函数概念及解析式求解(含答案)

合集下载

高三复习题型专题训练《函数的解析式》(含答案)

高三复习题型专题训练《函数的解析式》(含答案)

高三复习题型专题训练《函数的解析式》(含答案)考查内容:主要涉及求函数的解析式(换元法,待定系数法,配凑法,方程组法等)一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知()2145f x x x -=+-,则()f x 的表达式是( )A .223x x +-B .2610x x +-C .26x x +D .287x x ++2.已知函数)12fx =+,则A .()221f x x x =++ B .()()2231f x x x x =-+≥C .()221f x x x =-+D .()()2231f x x x x =++≥3.已知1)3f x =+,则(1)f x +的解析式为( ) A .4(0)x x +≥ B .23(0)x x +≥C .224(1)x x x -+≥D .23(1)x x +≥4.已知()1f x +=()21f x -的定义域为( ) A .1,12⎛⎤⎥⎝⎦B .13,22⎡⎫⎪⎢⎣⎭C .1,12⎡⎤⎢⎥⎣⎦D .13,22⎡⎤⎢⎥⎣⎦5.设函数()(0)f x kx b k =+>,满足(())165f f x x =+,则()f x =( )A .543x --B .543x -C .41xD .41x +6.已知()f x 满足()12()3f x f x x+=,则()f x 等于( )A .12x x --B .12x x -+C .12x x +D .12x x-7.设()()2log 20xf x x =>,则()3f 的值是( )A .128B .256C .512D .10248.若(cos )cos2f x x =,则(sin 60)f ︒等于( )A .BC .12D .12-9.已知定义在R 上函数()f x 为单调函数,且对任意的实数x ,都有()21213x f f x ⎛⎫+= ⎪+⎝⎭,则()2log 3f = ( )A .0B .12C .23D .110.若函数()()3af x m x =-是幂函数,且图象过点()2,4,则函数()()2log a g x m x =-的单调增区间为( )A .()2,0-B .(),0-∞C .()0,∞+D .()0,211.已知函数()y f x =对任意x ∈R ,都有2()3()5sin 2cos2f x f x x x --=+,将曲线()y f x =向左平移4π个单位长度后得到曲线()y g x =,则曲线()y g x =的一条对称轴方程为( ) A .8x π=-B .4πx =-C .8x π=D .4x π=12.设函数:f R R →满足(0)1,f =且对任意,x y R ∈都有(1)()()()2,f xy f x f y f y x +=--+则(2019)f =( )A .0B .1C .2019D .2020二.填空题13.已知二次函数()()20f x ax bx c a =++≠,其图象过点()1,1-,且满足()()244f x f x x +=++,则()f x 的解析式为______.14.已知函数()f x ,()g x 分别是定义在R 上的偶函数和奇函数,且()()21x f x g x e x +=++,则()g x =______.15.已知2()(1)()2f x f x f x +=+,(1)1f =,(x N +∈),()f x =__________.16.()f x 是R 上的函数,且满足(0)1f =,并且对任意的实数x y ,都有()()(21)f x y f x y x y -=--+,则()f x 的解析式_______三.解答题(解答应写出文字说明、证明过程或演算步骤) 17.(1)已知3311f x x x x⎛⎫+=+ ⎪⎝⎭,求()f x ; (2)如果11x f x x ⎛⎫=⎪-⎝⎭,则当0x ≠且1x ≠时,求()f x ; (3)已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x ;(4)已知函数()f x 的定义域为(0,)+∞,且1()21f x f x ⎛= ⎝,求()f x .18.已知二次函数()2f x ax bx c =++,满足()02f =,()()121f x f x x +-=-.(1)求函数()f x 的解析式;(2)求()f x 在区间[]1,2-上的最大值;(3)若函数()f x 在区间[],1a a +上单调,求实数a 的取值范围.19.一次函数()f x 是R 上的增函数,[()]43f f x x =+,41()()() (0)2m g x f x x m -=+>. (1)求()f x ;(2)对任意12[1,3]x x ∈,,恒有12()()24g x g x -≤,求实数m 的取值范围.20.已知函数()f x 对一切实数x ,y 都有()()()21f x y f y x x y +-=++成立,且()10f =.(1)求()0f 的值; (2)求()f x 的解析式;(3)已知a R ∈,设P :当01x <<时,不等式()42f x x a +<+恒成立;Q :当[]2,2x ∈-时,()()g x f x ax =-是单调函数.如果满足P 成立的a 的集合记为A ,满足Q 成立的a 的集合记为B ,求R A C B ⋂(R 为全集).21.已知函数()21ax bf x x +=+定义在()1,1-上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)求函数()f x 的解析式;(2)判断函数()f x 的单调性,并证明; (3)解关于x 的不等式()()210f x f x -+<.22.已知f(x)为奇函数,g(x)为偶函数,且f(x)+g(x)=2log 2(1−x). (1)求f(x)及g(x)的解析式及定义域;(2)如函数F(x)=2g(x)+(k +2)x 在区间(−1,1)上为单调函数,求实数k 的范围. (3)若关于x 的方程f(2x )−m =0有解,求实数m 的取值范围.《函数的解析式》解析1.【解析】由于()()()22145161f x x x x x -=+-=-+-,所以()26f x x x =+.故选:C 2.【解析】设1t =,则1t ≥且()21x t =-()()221223f t t t t ∴=-+=-+ ()()2231f x x x x ∴=-+≥,本题正确选项:B3.【解析】()11t t =≥,反解得:()21x t =-回代得:()()213f t t =-+,即:()()()2131f x x x =-+≥, 故:()()2130f x x x +=+≥.故选:B.4.【解析】由题意可知,令1x t ,则1x t =-,()f t ∴==220t t -+≥,解得02t ≤≤,令0212x ≤-≤,解得1322x ≤≤∴函数()21f x -的定义域为13,22⎡⎤⎢⎥⎣⎦,故选:D5.【解析】由题意可知()()2165f f x k kx b b k x kb b x =++=++=+⎡⎤⎣⎦所以21650k kb b k ⎧=⎪+=⎨⎪>⎩,解得:4,1k b ==,所以()41f x x =+.故选:D6.【解析】把()12()3f x f x x+=①中的x 换成1x,得()132()f f x x x +=②由①2⨯-②得()()31362f x x f x x x x=-⇒=-.故选:D7.【解析】设log 2x =t ,则x =2t ,所以f (t )=22t ,即f (x )=22x, 则f (3)=32822256==.故选:B 8.【解析】(cos )cos2f x x =,化简变形可得2(cos )2cos 1f x x =-,令[]cos ,1,1t x t =∈-,所以2()21f t t =-,[]1,1t ∈-,所以()21sin 6021222f f ⎛⎛︒==⨯-= ⎝⎭⎝⎭,故选:C.9.【解析】根据题意,()f x 是定义域为R 的单调函数,且对任意实数x 都有()21213x f f x ⎛⎫+= ⎪+⎝⎭,则()221xf x ++为常数, 设2()21x f x t +=+,则2()21xf x t =-++, 又由()21213x f f x ⎛⎫+= ⎪+⎝⎭,即21()321t f t t =-+=+, 解可得1t =,则2()121xf x =-++,则()22lo 3g 13122log 12f +=-+=,故选:B . 10.【解析】因为函数()()3af x m x =-是幂函数,且图象过点()2,4所以3124a m -=⎧⎨=⎩解得42m a =⎧⎨=⎩,所以()()()222log log 4a g x m x x =-=-则240x ->解得22x -<<,令()24t x x =-,()2log g t t =因为()t x 在()2,0-上单调递增,()0,2上单调递减,且()2log g t t =在定义域上单调递增,故()()()222log log 4a g x m x x =-=-在()2,0-上单调递增,()0,2上单调递减,故选:A 11.【解析】由2()3()5sin 2cos 22()3()5sin 2cos 2f x f x x x f x f x x x --=+⎧⎨--=-+⎩①②,①×2+②×3,得5()5sin 25cos2f x x x -=-+,即()sin 2cos 224f x x x x π⎛⎫=-=- ⎪⎝⎭,则()22444g x x x πππ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令242x k πππ+=+,k Z ∈,则对称轴方程为82k x ππ=+,k Z ∈,故选:C 12.【解析】(1)()()()2f xy f x f y f y x +=--+,(0)1,f = 取0x = 得到(1)(0)()()22f f f y f y =-+=取0y = 得到(1)()(0)(0)22f f x f f x =--+=得到()1f x x =+(2019)2020f =,故答案选D13.【解析】根据题意可知1a b c ++=-,又()()222244a x b x c ax bx c x ++++=++++恒相等,化简得到()()44244a b x a b c b x c ++++=+++恒相等,所以444241a b b a b c c a b c +=+⎧⎪++=+⎨⎪++=-⎩,故1a =,0b =,2c =-,所以()f x 的解析式为22f xx .故答案为:22f x x .14.【解析】∵()f x ,()g x 分别是定义在R 上的偶函数和奇函数,且()()21x f x g x e x +=++,∴()()()21x f x g x e x --+-=+-+,即()()21xf xg x ex --=++,两式相减可得()2xxg x e e -=-,即()()12x x g x e e -=-.故答案为:()12x x e e --. 15.【解析】()()()212f x f x f x +=+11111111(1)1(1)(1)()2()(1)222x x x f x f x f x f +⇒=+⇒=+-⨯=+-⨯=⇒+()2 1f x x =+16.【解析】令0x =,代入()()(21)f x y f x y x y -=--+得()(0)(1)f y f y y -=--+,又(0)1f =,则22()1(1)1()()1f y y y y y y y -=--+=-+=-+-+,∴2()1f x x x =++,故答案为:2()1f x x x =++.17.【解析】(1) 33311113f x x x x x x x x ⎛⎫⎛⎫⎛⎫+=+=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 当0x >时,12x x +≥=, 当0x <时,12x x +≤-=-, ∴3()3f x x x =-(2x -或2x ≥).(2)∵11111x f x x x⎛⎫==⎪-⎝⎭-,∴1()(10)1且f x x x x =≠≠-. (3)设()(0)f x ax b a =+≠则3(1)2(1)3[(1)]2[(1)]217f x f x a x b a x b x +--=++--+=+,5217ax a b x ++=+,故2517a ab =⎧⎨+=⎩,∴2a =,7b =,∴()27f x x =+.(4)∵1()21f x f x ⎛=⎝ ①用1x替换①式中的x 得12(1f f x x ⎛⎫= ⎪⎝⎭②把②代入①式可得()2(2(1)1f x f x =,即1()(0)3f x x =>. 18.【解析】(1)由()02f =,得2c =,由()()121f x f x x +-=-,得221ax a b x ++=-,故221a a b =⎧⎨+=-⎩,解得12a b =⎧⎨=-⎩,所以()222f x x x =-+.(2)由(1)得:()()222211f x x x x =-+=-+, 则()f x 的图象的对称轴方程为1x =, 又()15f -=,()22f =,所以当1x =-时()f x 在区间[]1,2-上取最大值为5. (3)由于函数()f x 在区间[],1a a +上单调, 因为()f x 的图象的对称轴方程为1x =, 所以1a ≥或11a +≤,解得:0a ≤或1a ≥, 因此a 的取值范围为:(][),01,-∞⋃+∞.19.【解析】(1)∵一次函数()f x 是R 上的增函数,∴设() (0)f x ax b a =+>,2([()]43)a ax b b a x ab b f f x x =++=+++=,∴243a ab b ⎧=⎨+=⎩,解得21a b =⎧⎨=⎩, ∴()21f x x =+.(2)对任意12[1,3]x x ∈,,恒有12()()24g x g x -≤等价于()g x 在[1,3]上的最大值与最小值之差24M ≤,由(1)知24141()()()2422m m g x f x x x mx --=+=++, ()g x 的对称轴为0x m =-<且开口向上,()g x ∴在[1,3]上单调递增,max 41()(3)12182m g x g m -∴==++,min 41()(1)422m g x g m -∴==++, (3)(1)81624M g g m =-=+≤,解得1m ≤,综上可知,(0,1]m ∈.20.【解析】(1)令1x =-,1y =,则由已知得,()()()011121f f -=-⨯-++,()10f =,()02f ∴=-(2)令0y =,则()()()01f x f x x -=+,又()02f =-,()22f x x x ∴=+-;(3)不等式()42f x x a +<+,即2242x x x a +-+<+,即22x x a -+<,当01x <<时,222x x -+<.又22a x x >-+恒成立,{}|2A a a =≥.()()22212g x x x ax x a x =+--=+--,又()g x 在[]22-,上是单调函数,故有122a -≤-,或122a -≥, {}|35B a a a ∴=≤-≥或,{}|25R A C B a a ∴=≤<.21.【解析】(1)函数()21ax bf x x +=+是定义在()1,1-上的奇函数,()00f ∴=, 又1225f ⎛⎫= ⎪⎝⎭.0b ∴=,1a =,()21x f x x ∴=+. (2)()f x 在()1,1-上为增函数,理由如下.设1211x x -<<<,则1210x x -⋅>,120x x ->,2110x +>,2210x +>,()()()()()()1212121222221212101111x x x x x x f x f x x x x x --∴-=-=<++++()()12f x f x ∴<()f x ∴在在()1,1-上为增函数,(3)()()210f x f x -+<,()()()21f x f x f x ∴-<-=-,又()f x 在在()1,1-上为递增的奇函数,1211x x ∴-<-<-<,103x ∴<<,∴不等式()()210f x f x -+<的解集为10,3⎛⎫⎪⎝⎭.22.【解析】(1)因为f(x)是奇函数,g(x)是是是是是 所以f(−x)=−f(x),g(−x)=g(x)是 ∵f(x)+g(x)=2log 2(1−x)是①∴令x 取−x 代入上式得f(−x)+g(−x)=2log 2(1+x)是 即−f(x)+g(x)=2log 2(1+x)是②联立①②可得,f(x)=log(1−x)−log 2(1+x)=log 21−x1+x (−1<x <1)是 g(x)=log(1−x)+log 2(1+x)=log 2(1−x 2)(−1<x <1). (2)因为g(x)=log 2(1−x 2),所以F(x)=−x 2+(k −2)x +1, 因为函数F(x)是是是(−1,1)是是是是是是,是是k−22≤−1是k−22≥1,所以所求实数k 的取值范围为:k ≤0或k ≥4.(3)因为f(x)=log 21−x1+x ,所以f(2x )=log 21−2x1+2x ,设t =1−2x1+2x 是 则t =1−2x 1+2x=−1+21+2x,因为f(x)是是是是是(−1,1)是2x >0 ,是是0<2x <1是1<1+2x <2,12<11+2x <1,0<−1+21+2x <1,即0<t <1是是log 2t <0 ,因为关于x 的方程f(2x )−m =0有解,则m <0, 故m 是是是是是是 (−∞,0) .。

(完整版)函数解析式的练习题兼答案

(完整版)函数解析式的练习题兼答案

函数解析式的求法(1)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法;1.已知f(x)是一次函数,且f[f(x)]=x+2,则f(x)=()A.x+1 B.2x﹣1 C.﹣x+1 D.x+1或﹣x﹣1【解答】解:f(x)是一次函数,设f(x)=kx+b,f[f(x)]=x+2,可得:k(kx+b)+b=x+2.即k2x+kb+b=x+2,k2=1,kb+b=2.解得k=1,b=1.则f(x)=x+1.故选:A.(2)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值范围;9.若函数f(x)满足f(3x+2)=9x+8,则f(x)是()A.f(x)=9x+8 B.f(x)=3x+2C.f(x)=﹣3﹣4 D.f(x)=3x+2或f(x)=﹣3x﹣4【解答】解:令t=3x+2,则x=,所以f(t)=9×+8=3t+2.所以f(x)=3x+2.故选B.(3)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然后以x替代g(x),便得f(x)的解析式;18.已知f()=,则()A.f(x)=x2+1(x≠0)B.f(x)=x2+1(x≠1)C.f(x)=x2﹣1(x≠1)D.f(x)=x2﹣1(x≠0)【解答】解:由,得f(x)=x2﹣1,又∵≠1,∴f(x)=x2﹣1的x≠1.故选:C.19.已知f(2x+1)=x2﹣2x﹣5,则f(x)的解析式为()A.f(x)=4x2﹣6 B.f(x)=C.f(x)=D.f(x)=x2﹣2x﹣5【解答】解:方法一:用“凑配法”求解析式,过程如下:;∴.方法二:用“换元法”求解析式,过程如下:令t=2x+1,所以,x=(t﹣1),∴f(t)=(t﹣1)2﹣2×(t﹣1)﹣5=t2﹣t﹣,∴f(x)=x2﹣x﹣,故选:B.(4)消去法:已知f(x)与f 或f(-x)之间的关系式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f(x).21.若f(x)对任意实数x恒有f(x)﹣2f(﹣x)=2x+1,则f(2)=()A.﹣ B.2 C.D.3【解答】解:∵f(x)对任意实数x恒有f(x)﹣2f(﹣x)=2x+1,∴用﹣x代替式中的x可得f(﹣x)﹣2f(x)=﹣2x+1,联立可解得f(x)=x﹣1,∴f(2)=×2﹣1=故选:C函数解析式的求解及常用方法练习题一.选择题(共25小题)2.若幂函数f(x)的图象过点(2,8),则f(3)的值为()A.6 B.9 C.16 D.273.已知指数函数图象过点,则f(﹣2)的值为()A.B.4 C.D.24.已知f(x)是一次函数,且一次项系数为正数,若f[f(x)]=4x+8,则f(x)=()A. B.﹣2x﹣8 C.2x﹣8 D.或﹣2x﹣85.已知函数f(x)=a x(a>0且a≠1),若f(1)=2,则函数f(x)的解析式为()A.f(x)=4x B.f(x)=2x C. D.6.已知函数,则f(0)等于()A.﹣3 B.C.D.37.设函数f(x)=,若存在唯一的x,满足f(f(x))=8a2+2a,则正实数a的最小值是()A.B.C.D.28.已知f(x﹣1)=x2,则f(x)的表达式为()A.f(x)=x2+2x+1 B.f(x)=x2﹣2x+1C.f(x)=x2+2x﹣1 D.f(x)=x2﹣2x﹣110.已知f(x)是奇函数,当x>0时,当x<0时f(x)=()A.B.C.D.11.已知f(x)=lg(x﹣1),则f(x+3)=()A.lg(x+1)B.lg(x+2)C.lg(x+3)D.lg(x+4)12.已知函数f(x)满足f(2x)=x,则f(3)=()A.0 B.1 C.log23 D.313.已知函数f(x+1)=3x+2,则f(x)的解析式是()A.3x﹣1 B.3x+1 C.3x+2 D.3x+414.如果,则当x≠0且x≠1时,f(x)=()A.B.C.D.15.已知,则函数f(x)=()A.x2﹣2(x≠0)B.x2﹣2(x≥2)C.x2﹣2(|x|≥2)D.x2﹣216.已知f(x﹣1)=x2+6x,则f(x)的表达式是()A.x2+4x﹣5 B.x2+8x+7 C.x2+2x﹣3 D.x2+6x﹣1017.若函数f(x)满足+1,则函数f(x)的表达式是()A.x2B.x2+1 C.x2﹣2 D.x2﹣120.若f(x)=2x+3,g(x+2)=f(x﹣1),则g(x)的表达式为()A.g(x)=2x+1 B.g(x)=2x﹣1 C.g(x)=2x﹣3 D.g(x)=2x+7 22.已知f(x)+3f(﹣x)=2x+1,则f(x)的解析式是()A.f(x)=x+ B.f(x)=﹣2x+C.f(x)=﹣x+D.f(x)=﹣x+ 23.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x3+x2+1,则f(1)+g(1)=()A.﹣3 B.﹣1 C.1 D.324.若函数f(x)满足:f(x)﹣4f()=x,则|f(x)|的最小值为()A.B.C.D.25.若f(x)满足关系式f(x)+2f()=3x,则f(2)的值为()A.1 B.﹣1 C.﹣D.二.解答题(共5小题)26.函数f(x)=m+log a x(a>0且a≠1)的图象过点(8,2)和(1,﹣1).(Ⅰ)求函数f(x)的解析式;(Ⅱ)令g(x)=2f(x)﹣f(x﹣1),求g(x)的最小值及取得最小值时x的值.27.已知f(x)=2x,g(x)是一次函数,并且点(2,2)在函数f[g(x)]的图象上,点(2,5)在函数g[f(x)]的图象上,求g(x)的解析式.28.已知f(x)=,f[g(x)]=4﹣x,(1)求g(x)的解析式;(2)求g(5)的值.29.已知函数f(x)=x2+mx+n(m,n∈R),f(0)=f(1),且方程x=f(x)有两个相等的实数根.(Ⅰ)求函数f(x)的解析式;(Ⅱ)当x∈[0,3]时,求函数f(x)的值域.30.已知定义在R上的函数g(x)=f(x)﹣x3,且g(x)为奇函数(1)判断函数f(x)的奇偶性;(2)若x>0时,f(x)=2x,求当x<0时,函数g(x)的解析式.函数解析式的求解及常用方法练习题参考答案与试题解析一.选择题(共25小题)2.【解答】解:幂函数f(x)的图象过点(2,8),可得8=2a,解得a=3,幂函数的解析式为:f(x)=x3,可得f(3)=27.故选:D.3.【解答】解:指数函数设为y=a x,图象过点,可得:=a,函数的解析式为:y=2﹣x,则f(﹣2)=22=4.故选:B.4.【解答】解:设f(x)=ax+b,a>0∴f(f(x))=a(ax+b)+b=a2x+ab+b=4x+8,∴,∴,∴f(x)=2x+.故选:A.5.【解答】解:∵f(x)=a x(a>0,a≠1),f(1)=2,∴f(1)=a1=2,即a=2,∴函数f(x)的解析式是f(x)=2x,故选:B.6.【解答】解:令g(x)=1﹣2x=0则x=则f(0)===3 故选D7.【解答】解:由f(f(x))=8a2+2a可化为2x=8a2+2a或log2x=8a2+2a;则由0<2x<1;log2x∈R知,8a2+2a≤0或8a2+2a≥1;又∵a>0;故解8a2+2a≥1得,a≥;故正实数a的最小值是;故选B.8.【解答】解:∵函数f(x﹣1)=x2∴f(x)=f[(x+1)﹣1]=(x+1)2=x2+2x+1 故选A.10.【解答】解:当x<0时,﹣x>0,则f(﹣x)=﹣(1﹣x),又f(x)是奇函数,所以f(x)=﹣f(﹣x)=(1﹣x).故选D.11.【解答】解:f(x)=lg(x﹣1),则f(x+3)=lg(x+2),故选:B.12.【解答】解:函数f(x)满足f(2x)=x,则f(3)=f()=log23.故选:C.13.【解答】∵f(x+1)=3x+2=3(x+1)﹣1 ∴f(x)=3x﹣1故答案是:A 14.【解答】解:令,则x=∵∴f(t)=,化简得:f(t)=即f(x)=故选B15.【解答】解:=,∴f(x)=x2﹣2(|x|≥2).故选:C.16.【解答】解:∵f(x﹣1)=x2+6x,设x﹣1=t,则x=t+1,∴f(t)=(t+1)2+6(t+1)=t2+8t+7,把t与x互换可得:f(x)=x2+8x+7.故选:B.17.【解答】解:函数f(x)满足+1=.函数f(x)的表达式是:f(x)=x2﹣1.(x≥2).故选:D.20.【解答】解:用x﹣1代换函数f(x)=2x+3中的x,则有f(x﹣1)=2x+1,∴g(x+2)=2x+1=2(x+2)﹣3,∴g(x)=2x﹣3,故选:C.22.【解答】解:∵f(x)+3f(﹣x)=2x+1…①,用﹣x代替x,得:f(﹣x)+3f(x)=﹣2x+1…②;①﹣3×②得:﹣8f(x)=8x﹣2,∴f(x)=﹣x+,故选:C.23.【解答】解:由f(x)﹣g(x)=x3+x2+1,将所有x替换成﹣x,得f(﹣x)﹣g(﹣x)=﹣x3+x2+1,根据f(x)=f(﹣x),g(﹣x)=﹣g(x),得f(x)+g(x)=﹣x3+x2+1,再令x=1,计算得,f(1)+g(1)=1.故选:C.24.【解答】解:∵f(x)﹣4f()=x,①∴f()﹣4f(x)=,②联立①②解得:f(x)=﹣(),∴|f(x)|=(),当且仅当|x|=2时取等号,故选B.25.【解答】解:∵f(x)满足关系式f(x)+2f()=3x,∴,①﹣②×2得﹣3f(2)=3,∴f(2)=﹣1,故选:B.二.解答题(共5小题)26.【解答】解:(Ⅰ)由得,解得m=﹣1,a=2,故函数解析式为f(x)=﹣1+log2x,(Ⅱ)g(x)=2f(x)﹣f(x﹣1)=2(﹣1+log2x)﹣[﹣1+log2(x﹣1)]=,其中x>1,因为当且仅当即x=2时,“=”成立,而函数y=log2x﹣1在(0,+∞)上单调递增,则,故当x=2时,函数g(x)取得最小值1.27.【解答】解:设g(x)=ax+b,a≠0;则:f[g(x)]=2ax+b,g[f(x)]=a•2x+b;∴根据已知条件有:;∴解得a=2,b=﹣3;∴g(x)=2x﹣3.28.【解答】解:(1)∵已知f(x)=,f[g(x)]=4﹣x,∴,且g(x)≠﹣3.解得g(x)=(x≠﹣1).(2)由(1)可知:=.29.【解答】解:(Ⅰ)∵f(x)=x2+mx+n,且f(0)=f(1),∴n=1+m+n.…(1分)∴m=﹣1.…(2分)∴f(x)=x2﹣x+n.…(3分)∵方程x=f(x)有两个相等的实数根,∴方程x=x2﹣x+n有两个相等的实数根.即方程x2﹣2x+n=0有两个相等的实数根.…(4分)∴(﹣2)2﹣4n=0.…(5分)∴n=1.…(6分)∴f(x)=x2﹣x+1.…(7分)(Ⅱ)由(Ⅰ),知f(x)=x2﹣x+1.此函数的图象是开口向上,对称轴为的抛物线.…(8分)∴当时,f(x)有最小值.…(9分)而,f(0)=1,f(3)=32﹣3+1=7.…(11分)∴当x∈[0,3]时,函数f(x)的值域是.…(12分)30.【解答】解:(1)∵定义在R上的函数g(x)=f(x)﹣x3,且g(x)为奇函数,∴f(x)=g(x)+x3,故f(﹣x)=g(﹣x)+(﹣x)3=﹣g(x)﹣x3=﹣f(x),∴函数f(x)为奇函数;(2)∵x>0时,f(x)=2x,∴g(x)=2x﹣x3,当x<0时,﹣x>0,故g(﹣x)=2﹣x﹣(﹣x)3,由奇函数可得g(x)=﹣g(﹣x)=﹣2﹣x﹣x3.。

函数的定义域及函数的解析式解读

函数的定义域及函数的解析式解读

函数的定义域及函数的解析式因为函数是现实世界对应关系的抽象或者说是对应关系的数学模型,它重要而且基本,不仅是数学研究的重要对象,也是数学中常用的一种数学思想,所以全面正确深刻理解函数概念则是我们教学的关键.其中函数的定义域是研究函数及应用函数解决问题的基础,即处理函数问题必须树立“定义域优先”这种数学意识.熟练准确地写出函数表达式是对函数概念理解充分体现.下面,针对函数的定义域及函数解析式做进一步探讨.一、函数的定义域[例1]求下列函数的定义域(1)y=-221x +1 (2)y=422--x x (3)xx y +=1 (4)y=241+-+-x x(5)y=3142-+-x x (6)y=)13(113-+--x x x (7)y=x 11111++(8)y=3-ax (a为常数)分析:当函数是用解析法给出,并且没有指出定义域,则使函数解析式有意义的自变量的全体所组成的集合就是函数的定义域.解:(1)x∈R(2)要使函数有意义,必须使x2-4≠0得原函数定义域为{x|x≠2且x≠-2}(3)要使函数有意义,必须使x+|x|≠0得原函数定义域为{x|x>0}(4)要使函数有意义,必须使⎩⎨⎧≥-≥-0401x x 得原函数的定义域为{x|1≤x≤4}(5)要使函数有意义,必须使⎪⎩⎪⎨⎧≠-≥-03042x x 得原函数定义域为{x|-2≤x≤2}(6)要使函数有意义,必须使⎩⎨⎧≠-≠-01301x x 得原函数的定义域为{x|x≠31且x≠1}(7)要使函数有意义,必须使⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧≥++≠++≠+≠01111011110110x x x x 得 原函数的定义域为{x|x<-1或x>0或-21<x<0} (8)要使函数有意义,必须使ax-3≥0得当a>0时,原函数定义域为{x|x≥a3} 当a<0时,原函数定义域为{x|x≤a3} 当a=0时,ax-3≥0的解集为∅,故原函数定义域为∅评述:(1)求函数定义域就是求使函数解析式有意义的自变量取值的集合,一般可通过解不等式或不等式组完成.(2)对于含参数的函数定义域常常受参数变化范围的制约,受制约时应对参数进行分类讨论.例1中的(8)小题含有参数a,须对它分类讨论.[例2](1)已知函数f(x)的定义域为(0,1),求f(x2)的定义域.(2)已知函数f(2x+1)的定义域为(0,1),求f(x)的定义域.(3)已知函数f(x+1)的定义域为[-2,3],求f(2x2-2)的定义域.分析:(1)求函数定义域就是求自变量x的取值范围,求f(x2)的定义域就是求x的范围,而不是求x2的范围,这里x与x2的地位相同,所满足的条件一样.(2)应由0<x<1确定出2x+1的范围,即为函数f(x)的定义域.(3)应由-2≤x≤3确定出x+1的范围,求出函数f(x)的定义域进而再求f(2x2-2)的定义域.它是(1)与(2)的综合应用.解:(1)∵f(x)的定义域为(0,1)∴要使f(x2)有意义,须使0<x2x<0或0<x<1∴函数f(x2x|-1<x<0或0<x<1}(2)∵f(2x+1)的定义域为(0,1),即其中的函数自变量x的取值范围是0<x<1,令t=2x+1,∴1<t<3,∴f(t)的定义域为1<x<3∴函数f(x)的定义域为{x|1<x<3}(3)∵f(x+1)的定义域为-2≤xx令t=x+1,∴-1≤t≤4∴f(t)的定义域为-1≤x≤4即f(x)的定义域为-1≤x≤4,要使f(2x2-2)有意义,须使-1≤2x2-2≤4, ∴-3≤x≤-22或22≤x≤3} 函数f(2x2-2)的定义域为{x|-3≤x≤-22或22≤x≤3} 注意:对于以上(2)(3)中的f(t)与f(x)其实质是相同的.评述:(1)对于复合函数f [g(x)]而说,如果函数f(x)的定义域为A ,则f [g(x)]的定义域是使得函数g(x)∈A的x取值范围.(2)如果f [g(x)]的定义域为A ,则函数f(x)的定义域是函数g(x)的值域.二、函数的解析式[例1](1)已知f(x +1)=x+2x ,求f(x)的解析式(2)已知f(x+x 1)=x3+31x,求f(x)的解析式 (3)已知函数f(x)是一次函数,且满足关系式3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式分析:此题目中的“f”这种对应法则,需要从题给条件中找出来,这就要有整体思想的应用.即:求出f及其定义域. 解:(1)设t=x +1≥1,则x =t-1,∴x=(t-1)2∴f(t)=(t-1)2+2(t-1)=t2-1(t≥1)∴f(x)=x2-1(x≥1)(2)∵x3+31x =(x+x 1)(x2+21x-1) =(x+x 1)[(x+x1)2-3]∴f(x+x 1)=(x+x 1)[(x+x1)2-3] ∴f(x)=x(x2-3)=x3-3x∴当x≠0时,x+x 1≥2或x+x1≤-2 ∴f(x)=x3-3x(x≤-2或x≥2)(3)设f(x)=ax+b则3f(x+1)-2f(x-1)=3ax+3a+2b+2a-2b=ax+b+5a=2x+17∴a=2,b=7∴f(x)=2x+7注意:对于(1)中f(x)与f(t)本质上一样.评述:“换元法”“配凑法”及“待定系数法”是求函数解析式常用的方法,以上3个题目分别采用了这三种方法.值得提醒的是在求出函数解析式时一定要注明定义域.[例2](1)甲地到乙地的高速公路长1500公里,现有一辆汽车以100公里/小时的速度从甲地到乙地,写出汽车离开甲地的距离S (公里)表示成时间t(小时)的函数.分析:从已知可知这辆汽车是匀速运动,所以易求得函数解析式,其定义域由甲乙两地之间的距离来决定.解:∵汽车在甲乙两地匀速行驶,∴S=100t∵汽车行驶速度为100公里/小时,两地距离为1500公里,∴从甲地到乙地所用时间为t=1001500小时 答:所求函数为:S=100t t∈[0,15](2)某乡镇现在人均一年占有粮食360千克,如果该乡镇人口平均每年增长1.2%,粮食总产量平均每年增长4%,那么x年后若人均一年占有y千克粮食.求出函数y关于x的解析式.分析:此题用到平均增长率问题的分式,由于学生尚未学到,所以还应推导. 解:设现在某乡镇人口为A ,则1年后此乡镇的人口数为A (1+1.2%),2年后的此乡镇人口数为A (1+1.2%)2…经过x年后此乡镇人口数为A (1+1.2%)x.再设现在某乡镇粮食产量为B ,则1年后此乡镇的粮食产量为B (1+4%),2年后的此乡镇粮食产量为B (1+4%)2…,经过x年后此乡镇粮食产量为B(1+4%)x,因某乡镇现在人均一年占有粮食为360 kg,即A B =360,所以x年后的人均一年占有粮食为y,即y=x xx x A b %)2.11(%)41(360%)2.11(%)41(++=++(x∈N *评述:根据实际问题求函数解析式,是应用函数知识解决实际问题的基础,在设定或选定自变量后去寻求等量关系,求得函数解析式后,还要注意函数定义域要受到实际问题的限制.。

高一数学函数概念及解析式求解(含答案)

高一数学函数概念及解析式求解(含答案)

函数概念及解析式求解一、单选题(共10道,每道10分)1.若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同形异构”函数,那么解析式为,值域为的“同形异构”函数共有( )A.4个B.8个C.9个D.10个答案:C解题思路:试题难度:三颗星知识点:函数的概念及其构成要素2.已知是一次函数,且,则=( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:复合函数的解析式3.已知是一次函数,且,,则( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:待定系数法求解析式4.已知是一次函数,且,则=( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:待定系数法求解析式5.已知,则( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:复合函数的解析式6.若,则当且时,( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:复合函数的解析式7.若,则=( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:复合函数的解析式8.若函数,则函数的解析式是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:复合函数的解析式9.若,,则的解析式是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:复合函数的解析式10.设函数,,则的值域是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:复合函数的解析式。

关于函数解析式一(含答案)

关于函数解析式一(含答案)

关于函数解析式一(含答案)1 填空题解析式为y=x2,值域为{1,4}的函数共有________个.答案9解析分析:由已知中所求函数解析式为y=x2,值域为{1,4},根据x2=1⇒x=±1,x2=4⇒x=±2,我们可得函数的定义域为集合{-2,-1,1,2}的子集,而且至少有两个元素,且必含有±1的一个,±2中的一个,由此列举出所有满足条件的函数,即可得到答案.解答:若x2=1,则x=±1,若x2=4,则x=±2,故解析式为y=x2,值域为{1,4}的函数可能为:y=x2(x∈{1,2});y=x2(x∈{-1,2});y=x2(x∈{1,-2});y=x2(x∈{-1,-2});y=x2(x∈{-1,1,2});y=x2(x∈{-2,1,2});y=x2(x∈{-2,-1,1});y=x2(x∈{-2,-1,2});y=x2(x∈{-2,-1,1,2});共9个故答案为:9点评:本题考查的知识点是函数的概念及其构成要素,其中根据已知中的函数解析式和函数的值域,分析出函数定义域中元素的特点是解答本题的关键.2 单选题解析式为y=2x2-1,值域为{1,7}的所有函数的函数值的和等于A.32B. 64C.72D.96答案C解析分析:分别解方程2x2-1=1,2x2-1=7得到x=±1,x=±2.因此要得到值域为{1,7}的函数,定义域中至少含有±1中的一个,±2中的一个.据此即可得出答案.解答:解方程2x2-1=1,得x=±1;解方程2x2-1=7得x=±2.于是可以得到定义域为下面的9个函数:①{1,2},②{1,-2},③{-1,2},④{-1,-2},⑤{-1,1,2},⑥{-1,1,-2},⑦{-1,1,-2,2},⑧{-1,-2,2},⑨{1,-2,2}.故满足条件的9个函数的函数值的和=(1+7)×9=72.故选C.点评:正确理解函数的定义、定义域、值域及分类讨论的思想方法是解题的关键.3 单选题下列解析式中,y不是x的函数是A.y+x=0B.|y|=2xC. y=|2x|D.y=2x2+4答案B解析分析:本题需利用函数的定义解决问题.解答:因为在|y|=2x中,若x=2,y就有2个值与其对应,所以y不是x的函数.故选B.点评:因为函数中,对自变量x的每一个取值,y都有唯一的值与其相对应.4 解答题(1)求函数f(x)和g(x)的解析式;(2)判断函数f(x)+g(x)的奇偶性。

考点02 求函数解析式的3种方法(解析版)

考点02  求函数解析式的3种方法(解析版)

专题二 函数考点2 求函数解析式的3种方法【方法点拨】求函数解析式的常用方法1. 待定系数法:已知函数的类型,利用所给条件,列出方程或方程组,用待定系数法确定系数.2. 配凑法或换元法:已知复合函数f[g(x)]=F(x)的解析式,把F(x)配凑成关于g(x)的表达式,再用x 代替g(x),称为配凑法;或者,直接令g(x)=t ,解方程把x 表示成关于t 的函数,再代回,称为换元法,此时要注意新元t 的取值范围.3解方程组法(或赋值法):已知关于f(x)与f(1/x)或f(-x)的表达式,可通过对自变量的不同赋值构造出不同的等式通过解方程组求出f(x).【高考模拟】1.已知()f x 是偶函数,且当0x >时,2()f x x x =-,则当0x <时,()f x 的解析式为( ) A .2()f x x x =-B .2()f x x x =--C .2()f x x x =+D .2()f x x x =-+【答案】C【分析】利用()f x 是偶函数,()()f x f x -=,当0x <,()2f x x x -=+,即可求得答案 【解析】设0x <,则0x ->,当0x >时,()2f x x x =- ()2f x x x ∴-=+,()f x 是偶函数,则()()f x f x -=()2f x x x ∴=+ ()0x <故选C【点睛】本题主要考查了利用函数的奇偶性求函数的解析式,掌握解题方法,较为简单.2.已知幂函数()f x 的图象经过点()327,,则()f x 的解析式()f x =( ).A .3xB .3xC .9xD .3log x【答案】A【分析】 设幂函数解析式为()f x x α= ,将点()327,代入即可求解. 【解析】设幂函数为()f x x α= 函数经过点(3,27),273α∴= 解得3α=故()f x 的解析式()3f x x = 故选A【点睛】本题考查幂函数解析式的确定,是基础题;解题时需要认真审题,准确代入数值.3.若函数2()1x a f x x bx +=++在[]1,1-上是奇函数,则()f x 的解析式为( ). A .2()1x f x x =-+ B .2()1x f x x =+ C .21()1x f x x +=+ D .2()1x f x x x =++ 【答案】B【解析】【分析】由奇函数得()()f x f x -=-,代入后求出解析式【解析】函数()21x a f x x bx +=++在[]1,1-上是奇函数 ()()f x f x ∴-=-,即()()00f f -=-,()00f =,001a a ==, 即()21x f x x bx =++()()11f f -=-,1122b b -=--+ 解得0b =则()21x f x x =+ 故选B【点睛】 本题考查了函数奇偶性的运用,当奇函数定义域取到零时有()00f =,然后再赋值法求出解析式,较为基础。

高中试卷-3.1 函数的概念及其表示方法(含答案)

高中试卷-3.1 函数的概念及其表示方法(含答案)

3.1 函数的概念及其表示方法1. 函数概念的理解;2. 求函数的定义域;3. 求函数值(值域);4. 函数的三种表示方法;5. 求函数解析式;6. 分段函数的概念;7.分段函数的求值;8.函数的图象及应用;9. 分段函数与方程、不等式综合问题一、单选题1.(2021·全国高一课时练习)设()1,01,01,0x x f x x x +>ìï==íï-<î,则()()0f f 等于( )A .1B .0C .2D .-1【答案】C 【解析】1,0()1,01,0x x f x x x +>ìï==íï-<îQ\ (0)1f =,((0))(1)112f f f ==+=.故选: C.2.(2021·浙江南湖嘉兴一中高一月考)下列函数中,与函数y =有相同定义域的是( )A.()f x =B .1()f x x=C .()||f x x =D.()f x =【答案】A 【解析】函数y =的定义域为{}0x x >;函数()f x ={}0x x >;函数1()f x x=的定义域为{}0,x x x ¹ÎR ;函数()f x x =的定义域为R ;函数()f x =定义域为{}1x x ….所以与函数y =有相同定义域的是()f x =.故选:A.3.(2021·浙江高一期中)函数1()f x x=的定义域是( )A .R B .[1,)-+¥C .(,0)(0,)-¥+¥U D .[1,0)(0,)-+¥U 【答案】D 【解析】由题意可得:10x +³,且0x ¹,得到1x ³-,且0x ¹,故选:D4.(2021·全国高一课时练习)已知函数f(x -1)=x 2-3,则f(2)的值为( )A .-2B .6C .1D .0【答案】B 【解析】令1x t -=,则1x t =+,()()213f t t \=+-,()()213f x x \=+-()()222136f \=+-=,故选B.5.(2021·全国高一课时练习)如果1f x æöç÷èø=1x x-,则当x≠0,1时,f(x)等于( )A .1xB .11x -C .11x-D .11x-【答案】B 【解析】令1x=t ,则x =1t ()1t ¹,代入1f x æöç÷èø=1x x -,则有f(t)=111t t-=11t -()1t ¹.即()()111f x x x =¹-.故选:B.6.(2021·全国高一课时练习)已知函数y =21,02,0x x x x ì+£í->î,则使函数值为5的x 的值是( )A .2-或2B .2或52-C .2-D .2或2-或52-【答案】C 【解析】当0x £时,令5y =,得215x +=,解得2x =-;当0x >时,令5y =,得25x -=,解得52x =-,不合乎题意,舍去.综上所述,2x =-.故选:C.7.(2021·全国高一课时练习)设函数若f (a )=4,则实数a =( )A .-4或-2B .-4或2C .-2或4D .-2或2【答案】B 【解析】当0a £时,()4f a a =-=,解得4a =-;当0a >时,24()f a a ==,解得2a =±,因为0a >,所以2a =,综上,4a =-或2,故答案选B 8.(2021·全国高一)函数()f x x =+的值域是( )A .1,2éö+¥÷êëøB .1,2æù-¥çúèûC .(0,)+¥D .[1,)+¥【答案】A【解析】t =,且0t ³,则212t x +=,函数转化为2211(1)22t y t t +=+=+由0t ³,则12y ≥,即值域为1,2éö+¥÷êëø故选:A.9.(2021·浙江高一课时练习)下列函数中,不满足:(2)2()f x f x =的是( )A .()f x x =B .()f x x x=-C .()1f x x =+D .()f x x=-【答案】C 【解析】A 中()()2222f x x x f x ===,B 中()()2222f x x x f x =-=,C 中()()2212f x x f x =+¹,D 中()()222f x x f x =-=10.(2021·浙江高一课时练习)设函数()f x 的定义域是[0,1],则函数()(2)(01)f x a f x a a +++<<的定义域为( )A .1,22a a -éù-êúëûB .,12a a éù--êúëûC .[,1]a a --D .1,2a a -éù-êúëû【答案】A 【解析】由1011021220101a x ax a a a x a x a a --ì+ìï-ïï+Þ-ííïï<<î<<ïî……………………得122a a x --……故选:A 二、多选题11.(2021·广东禅城 佛山一中高一月考)下列四个图形中可能是函数y =f (x )图象的是( )A .B .C .D .【答案】AD 【解析】在A ,D 中,对于定义域内每一个x 都有唯一的y 与之相对应,满足函数关系,在B ,C 中,存在一个x 有两个y 与x 对应,不满足函数对应的唯一性,故选AD.12.(2021·历下 山东师范大学附中高一学业考试)已知()221f x x +=,则下列结论正确的是( )A .()34f -=B .()2214x x f x -+=C .()2f x x=D .()39f =【答案】AB 【解析】由()221f x x +=,令21x t +=,可得12t x -=,可得:()222(1)2124t t t f t --+==,即:()2214x x f x -+=,故C 不正确,B 正确;可得:()2(31)344f ---==,故A 正确;()2(31)314f -==故D 不正确;故选:AB.13.(2021·江苏姑苏 苏州中学高一期中)下列各组函数中,两个函数是同一函数的有( )A .()||f x x =与()g x =B .()1f x x =+与21()1x g x x -=-C .||()x f x x =与1,0()1,0x g x x >ì=í-<îD .()f x =()g x =【答案】AC 【解析】对A, ()g x x ==,故A 正确.对B, ()1f x x =+定义域为R ,21()1x g x x -=-定义域为{}|1x x ¹,故B 错误.对C, 1,0()1,0x xf x x x >ì==í-<î,故C 正确.对D, ()f x =210x -³,解得1x £-或1x ³.()g x =定义域为1010x x +³ìí-³î即1x ³.故D 错误.故选:AC14.(2021·全国高一课时练习)已知函数()22,1,12x x f x x x +£-ì=í-<<î,关于函数()f x 的结论正确的是( )A .()f x 的定义域为RB .()f x 的值域为(),4-¥C .()13f =D .若()3f x =,则x E.()1f x <的解集为()1,1-【答案】BD 【解析】由题意知函数()f x 的定义域为(),2-¥,故A 错误;当1x £-时,()f x 的取值范围是(],1-¥,当12x -<<时,()f x 的取值范围是[)0,4,因此()f x 的值域为(),4-¥,故B 正确;当1x =时,()2111f ==,故C 错误;当1x £-时,23x +=,解得1x =(舍去),当12x -<<时,23x =,解得x =或x =,故D 正确;当1x £-时,21x +<,解得1x <-,当12x -<<时,21x <,解得11x -<<,因此()1f x <的解集为()(),11,1-¥--U ;故E 错误.故选:BD.三、填空题15.(2021·全国高一课时练习)下列对应或关系式中是A 到B 的函数的序号为________.①,ÎÎA R B R ,221x y +=;②A ={1,2,3,4},B ={0,1},对应关系如图:③,==A R B R ,1:2®=-f x y x ;④,==A Z B Z ,:®=f x y .【答案】②【解析】①,ÎÎA R B R ,221x y +=,存在x 对应两个y 的情况,所以不是A 到B 的函数;②符合函数的定义,是A 到B 的函数;③,==A R B R ,1:2®=-f x y x ,对于集合A 中的2x =没有对应y ,所以不是A 到B 的函数;④,==A Z B Z ,:®=f x y ,对于集合A 中的{|0,}x x x z £Î没有对应y ,所以不是A 到B的函数.故答案为:②16.(2021·浙江南湖 嘉兴一中高一月考)已知,若()()10f f a =,则a =______________.【答案】32【解析】0x >时,()20f x x =-<,∴由()10f x =知0x £,∴2110x +=,3x =-,而2()11f x x =+³,因此由()3f a =-知0a >,即23a -=-,32a =.故答案为:32.17.(2021·全国高一课时练习)已知()1,00,0x f x x ³ì=í<î则不等式()2xf x x +£的解集是________.【答案】{}|1x x £【解析】当0x ³时,()1f x =,代入()2xf x x +£,解得1x £,∴01x ££;当0x <时,()0f x =,代入()2xf x x +£,解得2x £,∴0x <;综上可知{}|1x x £.故答案为:{}|1x x £.四、双空题18.(2021·全国高一课时练习)已知f(x)=11x+ (x≠-1),g(x)=x 2+2,则f (2)=________,f(g (2))=________.【答案】13 17【解析】因为()11f x x =+,故可得()123f =;又()22g x x =+,故可得()22226g =+=;故()()()1267f g f ==.故答案为:13;17.19.(2021·安达市第七中学高一月考)设[]x 表示不超过x 的最大整数,已知函数[]()f x x x =-,则(0.5)f -=________ ;其值域为_________.【答案】0.5 [)0,1 【解析】作出函数[]()f x x x =-的图像,如图所示,由图可知(0.5)0.5(1)0.5f -=---=,其值域为[)0,1,故答案为(1). 0.5 (2). [)0,120.(2021·浙江高一期中)设函数()(2141x f x x ì<ï=í³ïî,则((0))f f =____,使得()4f a a ³的实数a 的取值范围是_____.【答案】4 1a £ 【解析】因为()(2141x f x x ì<ï=í³ïî,所以()01f =,因此((0))(1)4f f f ==;当1a <时,()4f a a ³可化为2(1)4+³a a ,即2(1)0a -³显然恒成立,所以1a <;当1a ³时,()44f a a =³,解得1a =;综上,1a £.故答案为4;1a £21.(2021·首都师范大学附属中学高一期中)已知函数22,(),x x x af x x x a ì-+£=í>î.(1)当a =1时,函数()f x 的值域是___________;(2)若函数()f x 的图像与直线y a =只有一个公共点,则实数a 的取值范围是_______________.【答案】R []0,1【解析】(1)当a =1时,22,1(),1x x x f x x x ì-+£=í>î当1x >时,()1f x x =>当1x £时,22()2(1)11f x x x x =-+=--+£所以函数()f x 的值域是(1,)(,1]R+¥-¥=U (2)因为当x a >时,()f x x a =>,所以只需函数2()2,()f x x x x a =-+£的图像与直线y a =只有一个公共点,当22x x x -+³,即01x ££时,所以当01a ££时,函数2()2,()f x x x x a =-+£的图像与直线y a =只有一个公共点,当22x x x -+<,即1x >或0x <时,所以当1a >或0a <,即2a x x >-+,从而函数2()2,()f x x x x a =-+£的图像与直线y a =无公共点,因此实数a 的取值范围是[]0,1故答案为:(1). R (2). []0,1五、解答题22.(2021·全国高一课时练习)求下列函数的定义域.(1)y =3-12x ;(2)y =(3)y(4)y 1x.【答案】(1)R ;(2)10,7éùêúëû;(3)()()2,11,---+¥U ;(4)()3,00,22éö-÷êëøU .【解析】(1)因为函数y =3-12x 为一次函数,所以该函数的定义域为全体实数R ;(2)由题意可得0170x x ³ìí-³î,解得107x ££,所以该函数的定义域为10,7éùêúëû;(3)由题意得1020x x +¹ìí+>î,解得2x >-且1x ¹-,所以该函数的定义域为()()2,11,---+¥U ;(4)由题意得230200x x x +³ìï->íï¹î,解得322x -£<且0x ¹,所以该函数的定义域为()3,00,22éö-÷êëøU .23.(2021·全国高一课时练习)已知2,11()1,11,1x x f x x x ì-££ï=>íï<-î(1)画出f(x)的图象;(2)若1()4f x =,求x 的值;(3)若1()4f x ³,求x 的取值范围.【答案】(1)作图见解析;(2)12x =±;(3)11,,22æùéö-¥-È+¥ç÷úêèûëø【解析】(1)函数2y x =的对称轴0x =,当0x =时,0y =;当1x =-时,1y =;当1x =时,1y =,则f(x)的图象如图所示.(2)1()4f x=等价于21114xx-££ìïí=ïî①或1114x>ìïí=ïî②或1114x<-ìïí=ïî③解①得12x=±,②③的解集都为Æ∴当1()4f x=时,12x=±.(3)由于1124fæö±=ç÷èø,结合此函数图象可知,使1()4f x³的x的取值范围是11,,22æùéö-¥-È+¥ç÷úêèûëø24.(2021·全国高一课时练习)根据下列条件,求f(x)的解析式.(1)f(x)是一次函数,且满足3f(x+1)-f(x)=2x+9;(2)f(x+1)=x2+4x+1;(3)12()(0) f f x x xxæö+=¹ç÷èø.【答案】(1)f(x)=x+3;(2)f(x)=x2+2x-2;(3)2()(0)33xf x xx=-¹【解析】(1)解由题意,设f(x)=ax+b(a≠0)∵3f(x+1)-f(x)=2x+9∴3a(x+1)+3b-ax-b=2x+9,即2ax+3a+2b=2x+9,由恒等式性质,得22 329 aa b=ìí+=î∴a=1,b=3∴所求函数解析式为f(x)=x+3.(2)设x+1=t,则x=t-1f(t)=(t-1)2+4(t-1)+1即f(t)=t2+2t-2.∴所求函数解析式为f(x)=x2+2x-2.(3)解1 ()2f x f xxæö+=ç÷èøQ,将原式中的x与1x互换,得112()f f xx xæö+=ç÷èø.于是得关于f(x)的方程组()()12112f x f x x f f x x x ìæö+=ç÷ïïèøíæöï+=ç÷ïèøî解得2()(0)33x f x x x =-¹.25.(2021·全国高一课时练习)已知函数22,2()2,2x x f x x x £ì=í+>î(1)若0)(8f x =,求0x 的值;(2)解不等式()8f x >.【答案】(1)0x =;(2){|>x x .【解析】(1)当02x £时,由02=8x ,得04x =,不符合题意;当02x >时,由2028+=x,得0x =0x =舍去),故0x =(2)()8f x >等价于228x x £ìí>î ——①或2228x x >ìí+>î——②解①得x f Î,解②得>x ,综合①②知()8f x >的解集为{|>x x .26.(2021·全国高一)已知(1)f x +的定义域为(2,4),(1)求()f x 的定义域;(2)求(2)f x 的定义域【答案】(1)(3,5);(2)35,22æöç÷èø.【解析】(1))1(f x +Q 的定义域为(2,4),24x \<<,则315x <+<,即()f x 的定义域为(3,5);(2)()f x Q 的定义域为(3,5);\由325x <<得3522x <<,即(2)f x 的定义域为35,22æöç÷èø.27.(2021·全国高一)若函数()f x =的定义域为R ,则m 的取值范围为多少?【答案】112mm ìü>íýîþ∣.【解析】Q 函数()f x =的定义域为R ,230mx x \++¹,若0m =,则3x ¹-,不满足条件.,若0m ¹,则判别式1120m D =-<,解得112m >,即1|12m m ìü>íýîþ。

高考必考点之求解函数解析式

高考必考点之求解函数解析式

高考必考点之求解函数解析式求解函数解析式是高考重点考查内容之一,需引起重视.本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力.●难点磁场(★★★★)已知f(2-cosx)=cos2x+cosx,求f(x-1).●案例探究[例1](1)已知函数f(x)满足f(logax)= (其中a>0,a≠1,x>0),求f(x)的表达式.(2)已知二次函数f(x)=ax2+bx+c满足|f(1)|=|f(-1)|=|f(0)|=1,求 f(x) 的表达式.命题意图:本题主要考查函数概念中的三要素:定义域、值域和对应法则,以及计算能力和综合运用知识的能力.属★★★★题目.知识依托:利用函数基础知识,特别是对"f"的理解,用好等价转化,注意定义域.错解分析:本题对思维能力要求较高,对定义域的考查、等价转化易出错.技巧与方法:(1)用换元法;(2)用待定系数法.解:(1)令t=logax(a>1,t>0;0<A<1,T因此f(t)= (at-a-t)∴f(x)= (ax-a-x)(a>1,x>0;0<A<1,X<0)(2)由f(1)=a+b+c,f(-1)=a-b+c,f(0)=c得并且f(1)、f(-1)、f(0)不能同时等于1或-1,所以所求函数为:f(x)=2x2-1或f(x)=-2x2+1或f(x)=-x2-x+1或f(x)=x2-x-1或f(x)=-x2+x+1或f(x)=x2+x-1.[例2]设f(x)为定义在R上的偶函数,当x≤-1时,y=f(x)的图象是经过点(-2,0),斜率为1的射线,又在y=f(x)的图象中有一部分是顶点在(0,2),且过点(-1,1)的一段抛物线,试写出函数f(x)的表达式,并在图中作出其图象.命题意图:本题主要考查函数基本知识、抛物线、射线的基本概念及其图象的作法,对分段函数的分析需要较强的思维能力.因此,分段函数是今后高考的热点题型.属★★★★题目. 知识依托:函数的奇偶性是桥梁,分类讨论是关键,待定系数求出曲线方程是主线.错解分析:本题对思维能力要求很高,分类讨论、综合运用知识易发生混乱.技巧与方法:合理进行分类,并运用待定系数法求函数表达式.解:(1)当x≤-1时,设f(x)=x+b∵射线过点(-2,0).∴0=-2+b即b=2,∴f(x)=x+2.(2)当-1<X∵抛物线过点(-1,1),∴1=a·(-1)2+2,即a=-1∴f(x)=-x2+2.(3)当x≥1时,f(x)=-x+2综上可知:f(x)=作图由读者来完成.●锦囊妙计本难点所涉及的问题及解决方法主要有:1.待定系数法,如果已知函数解析式的构造时,用待定系数法;2.换元法或配凑法,已知复合函数f[g(x)]的表达式可用换元法,当表达式较简单时也可用配凑法;3.消参法,若已知抽象的函数表达式,则用解方程组消参的方法求解f(x);另外,在解题过程中经常用到分类讨论、等价转化等数学思想方法.●歼灭难点训练一、选择题1.(★★★★)若函数f(x)=(x≠)在定义域内恒有f[f(x)]=x,则m等于( )A.3B.C.-D.-32.(★★★★★)设函数y=f(x)的图象关于直线x=1对称,在x≤1时,f(x)=(x+1)2-1,则x>1时f(x)等于( )A.f(x)=(x+3)2-1B.f(x)=(x-3)2-1C.f(x)=(x-3)2+1D.f(x)=(x-1)2-1二、填空题3.(★★★★★)已知f(x)+2f()=3x,求f(x)的解析式为_________.4.(★★★★★)已知f(x)=ax2+bx+c,若f(0)=0且f(x+1)=f(x)+x+1,则f(x)=_________.三、解答题5.(★★★★)设二次函数f(x)满足f(x-2)=f(-x-2),且其图象在y轴上的截距为1,在x轴上截得的线段长为,求f(x)的解析式.6.(★★★★)设f(x)是在(-∞,+∞)上以4为周期的函数,且f(x)是偶函数,在区间[2,3]上时,f(x)=-2(x-3)2+4,求当x∈[1,2]时f(x)的解析式.若矩形ABCD的两个顶点A、B在x轴上,C、D在y=f(x)(0≤x≤2)的图象上,求这个矩形面积的最大值.7.(★★★★★)动点P从边长为1的正方形ABCD的顶点A出发顺次经过B、C、D再回到A,设x表示P点的行程,f(x)表示PA 的长,g(x)表示△ABP的面积,求f(x)和g(x),并作出g(x)的简图.8.(★★★★★)已知函数y=f(x)是定义在R上的周期函数,周期T=5,函数y=f(x)(-1≤x≤1)是奇函数,又知y=f(x)在[0,1]上是一次函数,在[1,4]上是二次函数,且在x=2时,函数取得最小值,最小值为-5.(1)证明:f(1)+f(4)=0;(2)试求y=f(x),x∈[1,4]的解析式;(3)试求y=f(x)在[4,9]上的解析式.参考答案难点磁场解法一:(换元法)∵f(2-cosx)=cos2x-cosx=2cos2x-cosx-1令u=2-cosx(1≤u≤3),则cosx=2-u∴f(2-cosx)=f(u)=2(2-u)2-(2-u)-1=2u2-7u+5(1≤u≤3)∴f(x-1)=2(x-1)2-7(x-1)+5=2x2-11x+4(2≤x≤4)解法二:(配凑法)f(2-cosx)=2cos2x-cosx-1=2(2-cosx)2-7(2-cosx)+5∴f(x)=2x2-7x-5(1≤x≤3),即f(x-1)=2(x-1)2-7(x -1)+5=2x2-11x+14(2≤x≤4).歼灭难点训练一、1.解析:∵f(x)=.∴f[f(x)]==x,整理比较系数得m=3.答案:A2.解析:利用数形结合,x≤1时,f(x)=(x+1)2-1的对称轴为x=-1,最小值为-1,又y=f(x)关于x=1对称,故在x>1上,f(x)的对称轴为x=3且最小值为-1.答案:B二、3.解析:由f(x)+2f()=3x知f()+2f(x)=3.由上面两式联立消去f()可得f(x)=-x.答案:f(x)= -x4.解析:∵f(x)=ax2+bx+c,f(0)=0,可知c=0.又f(x+1)=f(x)+x+1,∴a(x+1)2+b(x+1)+0=ax2+bx+x+1,即(2a+b)x+a+b=bx+x+1.故2a+b=b+1且a+b=1,解得a=,b=,∴f(x)=x2+x.答案:x2+x三、5.解:利用待定系数法,设f(x)=ax2+bx+c,然后找关于a、b、c的方程组求解,f(x)=.6.解:(1)设x∈[1,2],则4-x∈[2,3],∵f(x)是偶函数,∴f(x)=f(-x),又因为4是f(x)的周期,∴f(x)=f(-x)=f(4-x)=-2(x-1)2+4.(2)设x∈[0,1],则2≤x+2≤3,f(x)=f(x+2)=-2(x-1)2+4,又由(1)可知x∈[0,2]时,f(x)=-2(x-1)2+4,设A、B坐标分别为(1-t,0),(1+t,0)(0<t≤1,则|AB|=2t,|AD|=-2t2+4,S 矩形=2t(-2t2+4)=4t(2-t2),令S矩=S,∴=2t2(2-t2)·(2-t2)≤()3=,当且仅当2t2=2-t2,即t=时取等号.∴S2≤即S≤,∴Smax=.7.解:(1)如原题图,当P在AB上运动时,PA=x;当P点在BC上运动时,由Rt△ABD 可得PA=;当P点在CD上运动时,由Rt△ADP易得PA=;当P点在DA上运动时,PA=4-x,故f(x)的表达式为:f(x)=(2)由于P点在折线ABCD上不同位置时,△ABP的形状各有特征,计算它们的面积也有不同的方法,因此同样必须对P点的位置进行分类求解.如原题图,当P在线段AB上时,△ABP的面积S=0;当P在BC上时,即1<x≤2时,S△ABP=AB·BP=(x-1);当P在CD 上时,即2<x≤3时,S△ABP=·1·1=;当P在DA上时,即3<x≤4时,S△ABP=(4-x).故g(x)=8.(1)证明:∵y=f(x)是以5为周期的周期函数,∴f(4)=f(4-5)=f(-1),又y=f(x)(-1≤x≤1)是奇函数,∴f(1)=-f(-1)=-f(4),∴f(1)+f(4)=0.(2)解:当x∈[1,4]时,由题意,可设f(x)=a(x-2)2-5(a≠0),由f(1)+f(4)=0得a(1-2)2-5+a(4-2)2-5=0,解得a=2,∴f(x)=2(x-2)2-5(1≤x≤4).(3)解:∵y=f(x)(-1≤x≤1)是奇函数,∴f(0)=-f(-0),∴f(0)=0,又y=f(x) (0≤x≤1)是一次函数,∴可设f(x)=kx(0≤x≤1),∵f(1)=2(1-2)2-5=-3,又f(1)=k·1=k,∴k=-3.∴当0≤x≤1时,f(x) =-3x,当-1≤x<0时,f(x)=-3x,当4≤x≤6时,-1≤x-5≤1,∴f(x)=f(x-5)=-3(x-5)=-3x+15, 当6<x≤9时,1<x-5≤4,f(x)=f(x-5)=2[(x-5)-2]2-5=2(x-7)2-5.∴f(x)=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数概念及解析式求解
一、单选题(共10道,每道10分)
1.若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同形异构”函数,那么解析式为,值域为的“同形异构”函数共有( )
A.4个
B.8个
C.9个
D.10个
答案:C
解题思路:
试题难度:三颗星知识点:函数的概念及其构成要素
2.已知是一次函数,且,则=( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:复合函数的解析式
3.已知是一次函数,且,,则( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:待定系数法求解析式
4.已知是一次函数,且,则=( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:待定系数法求解析式
5.已知,则f(x+1)=( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:复合函数的解析式
6.若,则当且时,( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:复合函数的解析式
7.若,则=( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:复合函数的解析式
8.若函数,则函数的解析式是( ) A.
B.
C.
D.
答案:B
解题思路:
试题难度:三颗星知识点:复合函数的解析式
9.若,,则的解析式是( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:复合函数的解析式
10.设函数,,则的值域是( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:复合函数的解析式。

相关文档
最新文档