微生物的遗传1(14)
微生物的遗传与变异

微生物的遗传与变异遗传和变异是生物体的最本质的属性之一。
遗传性:指世代间子代和亲代相似的现象;变异性:是子代与子代之间及子代与亲代之间的差异。
遗传性保证了种的存在和延续;而变异性则推动了种的进化和发展。
遗传型(基因型):某一生物个体所含有全部遗传因子即基因的总和。
它是一种内在潜力,只有在适当的环境条件下,通过自身的发代谢和发育,才能将它具体化,即产生表型。
表型:指某一生物体所具有的一切外表特征及内在特性的总和,是遗传型在合适环境下的具体体现。
变异:指生物体在某种外因或内因的作用下所引起的遗传物质结构或数量的改变。
饰变:指不涉及遗传物质结构改变而只发生在转录、转译水平上的表型变化。
如粘质沙雷氏菌,在25℃培养时,可产生深红色的灵杆菌素,这是一种饰变,但当在37℃培养时,则不产生色素,再在25℃下培养时,又恢复产生色素的能力。
微生物在遗传学中的地位:✧个体微小,结构简单;✧营养体一般都是单倍体;✧易培养;✧繁殖快;✧易于累积不同的中间代谢物;✧菌落形态可见性与多样性;✧环境条件对微生物群体中每个个体的直接性与一致性;✧易于形成营养缺陷型;✧存在多种处于进化过程中的原始有性生殖过程。
对微生物遗传规律的深入研究,不仅促进了现代分子生物学和生物工程学的发展,而且还为育种工作提提供了丰富的理论基础,促使育种工作向着不自觉到自觉,从低效到高效,从随机到定向,从近缘杂交到远缘杂交等方向发展。
第一节遗传变异的物质基础遗传变异有无物质基础以及何种物质可承担遗传变异功能的问题,是生物学中的一个重大理论问题。
对此有着不同的猜测。
直到1944年后,利用微生物这一实验对象进行了三个著名的实验,才以确凿的事实证实了核酸尤其是DNA才是遗传变异的真正物质基础。
一、证明核酸是遗传物质的三个经典实验(一)转化实验✧发现者:英国人Griffith于1928年首次发现这一现象。
✧研究对象:肺炎链球菌S型和R型✧过程:1944年Avery等证明遗传物质是DNA。
微生物遗传 文档

基因
基因的物质基础是核酸(DNA或RNA),是一个含有特定遗传信息的核苷酸序列,它是遗传物质的最小功能单位。
突变率
突变率是指一个细胞在一个分裂世代中发生突变的可能机率。
合
遗传物质通过细胞间的直接接触从一个细胞转入到另一细胞而表达的过程称为接合。
转化子
转化后的受体菌称为转化子。
.转导子
经转导作用形成具有新遗传性状的受体细胞称为转导子。(或者是获得了转导噬菌体的受体细胞)。
诱变剂能够提高突变率的各种理化、生物因素称为诱变剂。
转化
是受体细胞从外界直接吸收供体的DNA片段(或质粒),通过遗传物质的同源区段发生交换,结果把供体菌的DNA片段整合到受体菌的基因组上,使受体菌获得新的遗传性状。
感受态
受体菌最易接受到外源DNA片段并实现转化的生理状态。
基本培养基( MM )
能满足某一菌类的野生型菌株生长最低营养要求的合成培养基。
将筛选得到的缺陷型菌株分别涂在不加任何氨基酸的基本培养基和加有组氨酸的基本培养基上,若前者不长后者长出菌落,即为组氨酸缺陷型。
141.试述筛选营养缺陷型菌株的方法,并说明营养缺陷型菌株在应用上的作用。
筛选营养缺陷型菌株一般要经过诱变、淘汰野生型,检出和鉴定营养缺陷型4个步骤。
营养缺陷型的应用价值主要有:
139.简述真菌的准性生殖过程,并说明其意义。
微生物的遗传和突变

基因复制和表达
基因复制:微生物通过复制 DNA进行遗传信息的传递
转录:基因通过转录形成 mRNA,作为蛋白质合成的模 板
翻译:mRNA通过翻译形成蛋 白质,实现基因的功能
表达调控:基因的表达受到多 种因素的调控,如环境因素、 细胞周期等
基因突变和重组
基因重组:通过基因交换和 重组,产生新的基因型
微生物检测:利用微生物遗传和 突变原理,快速准确地检测病原 体,为疾病诊断和治疗提供依据
在环境科学中的应用
微生物遗传和突变在污水 处理中的应用
微生物遗传和突变在土壤 修复中的应用
微生物遗传和突变在生物 降解中的应用
微生物遗传和突变在生物 制药中的应用
在农业中的应用
微生物遗传和突变在农作 物育种中的应用
突变体的筛选和鉴定
鉴定方法:通过基因测序、 PCR等技术进行鉴定
筛选方法:通过培养基筛选、 抗性筛选等方法
筛选目的:找出具有特定突 变的微生物
鉴定目的:基因,用于基因治疗和生物制药 育种:通过突变改良作物和家畜的性状,提高产量和抗病能力 环境保护:利用突变的微生物降解污染物,净化环境 疾病治疗:通过突变产生新的药物靶点,用于疾病治疗和预防
基因突变:DNA复制过程中 发生的错误,导致基因序列 的改变
基因突变和重组在微生物遗传 中的作用:产生新的遗传特性,
影响微生物的形态、生理和生 态特性
实例:大肠杆菌的乳糖操纵 子基因突变和重组,导致乳
糖代谢能力的改变基因流动和基因基因流动:微生物之间的基因转移和
气净化等
基因工程:通过基因 改造,提高微生物的 生产效率和产品质量
生物制药:利用微生 物生产疫苗、抗体等
药物
在医学中的应用
微生物遗传知识点总结

微生物遗传知识点总结一、微生物的遗传物质1.DNA:微生物的遗传物质主要是DNA(脱氧核糖核酸),DNA是微生物的基因组主要组成部分,承载了微生物的遗传信息。
2.RNA:微生物的遗传物质中还包括RNA(核糖核酸),RNA在微生物的蛋白质合成中起到重要的作用,有mRNA、tRNA和rRNA等不同类型。
3.质粒:微生物的遗传物质中还存在质粒,质粒是细胞外遗传物质,可以自主复制和传递,在微生物的分子遗传研究中具有重要的意义。
二、微生物的遗传变异1.突变:突变是指微生物遗传物质的突发性变异,包括点突变、插入突变和缺失突变等,突变会导致微生物表型的变化,包括对抗药物的耐药性等特征。
2.重组:重组是指微生物遗传物质的重组和重排,包括同一基因组内的DNA重组和来自不同基因组的DNA重组,重组可以导致各种遗传特征的变异和产生新的遗传组合。
3.外源基因的导入:微生物可以通过外源基因的导入来获得新的遗传特征,包括外源DNA的转化、噬菌体的侵染和质粒的转移等方式。
三、微生物的遗传传递1.垂直传递:垂直传递是指微生物遗传物质从父代到子代的传递,包括细菌的有丝分裂、芽生、孢子形成和病毒的感染传递等方式。
2.水平传递:水平传递是指微生物遗传物质在同一代的微生物个体之间的传递,包括细菌的共享基因池、DNA转化和连接转移等方式,可以导致微生物之间的基因交换和遗传多样性的增加。
四、微生物遗传的调控机制1.DNA修饰:微生物可以通过DNA修饰来调控基因的表达,包括DNA 甲基化和DNA腺苷酸修饰等方式,这些修饰可以影响基因的转录和翻译过程。
2.转录调控:微生物可以通过转录因子的结合和解离来调控基因的转录水平,包括正调控和负调控,这些调控作用可以响应内外环境的变化。
3.蛋白质修饰:微生物可以通过蛋白质的修饰来调控蛋白质的活性和稳定性,包括翻译后修饰和酶的磷酸化、乙酰化和甲基化等方式。
4. RNA干涉:微生物可以通过RNA干涉机制来调控基因表达,包括小分子RNA的介导和crispr-cas系统等方式,这些机制可以抑制或靶向性地破坏特定基因的表达。
微生物学 第八章 微生物遗传

细菌如此之小,它们不会携带过多的额外DNA。在进 化过程中,Rho可能使得基因被紧凑地‘打包’起来,从 而反过来促进了细菌的快速生长。”
二、啤酒酵母的基因组
1996年,由欧洲、美国、加拿大和日本共96个实验室 的633位科学家的艰苦努力完成了全基因组的测序工作, 这是第一个完成测序的真核生物基因组。
质粒通常以共价闭合环状(covalently closed circle,简称 CCC)的超螺旋双链DNA分子存在于细胞中.
从细胞中分离的质粒大多是三种构型,即CCC型、OC型 (open circular form)和L型(linear form).
二、质粒的主要类型
1. 致育因子(Fertility factor,F因子) 2. 抗性因子(Resistance factor,R因子) 3. Col质粒 4. 毒性质粒(virulence plasmid) 5. 代谢质粒(Metabolic plasmid) 6. 隐秘质粒(cryptic plasmid)
少数基因突变不影响生命的生存;适应复杂多变的环境。 酵母比细菌和病毒“进步”且“富有”,而细菌和病毒更 “聪明”。
第三节 质粒和转座因子
质粒(plasቤተ መጻሕፍቲ ባይዱid) 独立于染色体外,能进行自主复制的细胞 质遗传因子,主要存在于各种微生物细胞中;
转座因子(transposable element) 位于染色体或质粒上的一 段能改变自身位置的DNA序列,广泛分布于原核和真核细胞 中。
拟核上结合有类组蛋白蛋白质和少量RNA分子,使其 压缩成一种手脚架形的(scaffold)致密结构 。
大肠杆菌及其它原核细胞就是以这种拟核形式在细胞 中执行着诸如复制、重组、转录、 翻译以及复杂的调节 过程。
微生物遗传知识点总结

微生物遗传知识点总结1. 细菌的遗传物质:细菌遗传物质主要为环状核糖体RNA(plasmid)和线状核糖体RNA(chromosome)。
环状核糖体RNA一般用来携带特定功能的基因,如抗药性基因等;线状核糖体RNA则包含了细菌的基本遗传信息。
2. 真菌的遗传物质:真菌的遗传物质为线状核糖体RNA (chromosome),真菌基因组(基因组大小较大)一般包含了细菌的基本遗传信息以及其他功能基因。
3.病毒的遗传物质:病毒遗传物质主要为DNA或RNA,可以是双链的或单链的。
病毒利用寄主细胞的复制机制进行自身的遗传,感染细胞后,病毒的基因会整合到宿主细胞的染色体上,成为细菌的一部分。
4.遗传修饰:微生物中常见的遗传修饰方式有化学修饰、DNA甲基化和结构修饰等。
这些修饰可以影响基因表达、DNA复制和修复等过程,从而影响微生物的遗传特征。
5.细菌的水平基因转移:细菌拥有多种水平基因转移机制,包括转染、共转移、转座子、转化等方式。
这些机制使得细菌能够快速适应环境变化,并具有快速产生新基因型的能力。
6.真菌的有性和无性生殖:真菌包括有性生殖和无性生殖两种方式。
有性生殖通过两个不同的配子的结合产生新的基因组,有助于增加基因的多样性;无性生殖则通过单个微生物细胞的分裂繁殖来维持和传递遗传信息。
7.病毒的突变:病毒突变是其遗传变异的主要方式。
突变可以是点突变(单个碱基的改变)、缺失突变(基因缺失)、插入突变(外源DNA插入)等方式,导致病毒的基因组结构和功能的改变。
8.抗药性的遗传机制:抗药性是微生物遗传的重要研究方向之一、细菌的抗药性主要通过基因的垂直传递和水平传递两种方式进行。
基因的垂直传递是指抗药性基因在细菌的染色体上遗传给后代细菌;水平传递则是指通过细菌间共享质粒等遗传物质,传递抗药性基因。
9.基因工程和生物技术:微生物遗传的研究对于基因工程和生物技术具有重要意义。
通过对微生物遗传物质进行改造和调控,可以实现基因的克隆、表达、突变和组合等操作,从而用于生物医学、农业、食品工业和环境保护等方面的应用。
微生物的遗传与变异

微生物的遗传与变异微生物是地球上最古老的居民之一,它们在地球的生态系统中发挥着重要的作用。
然而,微生物的遗传与变异特性使得它们能够适应不断变化的环境,并在这个过程中演化出新的物种。
一、微生物的遗传微生物的遗传是通过DNA或RNA等核酸分子来传递的。
这些分子中含有遗传信息,可以指导微生物的生长发育和代谢活动。
微生物的遗传具有以下特点:1、高度多样性:微生物的种类繁多,不同种类的微生物具有不同的遗传信息,因此具有高度的多样性。
2、快速进化:微生物的遗传信息可以很容易地发生突变,这使得它们能够快速适应不断变化的环境。
3、群体遗传:微生物通常以群体形式存在,它们之间的相互作用会影响群体的遗传特征。
二、微生物的变异微生物的变异是指它们的遗传特征发生变化的过程。
这些变化可能是由于环境因素(如温度、湿度、辐射等)的影响,也可能是由于DNA 复制过程中的随机错误。
微生物的变异具有以下特点:1、适应性变异:微生物在适应环境的过程中会发生适应性变异,这些变异有助于它们在特定环境中生存和繁殖。
2、突变:微生物的DNA分子在复制过程中会发生随机错误,这些错误可能导致微生物的遗传特征发生变化。
3、基因转移:微生物之间可以通过基因转移来实现遗传信息的交流,这有助于它们适应新的环境。
三、微生物遗传与变异的实际应用微生物的遗传与变异特性在许多领域都有实际应用。
例如,科学家可以利用微生物的遗传信息来开发新的药物和生物技术产品;通过研究微生物的变异机制,可以为疾病的预防和治疗提供新的思路和方法。
微生物的遗传与变异特性是它们适应不断变化的环境的重要机制之一。
通过深入研究这些特性,我们可以更好地了解微生物的生命活动和演化过程,为人类社会的发展提供更多的帮助和支持。
微生物的遗传与变异课件一、引言微生物,作为生命的基本单元,其遗传与变异的研究对于理解生命的本质和进化机制具有重要意义。
本篇文章将深入探讨微生物的遗传与变异,希望能为相关领域的学习和研究提供有益的参考。
《微生物学》主要知识点-08第八章微生物的遗传

第八章微生物的遗传概述:遗传(heredity or inheritanc® 和变异(variation)是生物体的最本质的属性之一。
遗传即生物的亲代将一整套遗传因子传递给子代的行为或功能。
变异指生物体在某种外因或内因的作用下所引起的遗传物质结构或数量的改变。
基因型(ge no type某一生物个体所含有的全部基因的总和。
表型(phe no type)某一生物所具有的一切外表特征及内在特性的总和。
饰变( modification)不涉及遗传物质结构改变而发生在转录、翻译水平上的表型变化。
8.1遗传变异的物质基础8.1.1三个经典实验1. 经典转化实验:1928年F.Griffith以Streptococcus pneumoniae为研究对象进行转化(transformation)实验。
1944年O.T.Avery等人进一步研究得出DNA是遗传因子。
S strun A2. 噬菌体感染实验:1952年Alfred D.Hershey和Martha Chase用32P标记病毒的DNA,用35S标记病毒的蛋白质外壳,证实了T2噬菌体的DNA是遗传物质。
3.植物病毒的重建实1956年H.Fraenkel-Conrat用含RNA的烟草花叶病毒(tobacco mosaic virus,TMV)与TMV 近源的霍氏车前花叶病毒(Holmes ribgrass mosaic virus,HRV)所进行的拆分与重建实验证明,RNA也是遗传的物质基础。
8.2微生物的基因组结构:基因组(genome是指存在于细胞或病毒中的所有基因。
细菌在一般情况下是一套基因,即单倍体(haploid);真核微生物通常是有两套基因又称二倍体(diploid )。
基因组通常是指全部一套基因。
由于现在发现许多非编码序列具有重要的功能,因此目前基因组的含义实际上是指细胞中基因以及非基因的DNA序列的总称,包括编码蛋白质的结构基因、调控序列以及目前功能还尚不清楚的DNA序列。