流方向过流继电器184 AC reclosing relay 交流重合闸继电器185 Annunciator relay 信号继电器188 Carrier or pilot-wire receiver relay 载波或导引线接受继电器189 Current-limiting relay 限流继电器190 Definite time relay 定时限继电器192 Lockout relay闭锁继电器;保持继电器;出口继电器193 Micro-processor based protective relay 微机继电保护194 Voltage -controlled overcurrent relay 电压控制过电流继电器196 Fault diagnosis故障诊断197 Back-up protection后备保护198 Overhead line架空线199 High voltage line高压线路200 Underground cable埋地电缆201 Circuit breaker断路器202 Brushless excitation无刷励磁203 Interlock 闭锁204 Trigger 触发器205 Winding-to-winding insulation 绕组间的绝缘206 Porcelain insulator瓷绝缘子207 Tie line联络线208 Leased line租用线路209 Private line专用线路211 Remote Terminal Unit 远程终端设备212 Economic dispatch system 经济调度系统213 State estimation状态估计214 Trip by local protection保护跳闸215 Close by local protection 保护合闸216 Operational (internal) overvoltage 操作(内部)过电压217 Sampling and holding采样保持218 Synchronized sampling 采样同步219 Manipulation操作220 Measuri ng/Meteri ng unit测量元件221 Locus of measured impeda nee测量阻抗轨迹222 Differen tial mode in terfere nee差模干扰223 Output (executive) orga n出口(执行)元件224 Overeurre nt relay with un dervoltage supervision低电压起动的过电流保护225 Low impeda nee busbar protect ion低阻抗母线保护回复2帖帖七戒旅长*膏2005六2007-10-26 11:15228 Half-cycle in tegral algorithm 半周积分算法230 Coordin ati on of relay sett ings保护的整定配合231 Reach (setti ng) of protect ion 保护范围(定值)232 Coordination time interval保护配合时间阶段233 Perce ntage differe ntial relay比率差动继电器234 Electromag netic relay电磁型继电器236 In sta ntan eous un dervoltage protect ion with curre ntsupervisi on 电流闭锁的电压速断保护237 Operating equation (criterion) 动作方程(判据)238 Operating characteristic 动作特性239Harmonic restraining 谐波制动241Segregated current differential protection 分相电流差动保护242Branch coefficient 分支系数243Power line carrier channel (PLC) 高频通道245High speed signal acquisition system 高速数字信号采集系统246Busbar protection with fixed circuit connection 固定联结式母线保护247Fault recorder 故障录波器248Fault phase selection 故障选相Compensating voltage 补偿电压252Polarized voltage 极化电压253Memory circuit 记忆回路254Unblocking signal 解除闭锁信号255Power system splitting and reclosing 解列重合闸256Connection with 90 degree90 度接线257Insulation supervision device 绝缘监视258Inrush exciting current of transformer 励磁涌流259Two star connection scheme 两相星形接线方式260Zero mode component of traveling wave 零模行波261Inverse phase sequence protection 逆相序保护Offset impedance relay 偏移特性阻抗继电器263Frequency response 频率响应264Activate the breaker trip coil 起动断路器跳闸266Permissive under reaching transfer trip scheme 欠范围允许跳闸式267Slight (severe) gas protection 轻(重)瓦斯保护268Man -machine interface 人机对话接口270Three phase one shot reclosure 三相一次重合闸271Out-of-step失步272Accelerating protection for switching onto fault 重合于故障线路加速保护动作275Abrupt signal analysis 突变信号分析276Out flowing current 外汲电流False tripping误动279Turn to turn fault ,inter turn faults 匝间短路280Relay based on incremental quantity 增量(突变量)继电器281Vacuum circuit breaker 真空开关282Power swing (out of step) blocking 振荡(失步)闭锁284Successive approximation type A/D 逐次逼进式A/D285Infeed current 助增电流286Self reset 自动复归287Adaptive segregated directional current differential protection 自适应分相方向纵差保护288Adaptive relay protection 自适应继电保护Angle of maximum sensitivity 最大灵敏角292Out of service 退出运行294Waveform 波形295Outlet 出口296Electromechanical 机电的297 Magnitude of current 电流幅值299Traveling wave signal 行波信号300Measurement signal 测量信号301Traveling wave relay 行波继电器302Transmission line malfunction 输电线路异常运行303 Subsystem 子系统Positive sequence impedance 正序阻抗305Negative sequence impedance 负序阻抗306Zero sequence impedance 零序阻抗307Digital signal processor 数字信号处理器308Frequency sensing 频率测量309Cable relay电缆继电器310Under power protection 低功率保护311Under voltage protection 低电压保护312Transient analysis暂态分析313Voltage sensor电压传感器314Zero-sequence protection 零序保护Zero sequence current transducer 零序电流互感器316Shunt 旁路,并联317Series 串联,级数318Parallel 并联319Saturation 饱和320 Free-standing 独立的,无需支撑物的321Troidal 环形的,曲面,螺旋管形322Bushing 套管323Magnetizing 磁化324Dropout current 回动电流325Reactor grounded neutral system 中性点电抗接地系统Grounding apparatus 接地装置327Dual bus 双总线328Thyristor 晶闸管329Spark gap 火花隙330Damping circuit 阻尼电路331Discharge 放电332Platform 平台333Grading 等级334Line trap 线路陷波器335Field test 实地试验337Off-position“断开”位置,“开路”位置Power-angle功角339Power-angle curve功角特性曲线340Torque-angle 转矩角341Symmetrical components 对称分量342Constant常量,恒定343Coupler耦合器345Concussion震动348Filter滤波器349Analogue模拟350Insulator绝缘子Rated burden\load 额定负载353Primary一次侧的354Remote-control apparatus 远距离控制设备355Capacitance 电容356Capacitor电容器357Reactance电抗358Inductor电感359Internal resistance内阻360Blow-out coil消弧线圈361Bundle-conductor spacer 分裂导线362Bundle factor 分裂系数Electromotive force电动势364伏安特性365Outgo ing line引出线366electrolyte电解质368Load characteristic负载特性369Self-i nductio n自感370Mutual-in ducti on互感371In duct ion coefficie nt感应系数372In ducta nee coup ing电感耦合373Time-i nvaria nt时不变的回复3帖4 帖七戒旅长* *2005 五2007-10-26 11:16374Terminal voltage端电压375非线性特性376External characteristics外特性378Harmonic curre nt正弦电流379Pole-pairs极对数380Quadrature正交381An gular velocity 角频率382Magn etic in duct ion磁感应强度385Armature电枢386Peak value(交变量的)最大值387A mutually in duced e.m.f互感电动势388The applied voltage 外施电压Zero-power-factor 零功率因数390The no-load power factor 空载功率因数391Sinusoidal variations 正弦变量392A lagging power factor 滞后的功率因数393Equivalent circuit 等值电路394Capacitance effect 电容效应395Direct axis 直轴396Quadrature axis 交轴398Concentrated coil 集中绕组399Magnetization curve 磁化曲线400Residual magnetism 剩磁401Rated armature current 额定电枢电流402Series excited 串励403Self excited 自励Shunt excited 并励405spottily excited 他励407Electromagnetic torque 电磁转矩408a retarding torque 制动转矩409Rectangular wave 矩形波410Synchronous speed 同步转速411Electromagnetic brake 电磁制动412synchronous reactance 同步电抗413synchronous condenser 同步调相机414Load shedding 甩负荷415Black-start 黑启动417Distribution feeder 配电馈线418Commissioning 投运419Reactive power compensation 无功补偿器Continuous rating 连续运行的额定值421AI (artificial intelligence) 人工智能422Network topology 网络拓补424Configuration control 组态控制425Topological information拓补信息426Black-out area停电区428Adaptive relaying 自适应继电保护429Adaptive features自适应特性430Phase comparison relays 相位比较继电器431Directional contact 方向触点432Protective gap保护间隙433Protective earthing保护接地434Protective earthing; outer insulation 保护绝缘435Protection switch保护开关436Protective cap 保护帽437Protective panel 保护屏柜439Protection device 保护设备440Protective casing 保护外壳441Catch net; protecting net 保护网442Protection system 保护系统443Protective link 保护线路444Protective ground 保护性接地445Protective cover; Protective housing 保护罩446Protection device; Protective gear 保护装置447Protective transformer 保护变压器448Alarm relay 报警信号继电器449Alarm signal ;alerting signal 报警信号450Admittance relays 导纳型继电保护装置451Low-voltage protection 低压保护452Under-voltage release 低电压跳闸453Under-voltage trip 低电压自动跳闸454Under-run低负荷运行455Under-power protection 低功率保护456Under-power relay 低功率继电器457Under-frequency protection 低频保护458Low-frequency high-voltage test 低频高压实验459Low-voltage relay 低压继电器460Low-voltage release relay 低压释放继电器461Under-frequency protection 低周波保护463Under-impedance relay 低阻抗继电器465Conductance relay 电导继电器466Motor-field failure relay 电动机磁场故障继电器467Dynamoelectric relay 电动式继电器468Electric reset relay 电复位继电器469Power-transformer relay 电力传输继电器471Power system oscillation 电力系统振荡472Electric interlock relay 连锁继电器473Current overload 电流过载474Self-polarizing relay 电流极化继电器475Current-balance relay 电流平衡式继电器476Circuit control relay 电路控制继电器479Capacitance relay 电容继电器480Capacity ground 电容接地Voltage balance relay 电压平衡继电器482Circuit control relay 电路控制继电器483Voltage responsive relay 电压响应继电器484Voltage selection relay 电压选择继电器485Power failure 电源故障486Power-transfer relay 电源切换继电器487vacuum-tube relay 电子管继电器488Ohm relay 电阻继电器489Timing relay; timed relay 定时继电器490Time pulse relay 定时脉冲继电器492Directional over-current relay 方向过流继电器493Directional over-current protection 方向过流保护494Directional distance relay 方向距离继电器495Directional pilot relaying 方向纵联继电保护Cut-off relay 断路继电器498Circuit breaker failure protection 断路器故障保护装置500Open-phase relay 断相继电器501Earth-leakage protection 对地漏电保护502Multiple-reclosing breaker 多次重合闸断路器503Multi-ended circuit protection 多端线路保护506Multiple earth 多重接地507Two-position relay 二位置继电器508Generator protection 发电机保护509Generator cutout relay 发电机断路继电器510Generator protection for negative sequence current 发电机负序电流保护511Transmitting relay 发送继电器512Back-spin timer 反转时间继电器513Auxiliary relay 辅助继电器514Negative phase relay负相位继电器515Negative-phase seque nee impe ndence负相序继电器516Un der-load relay负载不足继电器517Back-up over-speed gover nor附加超速保护装置518In ducti on cup relay感应杯式继电器520In ducti on type relay感应式继电器521In ducti on disc relay感应圆盘式继电器522High sen sitive relay高灵敏度继电器回复4帖5 帖七戒旅长**2005 四2007-10-26 11:16523High-speed impeda nee relay高速阻抗继电器524High-voltage relay高压继电器525Power relay 功率继电器527Transition impedance 过渡阻抗528Thermal protection 过热保护529Temperature limiting relay 过热继电器530Overload relay 过载继电器531Overload trip 过载跳闸532Thermostat relay 恒温继电器533Closing relay 合闸继电器534Transverse differential protection 横差保护535Transfer of auxiliary supply 后备电源切换536Back-up system 后备继电保护537Delay-action relay 缓动继电器538Slow-to release relay 缓放继电器539Converter relay 换流器继电器540Electromechanical relay 机电继电器541Biased differential relaying 极化差动继电保护系统542Discontinuous relay 鉴别继电器543Transistor relay 晶体管继电器544Crystal can relay 晶体密闭继电器545Static relay静电继电器546Fast-operate slow-release relay 快动缓释继电器547Fast-release relay 快释放继电器549Excitation-loss relay失磁继电器553Two-phase short circuit fault 两相短路故障554Two-phase grounding fault 两相接地短路故障556Sensitive polarized relay 灵敏极化继电器558Sensitive relay灵敏继电器560Abnormal overload异常过载561Abnormal overvoltage 事故过电压562Above earth potential 对地电势563Absolute potential绝对电势564AC circuit breaker 交流断路器565AC component交流分量566AC distribution system 交流配电系统567Air-blast circuit breaker 空气灭弧断路器568Air-blast switch 空气吹弧开关569Air brake switch 空气制动开关571Air breaker空气断路器572Air-space cable 空气绝缘电缆573Alive带电的574All-relay interlocking 全部继电连锁575All-relay selector 全继电式选择器578Arc extinguishing coil 灭弧线圈579Arc suppressing reactor 灭弧电抗器580Asymmetric load不对称负载581Asymmetric short circuit 不对称短路582Asynchronous reactance 异步电抗583Asynchronous resistance 异步电阻584Biased differential relaying 极化差动继电保护系统585Bi-directional relay 双向继电器586Blinker继电器吊牌587Blocking relay 连锁继电器589Blowout coil灭弧线圈590Bus hub总线插座591Bus protective relay 母线保护继电器592Bus section breaker 母线分段断路器593Bus terminal fault 母线终端故障594Bus separation 母线分离595Bus tie circuit breaker 母线联络继电器596Bypass旁路597Coil factor 线圈系数598Compound relay 复合电路599Continuous load 持续负载600Counting relay 计数继电器602Cut-off of supply 停止供电603Cut-out relay 短路继电器604Dash current 冲击电流605Data medium 数据载体606Data processing 数据处理607Data transmission 数据传输608Emergency service 事故运行609Emergency standby 事故备用611Extinction coil 消弧线圈612Extinguishing voltage 消弧线圈613Extra high voltage 超高压614Fault line故障线615Fault location 故障定位616Feedback反馈617Feeder馈电线618Interlock连锁619Intermittent fault 间歇故障620Interrupting time 断路时间621Negative direction 反方向622No-load release 无跳闸623Off-peak非峰值的624Operating load 运行负载625Orthogonal正交的626Rated primary voltage 一次额定电压627Rated secondary volage 二次额定电压628Remote controlled 遥控的629Reserve bus 备用母线630Rotor转子631Sectionalizer 分段断路器632Self-energizing自激的633Sequential tripping 顺序跳闸637Surge voltage 冲击电压638Sustained overload 持续过电压639Symmetrical对称的640Fault component 故障分量641Wavelet transform 小波变换642Object-oriented 面向对象643Faults recorder 故障录波644Setting calculation 整定计算645Topology analysis 拓扑分析646Expert system 专家系统647Security 安全性651Load schedule according to frequency change 按周波减载653Semiconductor, semiconductor diode, transistor 半导体、半导体二级管、三极管654Semi-orthogonal wavelet 半正交小波656Saturation, saturation detection, saturation curve 饱和,饱和检测,饱和曲线657Relay location保护安装处658Coordination of relay settings 保护的整定配合659Coordination time interval 保护配合时间阶段660Relay system configuration 保护配置661Redundancy of relaying system 保护配置的冗余度663Protection devices, protection equipment 保护装置664Starting current and returning current of protection device 保护装置的起动电流和返回电流665Alarm 报警666Approximation component 逼近分量668B sampling functionB 样条函数670Transformation matrix 变换矩阵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

翻译文献(英译中)原文:Fault—clearing Protective Relays(1)Overcurrent relaying.Slow—speed relays.The most obvious effect of a fault is t o change the current in the faulted conductor from a normal value to an abnormall y large one.Therefore it is not surprising that the earliest methods of clearing fault s were based on the utilization of that effect(overcurrent).Early methods included f uses,circuit breakers withseries trip coils,and slow—speed overcurrent relays.Slow—speed overcurrent relays are mostly of the induction type.To obtain selec tivity without unnecessarily long delay,such relays usually have a delay which vari es inversely with the current.Both time and current settings are adjustable.Since t he fault current decreases,on account of the increased impedance of the line betw een the fault and the source.as the fault is mo,ved farther from the source of power,it follows that the relay o perating time increases as the distance to the fault increases.The time—distance curves change with such conditions as connected generating capacity and the connection or disconnection of other transmission lines,and ther efore,to ensure selectivity,curves should be checked for several conditions to asc ertain that.under the worst condition,an adequate interval exists between the oper ating times of relays 1 and 3,and, similarly,between each pair of relays on adjoi ning line sections.Coordination may be accomplished by judicious choice of both ti me settings and current settings.If the relay current changes but little with fault location,the curve of relay time versus fault position becomes more like curve a than ike curve b.Such a conditionis likely to exist if the impedance of the protected section is small compared with the impedance between the generators and the protected section,as may well be t rue if the section is short and is fedsolely or principally from one end.Moreover curve a may hold even though the rel ay current does change with fault location,if,as is usually true,the relays are op erating on the minimum-time part of their time—current characteristic.Curve a repr esents an undesirable condition when several protected line sections are in cascad e,because the relay time of the linesnear the source of power becomes increasingly long.If a line section is long or has power sources at each end,the relay current wi ll vary considerably with fault location.But,even if the current varies enough to gi ve a curve like b,the operating time of a relay near the generator is usually some what longer than that of a relay farther from the generator,though not so much lo nger as in curve a.By the use of graded time settings,overcurrent relays can always be made to work selectively on a radial transmission or distribution system.With graded setting s,and with the addition of directional relays,overcurrent relays can be made to w ork selectively on a loop system fed from one point.But on a loop fed sometimes from one point and sometimes from another,or on a network more complex than a loop,it is difficuh,if not impossible,to choose settings for overcurrent relays so t hat the relays will work selectively for all fault locations and for all operating conditi ons.译文:故障切除继电保护装置(1)现在来谈谈过电流继电保护装置,特别是延时过电流继电保护装置。

故障出现时,最明显的变化是故障导体中的电流由正常的电流值变为非正常的大电流。

因此,故障切除所采用的早期方法就是以电流的变化为依据。

早期所使用的手段包括熔丝、串联跳闸线圈断路器和延时过电流继电器。

延时过电流继电器大都是感应型,为了满足选择性和速动性,这种继电保护器通常具有反时限特性。

时间和电流整定都具有可调性,由于故障电流较小,当故障离电源较远时,考虑到故障与电源之间线路的阻抗较大,继电器的动作时间会随着故障距离的增加而延长。

时间与距离曲线是依据连接的发电容量与以其它线路连接或中断的状态而变化的。

因此,为确保选择性应校验曲线,保证在严重的状态下,继电器#1和#3动作时间之间有适当的时间间隔。

在相邻的线路上每一对继电器之间也同样要有时间间隔,这种配合通过恰当选择时间与电流的整定值来完成。

假如继电器中的电流由于故障而改变,但变化不大,那么故障点对应的时间的曲线变化与a曲线更相像。

假如被保护线路的阻抗与发电机和保护线路之间的阻抗相比较小时,就能呈现与a曲线相似的这样一种状态。

如线路较短,又是单电源供电或主要从一端供电,情况也是如此。

此外,即使继电器中的电流随故障点变动而改变,a曲线仍可能保持不变。

如果继电器进行瞬时动作,通常情况也是如此。

当几条被保护线路进行串联时,a曲呈现着不理想的状态,因为靠近电源的线路继电器动作时间相应变长。

如果一条线路较长或每一端都有电源,继电器的电流就会随故障点的不同将作相应的改变。

但即使电流的改变足以像b曲线,靠近发电机的继电器动作时间也比距发电机较远的继电器动作时间长,但不如a曲线的时间长。

通过采用阶段时间配置,过电流继电保护装置能在输电系统或配电系统中有选择性地工作,使用阶段配置并利用方向性继电器,过电流继电器从单电源供电系统中有选择性地工作,但在单回线从一端或从另一端供电的线路中,或在一个比一条线路更复杂的网络中,要想使这种继电装置对一切故障和动作状态进行选择性工作,对过电流继电装置的整定值的确定,将不是一件容易的事原文:Fault—clearing Protective Relays(2)High—speed relays.It has already been noted that the relay current during a fa ult usual.1y decreases as the distance to the fault location increases.When this location is exactlv atthe far end of the protected section,the relay current has fl certain value,and,pr ovided thatother conditions are constant,fl relay current exceeding this value is fl certain indi cation of afault in the protected section——a condition for which the circuit breaker should be tripped.Tripping may be accomplished under these conditions by the use of fl high—speed overcurrentrelay having a pick-up current equal to the current produced by fl fault at the dista nt end ofthe section.In practice,the balance point of the relay·(that is,the fault location th at willjust make the relay pick up)must be somewhat closer than the distant end,for rea sons a1一ready discussed.The contacts of the high—speed relay are connected in parallel w ith the con—tacts of a slow-speed overcurrent relay so that。

相关文档
最新文档