2016年天津市中考数学试卷及解析
2016年天津市中考数学试卷(word版)及答案

机密★启用前2016年天津市初中毕业生学业测试试卷数学本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分。
第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页。
试卷满分120分。
测试时间100分钟。
答卷前,请你务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴测试用条形码。
答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效。
测试结束后,将本试卷和“答题卡”一并交回。
祝你测试顺利!第Ⅰ卷注意事项:1.每题选出答案后,用2B铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点。
2.本卷共12题,共36分。
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)(1)计算(-2)-5的结果等于(A)-7 (B)-3(C)3 (D)7(2)sin60 的值等于(A)12(B2(C 3(D3(3)下列图形中,可以看作是中心对称图形的是(A ) (B ) (C ) (D )(4)据2016年5月24日《天津日报》报道,2015年天津外环线内新栽植树木6 120 000株.将6 120 000用科学记数法表示应为 (A )70.61210⨯ (B )66.1210⨯(C )561.210⨯(D )461210⨯(5)右图是一个由4个相同的正方体组成的立体图形,它的主视图是(A ) (B )(C ) (D ) (6)估计19的值在(A )2和3之间 (B )3和4之间 (C )4和5之间 (D )5和6之间(7)计算11x x x+-的结果为 (A )1 (B )x(C )1x(D )2x x+ (8)方程2120x x +-=的两个根为(A )1226x x =-=, (B )1262x x =-=,(C )1234x x =-=,(D )1243x x =-=,(9)实数a b ,在数轴上的对应点的位置如图所示,把a -,第(5)题abb -,0按照从小到大的顺序排列,正确的是(A )0a b -<<- (B )0a b <-<- (C )0b a -<<- (D )0b a <-<-(10)如图,把一张矩形纸片ABCD 沿对角线AC 折叠,点B 的对应点为B ′,AB ′和DC 相交于点E ,则下列结论一定正确的是(A )∠DAB ′=∠CAB ′ (B )∠ACD =∠B ′CD (C )AD =AE(D )AE =CE(11)若点A 1(5)y -,,B 2(3)y -,,C 3(2)y ,在反比例函数3y x=的图象上,则123y y y ,,的大小关系是(A )132y y y << (B )123y y y << (C )321y y y << (D )213y y y <<(12)已知二次函数2()1y x h =-+(h 为常数),在自变量x 的值满足1≤x ≤3的情况下,和其对应的函数值y 的最小值为5,则h 的值为(A )1或-5 (B )-1或5 (C )1或-3 (D )1或3 机密★启用前2016年天津市初中毕业生学业测试试卷数 学第(10)题第(9)题EB'B第Ⅱ卷注意事项:1.用黑色字迹的签字笔将答案写在“答题卡”上(作图可用2B 铅笔)。
2016年天津市中考数学试卷-答案

∵点 C 与点 B 关于 x 轴对称,∴C (0, 3) , 设直线 O′C 的解析式为 y kx b ,
把 O′ (3
3
,
9
)
,C
(0,
3)
代入得
3
3 2
k
b
9 2
,解得
k
5
3 2
,
22
b 3
b 3
∴直线 O′C 的解析式为 y 5 3 x-3 , 2
当 y 0 时, 5 3 x-3 0 ,解得 x 3 3 ,
24563 ∴这组数据的平均数为 1.61. ∵在这组数据中,1.65 出现了 6 次,出现的次数最多 ∴这组数据的众数为 1.65. ∵将这组数据从小到大排列,其中处于中间的两个数都是 1.60,有 1.60 1.60 1.60
2 ∴这组数据的中位数为 1.60. (Ⅲ)将成绩从高到低排序后,取第 9 名的成绩,可判断1.65m 能否进入复赛,因为1.65m>1.60m ,故能 进入复赛. 【考点】扇形统计图和条形统计图 21.【答案】(Ⅰ) 36 (Ⅱ) 30 【解析】(Ⅰ)如图,连接 OC.
(元),当租用甲货车 x 辆时,租用甲种货车的费用为: 400x (元),则租用乙种货车 (8 x) 辆,租用乙种
货车的费用为: 280 (8 x) ﹣280x 2240 (元);
(Ⅱ)当租用甲种货车 x 辆时,两种货车的总费用为 y 400x (280x 2240)120x 2240 ,
22 (Ⅲ)∵ △ABO 绕点 B 逆时针旋转120 ,得△ABO ,点 P 的对应点为 P , ∴ BP BP ,∴ OP BP OP BP , 如图,作 B 点关于 x 轴的对称点 C,连结 O′C 交 x 轴于 P 点,
2016年天津市中考试题 数学

2016年天津市初中毕业生学业考试试卷数学本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页。
试卷满分120分,考试时间100分钟。
答卷前,请你务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码。
答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效。
考试结束后,将本试卷和“答题卡”一并交回。
祝你考试顺利!第Ⅰ卷注意事项:1.每题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点。
2.本卷共12题,共36分。
一、选择题(本大题共12小题,每小题3分,共3636分,在每小题给出的四个选项中,只有一个是符合题目要求的) (1)计算(-2)-5的结果等于(A )-7 (B )-3 (C )3 (D )7 (2)sin60o 的值等于(A )21 (B )22 (C )23(D )3(3)下列图形中,可以看作是中心对称图形的是(A ) (B ) (C ) (D )(4)2016年5月24日《天津日报》报道,2015年天津外环线内新栽植树木6120 000株,将6120 000用科学记数法表示应为 (A )0.612×107 (B )6.12×106(C )61.2×105(D )612×104(5)右图是一个由4个相同的正方体组成的立体图形,它的主视图是(A )(B ) (C ) (D )第(5)题图(6)估计6的值在(A )2和3之间 (B )3和4之间 (C )4和5之间(D )5和6之间(7)计算xx x 11-+的结果为(A )1(B )x(C )x1(D )xx 2+ (8)方程01222=-+x x 的两个根为(A )x 1= -2,x 2=6 (B )x 1= -6,x 2=2 (C )x 1= -3,x 2=4 (D )x 1= -4,x 2=3(9)实数a ,b 在数轴上的对应点的位置如图所示,把-a ,-b ,0按照从小到大的顺序排列,正确的是 (A )-a < 0 < -b (B )0 < -a < -b (C )-b < 0 < -a (D )0 < -b < -a(10)如图,把一张矩形纸片ABCD 沿对角线AC 折叠,点B 的对应点为B’,AB’与DC 相交于点E ,则下列结论一定正确的是 (A )∠DAB’=∠CAB’ (B )∠ACD=∠B’CD(C )AD=AE (D )AE=CE (11)若点A (-5,y 1),B (-3,y 2),C (2,y 3)在反比例函数xy 3=的图象上,则y 1,y 2,y 3的大小关系是 (A )y 1 < y 3 < y 2 (B )y 1 < y 2 < y 3(C )y 3 < y 2 < y 1(D )y 2 < y 1 < y 3 (12)已知二次函数()12+-=h x y (h 为常数),在自变量x 的值满足1≤x ≤3的情况下,与其对应的函数值y 的最小值为5,则h 的值为 (A )1或 -5 (B )-1或5(C )1或 -3 (D )1或3机密★启用前2016年天津市初中毕业生学业考试试卷数学第Ⅱ卷注意事项:1.用黑色字迹的签字笔将答案写在“答题卡”上(作图可用2B 铅笔)。
2016年天津市中考数学试卷及解析答案

2016年天津市中考数学试卷及解析答案2016年天津市中考数学试卷一、选择题:共12小题,每小题3分,共36分1.计算 (-2)-5 的结果等于()。
A。
-7 B。
-3 C。
3 D。
72.sin60°的值等于()。
A。
√2/2 B。
√3/2 C。
1/2 D。
1/√23.下列图形中,可以看作是中心对称图形的是()。
A。
B。
C。
D。
4.2016年5月24日《XXX》报道,2015年天津外环线内新栽植树木xxxxxxx株,将xxxxxxx用科学记数法表示应为()。
A。
0.612×10^7 B。
6.12×10^6 C。
61.2×10^5 D。
612×10^45.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()。
A。
B。
C。
D。
6.估计的值在()。
A。
2和3之间 B。
3和4之间 C。
4和5之间 D。
5和6之间7.计算。
的结果为()。
A。
1 B。
x C。
D。
8.方程 x^2+x-12=0 的两个根为()。
A。
x1=-2,x2=6 B。
x1=-6,x2=2 C。
x1=-3,x2=4 D。
x1=-4,x2=39.实数a,b在数轴上的对应点的位置如图所示,把 -a,-b,按照从小到大的顺序排列,正确的是()。
A。
-a << -b B。
<<-a<<-b C。
-b << -a D。
<<-b<<-a10.如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()。
A。
∠DAB′=∠CAB′ B。
∠ACD=∠B′CD C。
AD=AE D。
AE=CE11.若点A(-5,y1),B(-3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()。
A。
y1<y3<y2 B。
y1<y2<y3 C。
2016年天津市中考数学试卷

2016年天津市中考数学试卷一、选择题:本大题共12小题,每题3分,共36分1.计算(−2)−5的结果等于〔〕A.−7B.−3C.3D.72.sin60∘的值等于〔〕A.1 2B.√22C.√32D.√33.以下图形中,可以看作是中心对称图形的是〔〕A. B.C. D.4.2016年5月24日《天津日报》报道,2015年天津外环线内新栽植树木6120000株,将6120000用科学记数法表示应为〔〕A.0.612×107B.6.12×106C.61.2×105D.612×1045.如图是一个由4个相同的正方体组成的立体图形,它的主视图是〔〕A. B. C. D.6.估计√19的值在〔〕A.2和3之间B.3和4之间C.4和5之间D.5和6之间7.计算x+1x −1x的结果为〔〕A.1B.xC.1x D.x+2x8.方程x2+x−12=0的两个根为〔〕A.x1=−2,x2=6B.x1=−6,x2=2C.x1=−3,x2=4D.x1=−4,x2=39.实数a ,b 在数轴上的对应点的位置如下图,把−a ,−b ,0按照从小到大的顺序排列,正确的选项是〔 〕A.−a <0<−bB.0<−a <−bC.−b <0<−aD.0<−b <−a10.如图,把一张矩形纸片ABCD 沿对角线AC 折叠,点B 的对应点为B′,AB′与DC 相交于点E ,则以下结论一定正确的选项是〔 〕A.∠DAB′=∠CAB′B.∠ACD =∠B′CDC.AD =AED.AE =CE11.假设点A(−5, y 1),B(−3, y 2),C(2, y 3)在反比例函数y =3x 的图象上,则y 1,y 2,y 3的大小关系是〔 〕 A.y 1<y 3<y 2 B.y 1<y 2<y 3 C.y 3<y 2<y 1 D.y 2<y 1<y 312.已知二次函数y =(x −ℎ)2+1〔ℎ为常数〕,在自变量x 的值满足1≤x ≤3的情况下,与其对应的函数值y 的最小值为5,则ℎ的值为〔 〕 A.1或−5 B.−1或5 C.1或−3 D.1或3 二、填空题:本大题共6小题,每题3分,共18分13.计算(2a)3的结果等于________.14.计算(√5+√3)(√5−√3)的结果等于________.15.不透明袋子中装有6个球,其中有1个红球、2个绿球和3个黑球,这些球除颜色外无其他差异,从袋子中随机取出1个球,则它是绿球的概率是________.16.假设一次函数y =−2x +b 〔b 为常数〕的图象经过第二、三、四象限,则b 的值可以是________〔写出一个即可〕.17.如图,在正方形ABCD 中,点E ,N ,P ,G 分别在边AB ,BC ,CD ,DA 上,点M ,F ,Q 都在对角线BD 上,且四边形MNPQ 和AEFG 均为正方形,则S 正方形MNPQS正方形AEFG的值等于________.18.如图,在每个小正方形的边长为1的网格中,A ,E 为格点,B ,F 为小正方形边的中点,C 为AE ,BF 的延长线的交点.(1)AE 的长等于________;(2)假设点P 在线段AC 上,点Q 在线段BC 上,且满足AP =PQ =QB ,请在如下图的网格中,用无刻度的直尺,画出线段PQ ,并简要说明点P ,Q 的位置是如何找到的〔不要求证明〕________.三、综合题:本大题共7小题,共66分19.解不等式{x +2≤6,3x −2≥2x,,请结合题意填空,完成此题的解答.(1)解不等式①,得________;(2)解不等式②,得________;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为________.20.在一次中学生田径运动会上,根据参加男子跳高初赛的运发动的成绩〔单位:m 〕,绘制出如下的统计图①和图②,请根据相关信息,解答以下问题:(1)图1中a 的值为________;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m 的运发动能否进入复赛.21.在⊙O中,AB为直径,C为⊙O上一点.(1)如图1.过点C作⊙O的切线,与AB的延长线相交于点P,假设∠CAB=27∘,求∠P的大小;(2)如图2,D为AC^上一点,且OD经过AC的中点E,连接DC并延长,与AB的延长线相交于点P,假设∠CAB=10∘,求∠P的大小.22.小明上学途中要经过A,B两地,由于A,B两地之间有一片草坪,所以需要走路线AC,CB,如图,在△ABC中,AB=63m,∠A=45∘,∠B=37∘,求AC,CB的长.〔结果保留小数点后一位〕参考数据:sin37∘≈0.60,cos37∘≈0.80,tan37∘≈0.75,√2取1.414.23.公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆,已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元(1)设租用甲种货车x辆〔x为非负整数〕,试填写表格.表一:(2)给出能完成此项运送任务的最节省费用的租车方案,并说明理由.24.在平面直角坐标系中,O为原点,点A(4, 0),点B(0, 3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.(I)如图①,假设α=90∘,求AA′的长;(II)如图②,假设α=120∘,求点O′的坐标;(III)在(II)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,求点P′的坐标〔直接写出结果即可〕).25.已知抛物线C:y=x2−2x+1的顶点为P,与y轴的交点为Q,点F(1, 12(I)求点P,Q的坐标;(II)将抛物线C向上平移得到抛物线C′,点Q平移后的对应点为Q′,且FQ′=OQ′.①求抛物线C′的解析式;②假设点P关于直线Q′F的对称点为K,射线FK与抛物线C′相交于点A,求点A的坐标.答案1. 【答案】A【解析】根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:(−2)−5=(−2)+(−5)=−(2+5)=−7,故选:A.2. 【答案】C【解析】直接利用特殊角的三角函数值求出答案..【解答】解:sin60∘=√32故选:C.3. 【答案】B【解析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;D、不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误.故选:B.4. 【答案】B【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:6120000=6.12×106,故选:B.5. 【答案】A【解析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有2个正方形,第二层左边有一个正方形,第三层左边有一个正方形.故选A.6. 【答案】C【解析】直接利用二次根式的性质得出√19的取值范围.【解答】解:∵√16<√19<√25,∴√19的值在4和5之间.故选:C.7. 【答案】A【解析】根据同分母分式相加减,分母不变,分子相加减计算即可得解.【解答】解:x+1x −1x=x+1−1x=1.故选A.8. 【答案】D【解析】将x2+x−12分解因式成(x+4)(x−3),解x+4=0或x−3=0即可得出结论.【解答】解:x2+x−12=(x+4)(x−3)=0,则x+4=0,或x−3=0,解得:x1=−4,x2=3.故选D.9. 【答案】C【解析】根据数轴得出a<0<b,求出−a>−b,−b<0,−a>0,即可得出答案.【解答】解:∵从数轴可知:a<0<b,∴−a>−b,−b<0,−a>0,∴−b<0<−a,故选C.10. 【答案】D【解析】根据翻折变换的性质可得∠BAC=∠CAB′,根据两直线平行,内错角相等可得∠BAC=∠ACD,从而得到∠ACD=∠CAB′,然后根据等角对等边可得AE=CE,从而得解.【解答】解:∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,∴∠BAC=∠CAB′,∵AB // CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,所以,结论正确的选项是D选项.故选D.11. 【答案】D【解析】直接利用反比例函数图象的分布,结合增减性得出答案.【解答】解:∵点A(−5, y1),B(−3, y2),C(2, y3)在反比例函数y=3x的图象上,∴A,B点在第三象限,C点在第一象限,每个图象上y随x的增大减小,∴y3一定最大,y1>y2,∴y2<y1<y3.故选:D.12. 【答案】B【解析】由解析式可知该函数在x=ℎ时取得最小值1、x>ℎ时,y随x的增大而增大、当x<ℎ时,y随x的增大而减小,根据1≤x≤3时,函数的最小值为5可分如下两种情况:①假设ℎ<1≤x≤3,x=1时,y取得最小值5;②假设1≤x≤3<ℎ,当x=3时,y取得最小值5,分别列出关于ℎ的方程求解即可.【解答】解:∵当x>ℎ时,y随x的增大而增大,当x<ℎ时,y随x的增大而减小,∴①假设ℎ<1≤x≤3,x=1时,y取得最小值5,可得:(1−ℎ)2+1=5,解得:ℎ=−1或ℎ=3〔舍〕;②假设1≤x≤3<ℎ,当x=3时,y取得最小值5,可得:(3−ℎ)2+1=5,解得:ℎ=5或ℎ=1〔舍〕.综上,ℎ的值为−1或5,故选:B.13. 【答案】8a3【解析】根据幂的乘方与积的乘方运算法则进行计算即可.【解答】解:(2a)3=8a3.故答案为:8a3.14. 【答案】2【解析】先套用平方差公式,再根据二次根式的性质计算可得.【解答】解:原式=(√5)2−(√3)2=5−3=2,故答案为:2.15. 【答案】13【解析】由题意可得,共有6种等可能的结果,其中从口袋中任意摸出一个球是绿球的有2种情况,利用概率公式即可求得答案.【解答】解:∵在一个不透明的口袋中有6个除颜色外其余都相同的小球,其中1个红球、2个绿球和3个黑球,∴从口袋中任意摸出一个球是绿球的概率是26=13,故答案为:13.16. 【答案】−1【解析】根据一次函数的图象经过第二、三、四象限,可以得出k<0,b<0,随便写出一个小于0的b值即可.【解答】解:∵一次函数y=−2x+b〔b为常数〕的图象经过第二、三、四象限,∴k<0,b<0.故答案为:−1.17. 【答案】89【解析】根据辅助线的性质得到∠ABD=∠CBD=45∘,四边形MNPQ和AEFG均为正方形,推出△BEF与△BMN是等腰直角三角形,于是得到FE=BE=AE=12AB,BM=MN= QM,同理DQ=MQ,即可得到结论.【解答】解:在正方形ABCD中,∵∠ABD=∠CBD=45∘,∵四边形MNPQ和AEFG均为正方形,∴∠BEF=∠AEF=90∘,∠BMN=∠QMN=90∘,∴△BEF与△BMN是等腰直角三角形,∴FE=BE=AE=12AB,BM=MN=QM,同理DQ=MQ,∴MN=13BD=√23AB,∴S正方形MNPQ S正方形AEFG =(√23AB)2(12AB)2=89,故答案为:89.18. 【答案】√5;; (2)如图,AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交于Q,连接PQ,则线段PQ即为所求.故答案为:AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交于Q,连接PQ,则线段PQ即为所求.【解析】(1)根据勾股定理即可得到结论;; (2)取格点M,连接AM,并延长与BC交于Q,连接PQ,则线段PQ即为所求.【解答】解:(1)AE=√22+12=√5;; (2)如图,AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交于Q,连接PQ,则线段PQ即为所求.19. 【答案】x≤4;; (2)解不等式②,得x≥2.故答案为:x≥2.; (3)把不等式①和②的解集在数轴上表示为:;; (4)原不等式组的解集为:.故答案为:2≤x≤4.【解析】分别求出各不等式的解集,再在数轴上表示出来即可.; ; ;【解答】解:(1)解不等式①,得x≤4.; (2)解不等式②,得x≥2.; (3)把不等式①和②的解集在数轴上表示为:;; (4)原不等式组的解集为:.20. 【答案】25;; (2)观察条形统计图得:=1.61;x=1.50×2+1.55×4+1.60×5+1.65×6+1.70×32+4+5+6+3∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数是1.65;将这组数据从小到大排列为,其中处于中间的两个数都是1.60,则这组数据的中位数是1.60.; (3)能;∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前9名;∵1.65m>1.60m,∴能进入复赛.【解析】(1)用整体1减去其它所占的百分比,即可求出a的值;; (2)根据平均数、众数和中位数的定义分别进行解答即可;; (3)根据中位数的意义可直接判断出能否进入复赛.【解答】解:(1)根据题意得:1−20%−10%−15%−30%=25%;则a的值是25;; (2)观察条形统计图得:=1.61;x=1.50×2+1.55×4+1.60×5+1.65×6+1.70×32+4+5+6+3∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数是1.65;将这组数据从小到大排列为,其中处于中间的两个数都是1.60,则这组数据的中位数是1.60.; (3)能;∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前9名;∵1.65m>1.60m,∴能进入复赛.21. 【答案】解:(1)如图,连接OC,∵⊙O与PC相切于点C,∴OC⊥PC,即∠OCP=90∘,∵∠CAB=27∘,∴∠COB=2∠CAB=54∘,在Rt△AOE中,∠P+∠COP=90∘,∴∠P=90∘−∠COP=36∘;; (2)∵E为AC的中点,∴OD⊥AC,即∠AEO=90∘,在Rt△AOE中,由∠EAO=10∘,得∠AOE=90∘−∠EAO=80∘,∠AOD=40∘,∴∠ACD=12∵∠ACD是△ACP的一个外角,∴∠P=∠ACD−∠A=40∘−10∘=30∘.【解析】(1)连接OC,首先根据切线的性质得到∠OCP=90∘,利用∠CAB=27∘得到∠COB=2∠CAB=54∘,然后利用直角三角形两锐角互余即可求得答案;; (2)根据E为AC 的中点得到OD⊥AC,从而求得∠AOE=90∘−∠EAO=80∘,然后利用圆周角定理求得∠AOD=40∘,最后利用三角形的外角的性质求解即可.∠ACD=12【解答】解:(1)如图,连接OC,∵⊙O与PC相切于点C,∴OC⊥PC,即∠OCP=90∘,∵∠CAB=27∘,∴∠COB=2∠CAB=54∘,在Rt△AOE中,∠P+∠COP=90∘,∴∠P=90∘−∠COP=36∘;; (2)∵E为AC的中点,∴OD⊥AC,即∠AEO=90∘,在Rt△AOE中,由∠EAO=10∘,得∠AOE=90∘−∠EAO=80∘,∠AOD=40∘,∴∠ACD=12∵∠ACD是△ACP的一个外角,∴∠P=∠ACD−∠A=40∘−10∘=30∘.22. 【答案】AC的长约为38.2cm,CB的长约等于45.0m.【解析】根据锐角三角函数,可用CD表示AD,BD,AC,BC,根据线段的和差,可得关于CD的方程,根据解方程,可得CD的长,根据AC=√2CD,CB=CD,可得答案.0.60【解答】解:过点C作CD⊥AB垂足为D,在Rt△ACD中,tanA=tan45∘=CDAD=1,CD=AD,sinA=sin45∘=CDAC =√22,AC=√2CD.在Rt△BCD中,tanB=tan37∘=CDBD ≈0.75,BD=CD0.75;sinB=sin37∘=CDBC ≈0.60,CB=CD0.60.∵AD+BD=AB=63,∴CD+CD0.75=63,解得CD≈27,AC=√2CD≈1.414×27=38.178≈38.2,CB=CD0.60≈270.60=45.0,23. 【答案】表一:315,45x,30,−30x+240;表二:1200,400x,1400,−280x+2240;; (2)能完成此项运送任务的最节省费用的租车方案是甲车6辆,乙车2辆,理由:当租用甲种货车x辆时,设两种货车的总费用为y元,则两种货车的总费用为:y=400x+(−280x+2240)=120x+2240,又∵45x+(−30x+240)≥330,解得x≥6,∵120>0,∴在函数y=120x+2240中,y随x的增大而增大,∴当x=6时,y取得最小值,即能完成此项运送任务的最节省费用的租车方案是甲种货车6辆,乙种货车2辆.【解析】(1)根据计划租用甲、乙两种货车共8辆,已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元,可以分别把表一和表二补充完整;; (2)由(1)中的数据和公司有330台机器需要一次性运送到某地,可以解答此题.【解答】解:(1)由题意可得,在表一中,当甲车7辆时,运送的机器数量为:45×7=315〔台〕,则乙车8−7=1辆,运送的机器数量为:30×1=30〔台〕,当甲车x辆时,运送的机器数量为:45×x=45x〔台〕,则乙车(8−x)辆,运送的机器数量为:30×(8−x)=−30x+240〔台〕,在表二中,当租用甲货车3辆时,租用甲种货车的费用为:400×3=1200〔元〕,则租用乙种货车8−3=5辆,租用乙种货车的费用为:280×5=1400〔元〕,当租用甲货车x辆时,租用甲种货车的费用为:400×x=400x〔元〕,则租用乙种货车(8−x)辆,租用乙种货车的费用为:280×(8−x)=−280x+2240〔元〕,; (2)能完成此项运送任务的最节省费用的租车方案是甲车6辆,乙车2辆,理由:当租用甲种货车x辆时,设两种货车的总费用为y元,则两种货车的总费用为:y=400x+(−280x+2240)=120x+2240,又∵45x+(−30x+240)≥330,解得x≥6,∵120>0,∴在函数y=120x+2240中,y随x的增大而增大,∴当x=6时,y取得最小值,即能完成此项运送任务的最节省费用的租车方案是甲种货车6辆,乙种货车2辆.24. 【答案】解:(1)如图①,∵点A(4, 0),点B(0, 3),∴OA=4,OB=3,∴AB=√32+42=5,∵△ABO绕点B逆时针旋转90∘,得△A′BO′,∴BA=BA′,∠ABA′=90∘,∴△ABA′为等腰直角三角形,∴AA′=√2BA=5√2;(2)作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120∘,得△A′BO′,∴BO=BO′=3,∠OBO′=120∘,∴∠HBO′=60∘,在Rt△BHO′中,∵∠BO′H=90∘−∠HBO′=30∘,∴BH=12BO′=32,O′H=√3BH=3√32,∴OH=OB+BH=3+32=92,∴O′点的坐标为(3√32, 92 );(3)∵△ABO绕点B逆时针旋转120∘,得△A′BO′,点P的对应点为P′,∴BP=BP′,∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0, −3),设直线O′C的解析式为y=kx+b,把O′(3√32, 92),C(0, −3)代入得{3√32k+b=92b=−3,解得{k=5√33b=−3,∴直线O′C的解析式为y=5√33x−3,当y=0时,5√33x−3=0,解得x=3√35,则P(3√35, 0),∴OP=3√35,∴O′P′=OP=3√35,作P′D⊥O′H于D,∵∠BO′A′=∠BOA=90∘,∠BO′H=30∘,∴∠DP′O′=30∘,∴O′D=12O′P′=3√310,P′D=√3O′D=910,∴DH=O′H−O′D=3√32−3√310=6√35,∴P′点的坐标为(6√35, 275).【解析】(1)如图①,先利用勾股定理计算出AB=5,再根据旋转的性质得BA=BA′,∠ABA′=90∘,则可判定△ABA′为等腰直角三角形,然后根据等腰直角三角形的性质求AA′的长;(2)作O′H⊥y轴于H,如图②,利用旋转的性质得BO=BO′=3,∠OBO′=120∘,则∠HBO′=60∘,再在Rt△BHO′中利用含30度的直角三角形三边的关系可计算出BH和O′H的长,然后利用坐标的表示方法写出O′点的坐标;(3)由旋转的性质得BP=BP′,则O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,易得O′P+BP=O′C,利用两点之间线段最短可判断此时O′P+BP的值最小,接着利用待定系数法求出直线O′C的解析式为y=5√33x−3,从而得到P(3√35, 0),则O′P′=OP=3√35,作P′D⊥O′H于D,然后确定∠DP′O′=30∘后利用含30度的直角三角形三边的关系可计算出P′D和DO′的长,从而可得到P′点的坐标.【解答】解:(1)如图①,∵点A(4, 0),点B(0, 3),∴OA=4,OB=3,∴AB=√32+42=5,∵△ABO绕点B逆时针旋转90∘,得△A′BO′,∴BA=BA′,∠ABA′=90∘,∴△ABA′为等腰直角三角形,∴AA′=√2BA=5√2;(2)作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120∘,得△A′BO′,∴BO=BO′=3,∠OBO′=120∘,∴∠HBO′=60∘,在Rt△BHO′中,∵∠BO′H=90∘−∠HBO′=30∘,∴BH=12BO′=32,O′H=√3BH=3√32,∴OH=OB+BH=3+32=92,∴O′点的坐标为(3√32, 92 );(3)∵△ABO绕点B逆时针旋转120∘,得△A′BO′,点P的对应点为P′,∴BP=BP′,∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0, −3),设直线O′C的解析式为y=kx+b,把O′(3√32, 92),C(0, −3)代入得{3√32k+b=92b=−3,解得{k=5√33b=−3,∴直线O′C的解析式为y=5√33x−3,当y=0时,5√33x−3=0,解得x=3√35,则P(3√35, 0),∴OP=3√35,∴O′P′=OP=3√35,作P′D⊥O′H于D,∵∠BO′A′=∠BOA=90∘,∠BO′H=30∘,∴∠DP′O′=30∘,∴O′D=12O′P′=3√310,P′D=√3O′D=910,∴DH=O′H−O′D=3√32−3√310=6√35,∴P′点的坐标为(6√35, 275).25. 【答案】解:(I)∵y=x2−2x+1=(x−1)2∴顶点P(1, 0),∵当x=0时,y=1,∴Q(0, 1),; (II)①设抛物线C′的解析式为y=x2−2x+m,∴Q′(0, m)其中m>1,∴OQ′=m ,∵F(1, 12),过F 作FH ⊥OQ′,如图:∴FH =1,Q′H =m −12,在Rt △FQ′H 中,FQ′2=(m −12)2+1=m 2−m +54,∵FQ′=OQ′,∴m 2−m +54=m 2,∴m =54,∴抛物线C′的解析式为y =x 2−2x +54,②设点A(x 0, y 0),则y 0=x 02−2x 0+54, 过点A 作x 轴的垂线,与直线Q′F 相交于点N ,则可设N(x 0, n),∴AN =y 0−n ,其中y 0>n ,连接FP ,∵F(1, 12),P(1, 0),∴FP ⊥x 轴,∴FP // AN ,∴∠ANF =∠PFN ,连接PK ,则直线Q′F 是线段PK 的垂直平分线,∴FP =FK ,有∠PFN =∠AFN ,∴∠ANF =∠AFN ,则AF =AN ,根据勾股定理,得,AF 2=(x 0−1)2+(y 0−12)2,∴(x 0−1)2+(y 0−12)2=(x 20 −2x 0+54)+y 20 −y 0=y 20 , ∴AF =y 0,∴y 0=y 0−n ,∴n =0,∴N(x 0, 0),设直线Q′F 的解析式为y =kx +b ,则{b =54k +b =12, 解得{k =−34b =54, ∴y =−34x +54,由点N 在直线Q′F 上,得,0=−34x 0+54,∴x 0=53,将x 0=53代入y 0=x 20 −2x 0+54, ∴y 0=2536,∴A(53, 2536)【解析】(1)令x =0,求出抛物线与y 轴的交点,抛物线解析式化为顶点式,求出点P 坐标;(2)①设出Q′(0, m),表示出Q′H ,根据FQ′=OQ′,用勾股定理建立方程求出m ,即可. ②根据AF =AN ,用勾股定理,(x −1)2+(y −12)2=(x 2−2x +54)+y 2−y =y 2,求出AF =y ,再求出直线Q′F 的解析式,即可.;【解答】解:(I)∵y =x 2−2x +1=(x −1)2∴顶点P(1, 0),∵当x =0时,y =1,∴Q(0, 1),; (II)①设抛物线C′的解析式为y =x 2−2x +m ,∴Q′(0, m)其中m >1,∴OQ′=m ,∵F(1, 12),过F 作FH ⊥OQ′,如图:∴FH =1,Q′H =m −12,在Rt △FQ′H 中,FQ′2=(m −12)2+1=m 2−m +54, ∵FQ′=OQ′,∴m 2−m +54=m 2,∴m =54,∴抛物线C′的解析式为y =x 2−2x +54,②设点A(x 0, y 0),则y 0=x 02−2x 0+54, 过点A 作x 轴的垂线,与直线Q′F 相交于点N ,则可设N(x 0, n),∴AN =y 0−n ,其中y 0>n ,连接FP ,∵F(1, 12),P(1, 0),∴FP ⊥x 轴,∴FP // AN ,∴∠ANF =∠PFN ,连接PK ,则直线Q′F 是线段PK 的垂直平分线, ∴FP =FK ,有∠PFN =∠AFN ,∴∠ANF =∠AFN ,则AF =AN ,根据勾股定理,得,AF 2=(x 0−1)2+(y 0−12)2,∴(x 0−1)2+(y 0−12)2=(x 20 −2x 0+54)+y 20 −y 0=y 20 , ∴AF =y 0,∴y 0=y 0−n ,∴n =0,∴N(x 0, 0),设直线Q′F 的解析式为y =kx +b ,则{b =54k +b =12, 解得{k =−34b =54, ∴y =−34x +54,由点N 在直线Q′F 上,得,0=−34x 0+54, ∴x 0=53,将x 0=53代入y 0=x 20 −2x 0+54, ∴y 0=2536,∴A(53, 2536)。
2016年天津市中考数学试卷(word版,含答案)

2016年天津市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分1.计算(﹣2)﹣5的结果等于()A.﹣7 B.﹣3 C.3 D.7A.2.sin60°的值等于()A.B.C.D.C.3.下列图形中,可以看作是中心对称图形的是()A.B.C. D.B.4.2016年5月24日《天津日报》报道,2015年天津外环线内新栽植树木6120000株,将6120000用科学记数法表示应为()A.0.612×107B.6.12×106 C.61.2×105 D.612×104B.5.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B. C.D.A.6.估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间C.7.计算﹣的结果为()A.1 B.x C.D.A.8.方程x2+x﹣12=0的两个根为()A.x1=﹣2,x2=6 B.x1=﹣6,x2=2 C.x1=﹣3,x2=4 D.x1=﹣4,x2=3D.9.实数a,b在数轴上的对应点的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣aC.10.如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′B.∠ACD=∠B′CD C.AD=AE D.AE=CED.11.若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y1<y3<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y3D.12.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或3B.二、填空题:本大题共6小题,每小题3分,共18分13.计算(2a)3的结果等于8a3.14.计算(+)(﹣)的结果等于2.15.不透明袋子中装有6个球,其中有1个红球、2个绿球和3个黑球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是绿球的概率是.16.若一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是﹣1(写出一个即可).17.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于.18.如图,在每个小正方形的边长为1的网格中,A,E为格点,B,F为小正方形边的中点,C为AE,BF的延长线的交点.(Ⅰ)AE的长等于;(Ⅱ)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图所示的网格中,用无刻度的直尺,画出线段PQ,并简要说明点P,Q的位置是如何找到的(不要求证明)AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交予Q,连接PQ,则线段PQ即为所求.三、综合题:本大题共7小题,共66分19.解不等式,请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得x≤4;(Ⅱ)解不等式②,得x≥2;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为2≤x≤4.解:(I)解不等式①,得x≤4.故答案为:x≤4;(II)解不等式②,得x≥2.故答案为:x≥2.(III)把不等式①和②的解集在数轴上表示为:;(IV)原不等式组的解集为:.故答案为:2≤x≤4.20.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a的值为25;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.解:(Ⅰ)根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%;则a的值是25;故答案为:25;(Ⅱ)观察条形统计图得:==1.61;∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数是1.65;将这组数据从小到大排列为,其中处于中间的两个数都是1.60,则这组数据的中位数是1.60.(Ⅲ)能;∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前9名;∵1.65m>1.60m,∴能进入复赛.21.在⊙O中,AB为直径,C为⊙O上一点.(Ⅰ)如图1.过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=27°,求∠P 的大小;(Ⅱ)如图2,D为上一点,且OD经过AC的中点E,连接DC并延长,与AB的延长线相交于点P,若∠CAB=10°,求∠P的大小.解:(Ⅰ)如图,连接OC,∵⊙O与PC相切于点C,∴OC⊥PC,即∠OCP=90°,∵∠CAB=27°,∴∠COB=2∠CAB=54°,在Rt△AOE中,∠P+∠COP=90°,∴∠P=90°﹣∠COP=36°;(Ⅱ)∵E为AC的中点,∴OD⊥AC,即∠AEO=90°,在Rt△AOE中,由∠EAO=10°,得∠AOE=90°﹣∠EAO=80°,∴∠ACD=∠AOD=40°,∵∠ACD是△ACP的一个外角,∴∠P=∠ACD﹣∠A=40°﹣10°=30°.22.小明上学途中要经过A,B两地,由于A,B两地之间有一片草坪,所以需要走路线AC,CB,如图,在△ABC中,AB=63m,∠A=45°,∠B=37°,求AC,CB的长.(结果保留小数点后一位)参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,取1.414.解:过点C作CD⊥AB垂足为D,在Rt△ACD中,tanA=tan45°==1,CD=AD,sinA=sin45°==,AC=CD.在Rt△BCD中,tanB=tan37°=≈0.75,BD=;sinB=sin37°=≈0.60,CB=.∵AD+BD=AB=63,∴CD+=63,解得CD≈27,AC=CD≈1.414×27=38.178≈38.2,CB=≈=45.0,答:AC的长约为38.2cm,CB的长约等于45.0m.23.公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆,已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元(Ⅰ)设租用甲种货车x辆(x为非负整数),试填写表格.表一:租用甲种货车的数量/辆 3 7 x租用的甲种货车最多运送机器的数量/台135 31545x租用的乙种货车最多运送机器的数量/台150 30﹣30x+240表二:租用甲种货车的数量/辆 3 7 x租用甲种货车的费用/元12002800 400x租用乙种货车的费用/元1400280 ﹣280x+2240(Ⅱ)给出能完成此项运送任务的最节省费用的租车方案,并说明理由.解:(Ⅰ)由题意可得,在表一中,当甲车7辆时,运送的机器数量为:45×7=315(台),则乙车8﹣7=1辆,运送的机器数量为:30×1=30(台),当甲车x辆时,运送的机器数量为:45×x=45x(台),则乙车(8﹣x)辆,运送的机器数量为:30×(8﹣x)=﹣30x+240(台),在表二中,当租用甲货车3辆时,租用甲种货车的费用为:400×3=1200(元),则租用乙种货车8﹣3=5辆,租用乙种货车的费用为:280×5=1400(元),当租用甲货车x辆时,租用甲种货车的费用为:400×x=400x(元),则租用乙种货车(8﹣x)辆,租用乙种货车的费用为:280×(8﹣x)=﹣280x+2240(元),故答案为:表一:315,45x,30,﹣30x+240;表二:1200,400x,1400,﹣280x+2240;(Ⅱ)能完成此项运送任务的最节省费用的租车方案是甲车6辆,乙车2辆,理由:当租用甲种货车x辆时,设两种货车的总费用为y元,则两种货车的总费用为:y=400x+(﹣280x+2240)=120x+2240,又∵45x+(﹣30x+240)≥330,解得x≥6,∵120>0,∴在函数y=120x+2240中,y随x的增大而增大,∴当x=6时,y取得最小值,即能完成此项运送任务的最节省费用的租车方案是甲种货车6辆,乙种货车2辆.24.在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.(Ⅰ)如图①,若α=90°,求AA′的长;(Ⅱ)如图②,若α=120°,求点O′的坐标;(Ⅲ)在(Ⅱ)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,求点P′的坐标(直接写出结果即可)解:(1)如图①,∵点A(4,0),点B(0,3),∴OA=4,OB=3,∴AB==5,∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=BA=5;(2)作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,∴BH=BO′=,O′H=BH=,∴OH=OB+BH=3+=,∴O′点的坐标为(,);(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0,﹣3),设直线O′C的解析式为y=kx+b,把O′(,),C(0,﹣3)代入得,解得,∴直线O′C的解析式为y=x﹣3,当y=0时,x﹣3=0,解得x=,则P(,0),∴OP=,∴O′P′=OP=,作P′D⊥O′H于D,∵∠BO′A=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,∴O′D=O′P′=,P′D=O′D=,∴DH=O′H﹣O′D=﹣=,∴P′点的坐标为(,).25.已知抛物线C:y=x2﹣2x+1的顶点为P,与y轴的交点为Q,点F(1,).(Ⅰ)求点P,Q的坐标;(Ⅱ)将抛物线C向上平移得到抛物线C′,点Q平移后的对应点为Q′,且FQ′=OQ′.①求抛物线C′的解析式;②若点P关于直线Q′F的对称点为K,射线FK与抛物线C′相交于点A,求点A的坐标.解:(Ⅰ)∵y=x2﹣2x+1=(x﹣1)2∴顶点P(1,0),∵当x=0时,y=1,∴Q(0,1),(Ⅱ)①设抛物线C′的解析式为y=x2﹣2x+m,∴Q′(0,m)其中m>1,∴OQ′=m,∵F(1,),过F作FH⊥OQ′,如图:∴FH=1,Q′H=m﹣,在Rt△FQ′H中,FQ′2=(m﹣)2+1=m2﹣m+,∵FQ′=OQ′,∴m2﹣m+=m2,∴m=,∴抛物线C′的解析式为y=x2﹣2x+,②设点A(x0,y0),则y0=x02﹣2x0+,过点A作x轴的垂线,与直线Q′F相交于点N,则可设N(x0,n),∴AN=y0﹣n,其中y0>n,连接FP,∵F(1,),P(1,0),∴FP⊥x轴,∴FP∥AN,∴∠ANF=∠PFN,连接PK,则直线Q′F是线段PK的垂直平分线,∴FP=FK,有∠PFN=∠AFN,∴∠ANF=∠AFN,则AF=AN,根据勾股定理,得,AF2=(x0﹣1)2+(y0﹣)2,∴(x0﹣1)2+(y0﹣)2=(x﹣2x0+)+y﹣y0=y,∴AF=y0,∴y0=y0﹣n,∴n=0,∴N(x0,0),设直线Q′F的解析式为y=kx+b,则,解得,∴y=﹣x+,由点N在直线Q′F上,得,0=﹣x0+,∴x0=,将x0=代入y0=x﹣2x0+,∴y0=,∴A(,)第11页(共11页)。
2016学年天津中考数学年试题答案
B. x 3
C. x 2
D. x 3
8.学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大
赛.各组的平时成绩的平均数 x (单位:分)及方差 s2 如下表所示:
甲
乙
丙
丁
x
7
8
8
7
s2
1
1.2
1
1.8
如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是
()
A.甲
OC 13 ,则 AB
.
无
效
数学试卷 第 5 页(共 8 页)
24.实数 a , n , m , b 满足 a<n<m<b ,这四个数在数轴上对应的点分别为 A , N , M , B (如图),若 AM 2 BM AB , BN 2 AN AB 则称 m 为 a , b 的“大黄金数”, n 为 a ,
18.(本小题满分 8 分) 在四张编号为 A , B , C , D 的卡片(除编号外,其余完全相同)的正面分别写上如图所 示的正整数后,背面向上,洗匀放好.现从中随机抽取一张(不放回),再从剩下的卡片 中随机抽取一张.
(1)请用画树状图或列表的方法表示两次抽取卡片的所有可能出现的结果;(卡片用 A , B , C , D 表示) (2)我们知道,满足 a2 b2 c2 的三个正整数 a , b , c 称为勾股数.求抽到的两张卡片 上的数都是勾股数的概率.
数学试卷 第 3 页(共 8 页)
数学试卷 第 4 页(共 8 页)
毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________
天津市2016年中考数学试题含答案
2016年天津市初中毕业生学业考试试卷数学第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共3636分,在每小题给出的四个选项中,只有一个是符合题目要求的) (1)计算(-2)-5的结果等于(A )-7(B )-3(C )3(D )7(2)sin60o 的值等于(A )21(B )22 (C )23 (D )3(3)下列图形中,可以看作是中心对称图形的是(A )(B )(C )(D )(4)2016年5月24日《天津日报》报道,2015年天津外环线内新栽植树木6120 000株,将6120 000用科学记数法表示应为(A )0.612×107(B )6.12×106(C )61.2×105(D )612×104(5)右图是一个由4个相同的正方体组成的立体图形,它的主视图是(A )(B )(C )(D )(6)估计6的值在(A )2和3之间 (B )3和4之间 (C )4和5之间(D )5和6之间(7)计算xx x 11-+的结果为(A )1 (B )x (C )x1(D )xx 2+ (8)方程01222=-+x x 的两个根为(A )x 1= -2,x 2=6 (B )x 1= -6,x 2=2 (C )x 1= -3,x 2=4(D )x 1= -4,x 2=3(9)实数a ,b 在数轴上的对应点的位置如图所示,把-a ,-b ,0按照从小到大的顺序排列,正确的是(A )-a < 0 < -b第(5)题图第(9)题图a 0 b(B )0 < -a < -b (C )-b < 0 < -a (D )0 < -b < -a(10)如图,把一张矩形纸片ABCD 沿对角线AC 折叠,点B 的对应点为B ’,AB ’与DC 相交于点E ,则下列结论一定正确的是(A )∠DAB ’=∠CAB ’ (B )∠ACD=∠B ’CD (C )AD=AE(D )AE=CE(11)若点A (-5,y 1),B (-3,y 2),C (2,y 3)在反比例函数xy 3错误!未找到引用源。
2016年天津市中考数学试卷
绝密★启用前-------------天津市 2016 年初中毕业生会考学业考试在---------------- 数学-------------------- 本试卷满分 120 分 , 考试时间 100 分钟 ._ 第Ⅰ卷( 选择题共36分)此____ 一、选择题 ( 本大题共 12 小题 , 每题 3 分 , 共 36 分 . 在每题给出的四个选项中, 只有__A B C D6.预计 19 的值在()__ 一项为哪一项切合题目要求的)____ 1.计算( 2) 5 的结果等于_ _ --------------------)_ 卷(号_A . 7B . 3 C. 3 D . 7生_考_ _2. sin60 的值等于___ ( )__ _ _ 1 2 3_ _ B . D . 3_ _ --------------------A. C._ _ 2 2 2_ 上__ 3. 以下图形中 , 能够看作是中心对称图形的是_ ___ _ ( )_ __ __ __ __ __ _名_ _ --------------------姓_ _答____ ______ A B C D __和 3之间和 4之间和 5之间和 6之间7. 计算x11的结果为x x( )A . 1B . x1C.x8. 方程x2 x 12 0 的两个根为( )A . x1 2 , x2 6 B. x1 6 , x2 2C. x1 3 , x2 4D. x1 4 , x2 39. 实数 a , b在数轴上的对应点的地点以下图. 把 a ,b , 0依据从小到大的次序摆列, 正确的选项是( ) aA . a<0<b B.0< a< bC. b<0<aD. 0<b<a10.如图 , 把一张矩形纸片ABCD沿对角线AC折叠 , 点B的对应点为B , AB 与 DC 订交于点E,则以下结论必定正确的选项是x 2D .x0 b_ --------------------_ 年5月 24 日《天津日报》报导,2015 年天津外环线内新栽种树木 6_ 题 4 . 2016__120 000 株.将 6 120 000 用科学记数法表示应为() 校学A . 0.612 10 7B . 6.12 106业毕 5D. 612 10 4C. 61.2 10--------------------4 个同样的正方体构成的立体图形, 它的主视图是无 5. 如图是一个由( )--------------------第 1页(共 8页)效数学试卷()A . DAB CABB . ACD B CDC. AD AED. AE CE11. 若点A( 5, y1 ) , B( 3, y2 ) , C(2, y3 ) 在反比率函数3y的图象上,则y1,y2,y3的大x小关系是( )A . y1<y3<y2 B. y1<y2<y3C. y3<y2<y1D. y2<y1<y3数学试卷第 2页(共8 页)12. 已知二次函数y ( x h)21( h 为常数 ), 在自变量 x 的值知足 1≤x ≤3 的状况下 , 与其对应的函数值 y 的最小值为 5, 则 h 的值为 ( )A.1 或 5 B . 1或 5或3或3第 Ⅱ卷( 非选择题 共 84分)二、填空题 ( 本大题共 6小题 , 每题 3 分 , 共 18 分 . 请把答案填写在题中的横线上 )13. 计算 (2 a)3的结果等于.14. 计算 (5 3)( 5 3) 的结果等于.15. 不透明袋子中装有 6 个球 , 此中有 1 个红球、 2 个绿球和 3 个黑球 , 这些球除颜色外无其余差异 . 从袋子中随机拿出1 个球 , 则它是绿球的概率是.16. 若一次函数 y 2x b ( b 为常数 ) 的图象经过第二、三、四象限 , 则 b 的值能够是( 写出一个即可 ).17. 如图,在正方形 ABCD 中,点E , N , P , G 分别在边 AB , BC , CD , DA 上,点M , F ,Q 都在对角线 BD 上 , 且四边形 MNPQ 和 AEFG 均为正方形 , 则S正方形MNPQ的值等S 正方形 AEFG于.18. 如图 , 在每个小正方形的边长为1 的网格中 , A , E 为格点 , B , F 为小正方形边的中点, C 为 AE , BF 的延伸线的交点 .( 1) AE 的长等于;( 2) 若点 P 在线段 AC 上, 点 Q 在线段 BC 上, 且知足 AP PQ PB , 请在以下图的网格中 , 用无刻度的直尺 , 画出线段 PQ , 并简要说明点 P , Q 的地点是怎样找到的( 不要求证明 ).三、解答题 ( 本大题共 7 小题 , 共 66 分. 解答应写出必需的文字说明、证明过程或演算步骤 )19.( 本小题满分 8 分)x≤①2 6,解不等式组3x ≥ 2x, ② 2请联合题意填空 , 达成此题的解答 . ( 1) 解不等式①得 ; ( 2) 解不等式②得;( 3) 把不等式①和②的解集在数轴上表示出来:( 4) 原不等式组的解集为 .20.( 本小题满分 8 分)在一次中学生田径运动会上 , 依据参加男子跳高初赛的运动员的成绩( 单位: m ), 绘制出以下的统计图1 和图 2. 请依据有关信息, 解答以下问题:( 1) 图 1 中 a 的值为 ;( 2) 求统计的这组初赛成绩数据的均匀数、众数和中位数;( 3) 依据这组初赛成绩 , 由高到低确立 9 人能进入复赛 , 请直接写出初赛成绩为 1.65 m 的运动员可否进入复赛.21.( 本小题满分 10 分)数学试卷第3页(共 8页)数学试卷第 4页(共 8页)在O中, AB为直径,C为O上一点.-------------在----------------(1)如图① , 过点C 作O的切线 , 与AB的延伸线订交于点P, 若CAB 27 ,求_ --------------------此P 的大小;___D为AC上一点,且OD经过AC的中点 E,连结DC并延伸,与AB的延_ (2)如图②,___ 长线订交于点 P ,若CAB 10 ,求P的大小.______ --------------------__ 卷号_生_考_ ____ 22.( 本小题满分10 分)__ _ _小明上学途中要经过, 两地, 因为, 两地之间有一片草坪, 因此需要走路线_ _ A B A B_ _ --------------------_ __ 上AC , CB .如图,在△ABC中, AB 63 m , A 45, B 37 ,求 AC, CB 的长(结___ _ 果保存小数点后一位).__ __ __ _ 参照数据: sin37 , cos37 , tan37 , 2 取._ __ __ __ _名_ _ --------------------姓_ _答____ _________ --------------------__ 题__校学业毕23.( 本小题满分10 分)企业有 330 台机器需要一次性运送到某地, 计划租用甲、乙两种货车共8 辆. 已知每--------------------无辆甲种货车一次最多运送机器45 台、租车花费为400 元 , 每辆乙种货车一次最多运送机器 30 台、租车花费为280 元.( 1) 设租用甲种货车x 辆 ( x 为非负整数 ), 试填写下表 .-------------------- 数学试卷第 5 页(共 8 页)效表一:租用甲种货车的数目/ 辆 3 7 x 租用的甲种货车最多运送机器的数目/ 台135租用的乙种货车最多运送机器的数目/ 台150表二:租用甲种货车的数目/ 辆 3 7 x租用甲种货车的花费/ 元2800租用乙种货车的花费/ 元280 ( 2) 给出能达成此项运送任务的最节俭花费的租车方案, 并说明原因 .24.( 本小题满分10 分 )在平面直角坐标系中, O为原点 , 点A(4,0) , 点B(0,3)把△ABO绕点B逆时针旋转 , 得△ABO ,点 A,O旋转后的对应点为 A ,O.记旋转角为.( 1) 如图 1,若90 ,求AA的长;( 2) 如图 2,若120 , 求点O的坐标;( 3) 在 ( 2) 的条件下 , 边OA上的一点P旋转后的对应点为P ,当OP BP 获得最小值时 , 求点P的坐标 ( 直接写出结果即可).数学试卷第 6页(共 8页)25.( 本小题满分10 分 )已知抛物线 C : y x2 2 x1的极点为P,与y轴的交点为 Q ,点 F (1,1 ) . 2(1)求点P, Q的坐标;( 2) 将抛物线C向上平移得抛物线 C ,点Q平移后的对应点为Q ,且 FQ OQ .①求抛物线 C 的分析式;②若点 P对于直线Q F的对称点为K ,射线 FK 与抛物线 C 订交于点 A,求点 A 的坐标 .数学试卷第7页(共 8页)数学试卷第8页(共8页)。
2016年天津市中考数学试卷 - A4打印版
9.(3分)实数a,b在数轴上的对应点的位置如图所示,把-a,-b,0按照从小到大的顺序排列,正确的是( )
A.-a<0<-b
B.0<-a<-b
C.-b<0<-a
D.0<-b<-a
10.(3分)如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列 结论一定正确的是( )
22.(10分)小明上学途中要经过A,B两地,由于A,B两地之间有一片草坪,所以需要走路线AC,CB,如图, 在△ABC中,AB=63m,∠A=45°,∠B=37°,求AC,CB的长.(结果保留小数点后一位) 参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,⎷ 2取1.414.
2016年天津市中考数学试卷
一、选择题:本大题共12小题,每小题3分,共36分
1.(3分)计算(-2)-5的结果等于( )
A.-7
B.-3
C.3
2.(3分)sin60°的值等于( )
A.1 2
B.⎷ 2 2
C.⎷ 3 2
3.(3分)下列图形中,可以看作是中心对称图形的是( )
A.
B.
C.
D.7 D.⎷ 3 D.
(Ⅰ)求点P,Q的坐标; (Ⅱ)将抛物线C向上平移得到抛物线C′,点Q平移后的对应点为Q′,且FQ′=OQ′. ①求抛物线C′的解析式; ②若点P关于直线Q′F的对称点为K,射线FK与抛物线C′相交于点A,求点A的坐标.
它是绿球的概率是
.
16.(3分)若一次函数y=-2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是
(写出一个即可).
17.(3分)如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年天津市中考数学试卷
一、选择题:本大题共12小题,每小题3分,共36分
1.计算(﹣2)﹣5的结果等于()
A.﹣7 B.﹣3 C.3 D.7
2.sin60°的值等于()
A.B.C.D.
3.下列图形中,可以看作是中心对称图形的是()
A.B. C. D.
4.2016年5月24日《天津日报》报道,2015年天津外环线内新栽植树木6120000株,将6120000用科学记数法表示应为()
A.0.612×107B.6.12×106 C.61.2×105 D.612×104
5.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()
A.B. C.D.
6.估计的值在()
A.2和3之间B.3和4之间C.4和5之间D.5和6之间
7.计算﹣的结果为()
A.1 B.x C.D.
8.方程x2+x﹣12=0的两个根为()
A.x1=﹣2,x2=6 B.x1=﹣6,x2=2 C.x1=﹣3,x2=4 D.x1=﹣4,x2=3
9.实数a,b在数轴上的对应点的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()
A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣a
10.如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()
A.∠DAB′=∠CAB′B.∠ACD=∠B′CD C.AD=AE D.AE=CE
11.若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是
()
A.y1<y3<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y3
12.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()
A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或3
二、填空题:本大题共6小题,每小题3分,共18分
13.计算(2a)3的结果等于.
14.计算(+)(﹣)的结果等于.
15.不透明袋子中装有6个球,其中有1个红球、2个绿球和3个黑球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是绿球的概率是.
16.若一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是
(写出一个即可).
17.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于.
18.如图,在每个小正方形的边长为1的网格中,A,E为格点,B,F为小正方形边的中点,C为AE,BF的延长线的交点.
(Ⅰ)AE的长等于;
(Ⅱ)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图所示的网格中,用无刻度的直尺,画出线段PQ,并简要说明点P,Q的位置是如何找到的(不要求证
明).
三、综合题:本大题共7小题,共66分
19.解不等式,请结合题意填空,完成本题的解答.
(Ⅰ)解不等式①,得;
(Ⅱ)解不等式②,得;
(Ⅲ)把不等式①和②的解集在数轴上表示出来;
(Ⅳ)原不等式组的解集为.
20.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:
(Ⅰ)图1中a的值为;
(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;
(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.
21.在⊙O中,AB为直径,C为⊙O上一点.
(Ⅰ)如图1.过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=27°,求∠P的大小;(Ⅱ)如图2,D为上一点,且OD经过AC的中点E,连接DC并延长,与AB的延长线相交于点P,若∠CAB=10°,求∠P的大小.
22.小明上学途中要经过A,B两地,由于A,B两地之间有一片草坪,所以需要走路线AC,CB,如图,在△ABC中,AB=63m,∠A=45°,∠B=37°,求AC,CB的长.(结果保留小数点后一位)
参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,取1.414.
23.公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆,已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元
(Ⅰ)设租用甲种货车x辆(x为非负整数),试填写表格.
表一:
租用甲种货车的数量/辆 3 7 x
租用的甲种货车最多运送机器的数量/台135
租用的乙种货车最多运送机器的数量/台150
表二:
租用甲种货车的数量/辆 3 7 x
租用甲种货车的费用/元2800
租用乙种货车的费用/元280
(Ⅱ)给出能完成此项运送任务的最节省费用的租车方案,并说明理由.
24.在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.
(Ⅰ)如图①,若α=90°,求AA′的长;
(Ⅱ)如图②,若α=120°,求点O′的坐标;
(Ⅲ)在(Ⅱ)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,求点P′的坐标(直接写出结果即可)
25.已知抛物线C:y=x2﹣2x+1的顶点为P,与y轴的交点为Q,点F(1,).
(Ⅰ)求点P,Q的坐标;
(Ⅱ)将抛物线C向上平移得到抛物线C′,点Q平移后的对应点为Q′,且FQ′=OQ′.
①求抛物线C′的解析式;
②若点P关于直线Q′F的对称点为K,射线FK与抛物线C′相交于点A,求点A的坐标.。