2018年高考文数立体几何真题精选

合集下载

2018全国高考立体几何(完整答案)

2018全国高考立体几何(完整答案)

2018全国高考立体几何(完整答案)一.解答题(共40小题)1.已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.2.如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D 的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.3.在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.4.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA ⊥PD,PA=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面PAB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.5.如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM 折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=DA,求三棱锥Q ﹣ABP的体积.6.如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥平面ABCD,BD交AC 于点E,F是线段PC中点,G为线段EC中点.(Ⅰ)求证:FG∥平面PBD;(Ⅱ)求证:BD⊥FG.7.如图所示,在四棱锥P﹣ABCD中,平面PAB⊥平面ABCD,AD∥BC,AD=2BC,∠DAB=∠ABP=90°.(Ⅰ)求证:AD⊥平面PAB;(Ⅱ)求证:AB⊥PC;(Ⅲ)若点E在棱PD上,且CE∥平面PAB,求的值.8.如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.(1)求证:DE∥平面PBC;(2)求证:AB⊥PE;(3)求三棱锥P﹣BEC的体积.9.如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥CB,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,,M是棱PC上的点.(Ⅰ)求证:平面PQB⊥平面PAD;(Ⅱ)若PA=PD=2,BC=1,,异面直线AP与BM所成角的余弦值为,求的值.10.如图,梯形ABCD中,AD=BC,AB∥CD,AC⊥BD,平面BDEF⊥平面ABCD,EF∥BD,BE⊥BD.(1)求证:平面AFC⊥平面BDFE;(2)若AB=2CD=2,BE=EF=2,求BF与平面DFC所成角的正弦值.11.如图,在三棱锥P﹣ABC中,AB⊥PC,CA=CB,M是AB的中点.点N在棱PC上,点D是BN的中点.求证:(1)MD∥平面PAC;(2)平面ABN⊥平面PMC.12.如图,已知PA垂直于矩形ABCD所在的平面,M,N分别是AB,PC的中点,若∠PDA=45°,(1)求证:MN∥平面PAD;(2)求证:MN⊥平面PCD.13.如图,正三棱柱ABC﹣A1B1C1中,AA1=AB,D为BB1的中点.(1)求证:A1C⊥AD;(2)若点P为四边形ABB1A1内部及其边界上的点,且三棱锥P﹣ABC的体积为三棱柱ABC﹣A1B1C1体积的,试在图中画出,P点的轨迹.并说明理由.14.如图,在三棱柱ABC﹣A1B1C1中,底面ABC为边长为2等边三角形,BB1=4,A1C1⊥BB1,且∠A1B1B=45°.(I)证明:平面BCC1B1⊥平面ABB1A1;(Ⅱ)求B﹣AC﹣A1二面角的余弦值.15.已知三棱柱ABC﹣A1B1C1的侧棱垂直于底面,∠BAC=90°,AB=AA1=2,AC=1,M,N分别是A1B1,BC的中点.(Ⅰ)证明:MN∥平面ACC1A1;(II)求二面角M﹣AN﹣B的余弦值.16.已知空间几何体ABCDE中,△BCD与△CDE均为边长为2的等边三角形,△ABC为腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD.(1)试在平面BCD内作一条直线,使得直线上任意一点F与E的连线EF均与平面ABC平行,并给出详细证明;(2)求三棱锥E﹣ABC的体积.17.如图,在四棱锥P﹣ABCD中,∠ADB=90°,CB=CD,点E为棱PB的中点.(1)若PB=PD,求证:PC⊥BD;(2)求证:CE∥平面PAD.18.如图,长方体ABCD﹣A1B1C1D1中,AB=BC=2,A1C与底面ABCD所成的角为60°,(1)求四棱锥A1﹣ABCD的体积;(2)求异面直线A1B与B1D1所成角的大小.19.如图,四棱锥P﹣ABCD的底面ABCD是边长为2的菱形∠BAD=60°.已知PB=PD=2,PA=.(Ⅰ)证明:PC⊥BD;(Ⅱ)若E为PA上一点,记三棱锥P﹣BCE的体积和四棱锥P﹣ABCD的体积分别为V1和V2,当V1:V2=1:8时,求的值.20.如图,正方体ABCD﹣A1B1C1D1的棱长为2,E,F分别是CB,CD的中点,点M在棱CC1上,CM=tCC1(0<t<1).(Ⅰ)三棱锥C﹣EFM,C1﹣B1D1M的体积分别为V1,V2,当t为何值时,V1•V2最大?最大值为多少?(Ⅱ)若A1C∥平面B1D1M,证明:平面EFM⊥平面B1D1M.21.如图,直角梯形ABEF中,∠ABE=∠BAF=90°,C、D分别是BE、AF上的点,且DA=AB=BC=a,DF=2CE=2a.沿CD将四边形CDFE翻折至CDPQ,连接AP、BP、BQ,得到多面体ABCDPQ,且AP=a.(Ⅰ)求多面体ABCDPQ的体积;(Ⅱ)求证:平面PBQ⊥平面PBD.22.如图,已知四棱锥P﹣ABCD的底面ABCD是菱形,∠BAD=60°,PA=PD,O 为AD边的中点.(1)证明:平面POB⊥平面PAD;(2)若,求四棱锥P﹣ABCD的体积.23.如图,在四棱锥P﹣ABCD中.底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD.Q为AD的中点,M是棱PC上的点,PA=PD=2.BC=AD=1,CD=.(I)求证:平面PBC⊥平面PQB;(Ⅱ)若平面QMB与平面PDC所成的锐二面角的大小为60°,求PM的长.24.在如图所示的几何体中,面CDEF为正方形,面ABCD为等腰梯形,AB∥CD,,AB=2BC=2,AC⊥FB.(Ⅰ)求证:AC⊥平面FBC;(Ⅱ)求四面体FBCD的体积;(Ⅲ)线段AC上是否存在点M,使EA∥平面FDM?证明你的结论.25.如图所示的几何体中,平面PAD⊥平面ABCD,△PAD是直角三角形,∠APD=90°,四边形ABCD是直角梯形,AB∥DC,AB⊥AD,PQ∥DC,PQ=PD=DC=1,PA=AB=2.(I)求证:PD∥平面QBC;(Ⅱ)求证:QC⊥平面PABQ;(Ⅲ)在线段QB上是否存在点M,使得AM⊥BC,若存在,求QM的值;若不存在,请说明理由.26.如图1,△ABC是边长为3的等边三角形,D在边AC上,E在边AB上,且AD=BE=2AE.将△ADE沿直线DE折起,得四棱锥A'﹣BCDE,如图2(1)求证:DE⊥A'B;(2)若平面AD'E⊥底面BCDE,求三棱锥D﹣A'CE的体积.27.如图,在三棱锥P﹣ABC中,PA⊥AC,AB⊥BC,PA=BC=2,PB=AC=2,D 为线段AC的中点,将△CBD折叠至△EBD,使得平面EDB⊥平面ABC且PC交平面EBD于F.(1)求证:平面BDE⊥平面PAC.(2)求三棱锥P﹣EBC的体积.28.如图1,在矩形ABCD中,AD=2AB=4,E是AD的中点.将△ABE沿BE折起使A到点P的位置,平面PEB⊥平面BCDE,如图2.(Ⅰ)求证:PB⊥平面PEC;(Ⅱ)求三棱锥D﹣PEC的高.29.如图1,ABCD是一个直角梯形,∠ABC=∠BAD=90,E为BC边上一点,AE、BD相交于O,AD=EC=3,BE=1,AB=.将△ABE沿AE折起,使平面ABE⊥平面ADE,连接BC、BD,得到如图2所示的四棱锥B﹣AECD.(Ⅰ)求证:CD⊥平面BOD;(Ⅱ)求直线AB与面BCD所成角的余弦值.30.如图,四棱柱ABCD﹣A1B1C1D1为长方体,点P是CD中点,Q是A1B1的中点.(I)求证:AQ∥平面PBC1;(l)若BC=CC1,求证:平面A1B1C⊥平面PBC1.31.如图,在四棱锥P﹣ABCD中,AD∥BC,AD=3BC=6,,点M在线段AD上,且DM=4,AD⊥AB,PA⊥平面ABCD.(1)证明:平面PCM⊥平面PAD;(2)当∠APB=45°时,求四棱锥P﹣ABCM的表面积.32.已知等腰梯形ABCD中,AD∥EC,EC=2AD=2AE=4,B为EC的中点,如图1,将三角形ABE沿AB折起到ABE′(E′⊄平面ABCD),如图2.(1)点F为线段AE′的中点,判断直线DF与平面BCE′的位置关系,并说明理由;(2)当平面ABE′与平面DE′C所成的二面角的大小为时,证明:平面ABE′⊥平面ABCD.33.如图,在四棱锥P﹣ABCD中,△PAD和△BCD都是等边三角形,平面PAD ⊥平面ABCD,且AD=2AB=4,.(I)求证:CD⊥PA;(II)E,F分别是棱PA,AD上的点,当平面BEF∥平面PCD时,求四棱锥C﹣PEFD的体积.34.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,AB=AC=2,AD=2,PB=,PB⊥AC.(1)求证:平面PAB⊥平面PAC;(2)若∠PBA=45°,试判断棱PA上是否存在与点P,A不重合的点E,使得直线CE与平面PBC所成角的正弦值为,若存在,求出的值;若不存在,请说明理由.35.如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD为直角梯形,AD ∥BC,∠BAD=∠CBA=90°,PA=AB=BC=1,AD=2,E,F,G分别为BC,PD,PC的中点.(1)求EF与DG所成角的余弦值;(2)若M为EF上一点,N为DG上一点,是否存在MN,使得MN⊥平面PBC?若存在,求出点M,N的坐标;若不存在,请说明理由.36.如图所示,在多面体ABC﹣A1B1C1中,D,E,F分别是AC,AB,CC1的中点,AC=BC=4,,CC1=2,四边形BB1C1C为矩形,平面ABC⊥平面BB1C1C,AA1∥CC1(1)求证:平面DEF⊥平面AA1C1C;(2)求直线EF与平面ABC所成的角的正切值.37.如图,在三棱柱ABC﹣A1B1C1中,BC⊥平面AA1B1B,AB=AA1=2,∠A1AB=60°.(Ⅰ)证明:平面AB1C⊥平面A1BC;(Ⅱ)若四棱锥A﹣BB1C1C的体积为,求该三棱柱的侧面积.38.如图,在四棱锥P﹣ABCD中,PD⊥底面ABCD,底面ABCD为正方形,E,F,G分别是AB,PB,PC的中点.(1)求证:CD∥平面PAB;(2)求证:CD⊥平面EFG.39.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,平面ABP⊥平面BCP,∠APB=90°,BP=BC,M为CP的中点.求证:(1)AP∥平面BDM;(2)BM⊥平面ACP.40.已知梯形ABCD中,AD∥BC,,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF(如图).G是BC的中点,以F、B、C、D为顶点的三棱锥的体积记为f (x).(1)当x=2时,求证:BD⊥EG;(2)求f(x)的最大值;(3)当f(x)取得最大值时,求异面直线AE与BD所成的角的余弦值.2018全国高考立体几何(完整答案)参考答案与试题解析一.解答题(共40小题)1.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos.2.【解答】(1)证明:矩形ABCD所在平面与半圆弦所在平面垂直,所以AD⊥半圆弦所在平面,CM⊂半圆弦所在平面,∴CM⊥AD,M是上异于C,D的点.∴CM⊥DM,DM∩AD=D,∴CM⊥平面AMD,CM⊂平面CMB,∴平面AMD⊥平面BMC;(2)解:存在P是AM的中点,理由:连接BD交AC于O,取AM的中点P,连接OP,可得MC∥OP,MC⊄平面BDP,OP⊂平面BDP,所以MC∥平面PBD.3.【解答】证明:(1)平行六面体ABCD﹣A1B1C1D1中,AB∥A1B1,AB∥A1B1,AB⊄平面A1B1C,A1B1⊂∥平面A1B1C⇒AB∥平面A1B1C;(2)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,⇒四边形ABB1A1是菱形,⊥AB1⊥A1B.在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1⇒AB1⊥BC.∴⇒AB1⊥面A1BC,且AB1⊂平面ABB1A1⇒平面ABB1A1⊥平面A1BC.4.【解答】证明:(Ⅰ)PA=PD,E为AD的中点,可得PE⊥AD,底面ABCD为矩形,可得BC∥AD,则PE⊥BC;(Ⅱ)由于平面PAB和平面PCD有一个公共点P,且AB∥CD,在平面PAB内过P作直线PG∥AB,可得PG∥CD,即有平面PAB∩平面PCD=PG,由平面PAD⊥平面ABCD,又AB⊥AD,可得AB⊥平面PAD,即有AB⊥PA,PA⊥PG;同理可得CD⊥PD,即有PD⊥PG,可得∠APD为平面PAB和平面PCD的平面角,由PA⊥PD,可得平面PAB⊥平面PCD;(Ⅲ)取PC的中点H,连接DH,FH,在三角形PCD中,FH为中位线,可得FH∥BC,FH=BC,由DE∥BC,DE=BC,可得DE=FH,DE∥FH,四边形EFHD为平行四边形,可得EF∥DH,EF⊄平面PCD,DH⊂平面PCD,即有EF∥平面PCD.5.【解答】解:(1)证明:∵在平行四边形ABCM中,∠ACM=90°,∴AB⊥AC,又AB⊥DA.且AD∩AC=A,∴AB⊥面ADC,∴AB⊂面ABC,∴平面ACD⊥平面ABC;(2)∵AB=AC=3,∠ACM=90°,∴AD=AM=3,∴BP=DQ=DA=2,由(1)得DC⊥AB,又DC⊥CA,∴DC⊥面ABC,∴三棱锥Q﹣ABP的体积V==××==1.6.【解答】证明:(Ⅰ)连接PE,G、F为EC和PC的中点,∴FG∥PE,FG⊄平面PBD,PE⊂平面PBD,∴FG∥平面PBD…(6分)(Ⅱ)∵菱形ABCD,∴BD⊥AC,又PA⊥面ABCD,BD⊂平面ABCD,∴BD⊥PA,∵PA⊂平面PAC,AC⊂平面PAC,且PA∩AC=A,∴BD⊥平面PAC,FG⊂平面PAC,∴BD⊥FG…(14分)7.【解答】(Ⅰ)证明:因为∠DAB=90°,所以AD⊥AB.……………………(1分)因为平面PAB⊥平面ABCD,……………………(2分)且平面PAB∩平面ABCD=AB,……………………(3分)所以AD⊥平面PAB.……………………(4分)(Ⅱ)证明:由已知得AD⊥AB因为AD∥BC,所以BC⊥AB.……………………(5分)又因为∠ABP=90°,所以PB⊥AB.……………………(6分)因为PB∩BC=B……………………(7分)所以AB⊥平面PBC……………………(8分)所以AB⊥PC.……………………(9分)(Ⅲ)解:过E作EF∥AD交PA于F,连接BF.……………………(10分)因为AD∥BC,所以EF∥BC.所以E,F,B,C四点共面.……………………(11分)又因为CE∥平面PAB,且CE⊂平面BCEF,且平面BCEF∩平面PAB=BF,所以CE∥BF,……………………(13分)所以四边形BCEF为平行四边形,所以EF=BC.在△PAD中,因为EF∥AD,所以,……………………(14分)即.8.【解答】证明:(1)∵D,E分别为AB,AC的中点,∴DE∥BC,又DE⊄平面PBC,BC⊂平面PBC,∴DE∥平面PBC.(2)连接PD,∵DE∥BC,又∠ABC=90°,∴DE⊥AB,又PA=PB,D为AB中点,∴PD⊥AB,又PD∩DE=D,PD⊂平面PDE,DE⊂平面PDE,∴AB⊥平面PDE,又PE⊂平面PDE,∴AB⊥PE.(3)∵平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,PD⊥AB,PD⊂平面PAB,∴PD⊥平面ABC,∵△PAB是边长为2的等边三角形,∴PD=,∵E是AC的中点,∴.9.【解答】证明:(Ⅰ)∵AD∥BC,,Q为AD的中点∴四边形BCDQ为平行四边形,∴CD∥BQ.∵∠ADC=90°,∴∠AQB=90°,即QB⊥AD.又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD.∵BQ⊥平面PAD∵BQ⊂平面PQB,∴平面PQB⊥平面PAD.解:(Ⅱ)∵PA=PD,Q为AD的中点,∴PQ⊥AD.∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD.∵PQ⊥平面ABCD.以Q为原点分别以、、为x轴、y轴、z轴的正方向建立空间直角坐标系,则Q(0,0,0),A(1,0,0),,,,设M(x0,y0,z0),∴,,.由M是PC上的点,设,化简得.设异面直线AP与BM所成角为θ,则.∴,解得或,故或.10.【解答】解:(1)证明:∵平面BDFE⊥平面ABCD,平面BDFE∩平面ABCD=BD,AC⊂平面ABCD,AC⊥BD,∴AC⊥平面BDFE.又AC⊂平面AFC,∴平面AFC⊥平面BDFE.(2)设AC∩BD=O,∵四边形ABCD为等腰梯形,AC⊥BD,AB=2CD=2,∴OD=OC=1,OB=OA=2,∵EF∥OB且EF=OB,∴四边形FEBO为平行四边形,∴OF∥BE,且OF=BE=2,又∵BE⊥平面ABCD,∴OF⊥平面ABCD.以O为原点,向量的方向分别为x轴,y轴,z轴的正方向,建立如图所示的空间直角坐标系,则B(0,2,0),D(0,﹣1,0),F(0,0,2),C(﹣1,0,0),∴=(0,1,2),=(1,﹣1,0),=(0,﹣2,2),设平面DFC的一个法向量为=(x,y,z),则有,即,不妨设z=1,得x=y=﹣2.即=(﹣2,﹣2,1),于是cos<,>===.设BF与平面DFC所成角为θ,则sinθ=|cos<,>|=.∴BF与平面DFC所成角的正弦值为.11.【解答】证明:(1)在ABN中,∵M是AB的中点,D是BN的中点,∴MD∥AN,又AN⊂平面PAC,MD⊄平面PAC,∴MD∥平面PAC.(2)在△ABC中,∵CA=CB,M是AB的中点,∴AB⊥MC,又∵AB⊥PC,PC⊂平面PMC,MC⊂平面PMC,PC∩MC=C,∴AB⊥平面PMC.又∵AB⊂平面ABN,∴平面ABN⊥平面PMC.12.【解答】证明:(1)如图,取PD的中点E,连接AE,NE.∵E、N分别为PD,PC的中点,∴EN CD,又M为AB的中点,∴AM CD,∴EN AM,∴四边形AMNE为平行四边形.∴MN∥AE,∴MN∥平面PAD.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(2)∵PA⊥平面ABCD,∠PDA=45°,∴△PAD为等腰直角三角形,∴AE⊥PD,又∵CD⊥AD,CD⊥PA,AD∩PA=A,∴CD⊥平面PAD,∵AE⊂平面PAD,∴CD⊥AE,又CD∩PD=D,∴AE⊥平面PCD,∴MN⊥平面PCD.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)13.【解答】(1)证明:取AB的中点F,连接CF,A1F,∵A1A⊥平面ABC,CF⊂平面ABC,∴所以A1A⊥CF.∵△ABC为正三角形,F为AB的中点,∴BA⊥CF,又∵AA1,AB⊂平面AA1B1B,AA1∩AB=A,∴CF⊥平面AA1B1B,又∵AD⊂平面AA1B1B,所以CF⊥AD,正方形AA1B1B中,∵Rt△A1AF≌Rt△ABD,∴∠DAB=∠FA1A,又∵∠AFA1+∠FA1A=90°,∴∵∠AFA1+∠DAB=90°,,故AD⊥A1F,又∵CF∩A1F=F,CF,A1F⊂平面A1FC,∴AD⊥平面A1FC,又∵A1C⊂平面A1FC,∴A1C⊥AD.(2)取AA1中点E,连接DE,则线段DE为点P的运动轨迹.理由如下:∵DE∥AB,DE⊄平面ABC,AB⊂平面ABC,∴ED∥平面ABC,∴P到平面ABC的距离为.所以V==.14.【解答】证明:(Ⅰ)过点A1在平面ABB1A1内作BB1的垂线,垂足为O,连结C1O,∵A1C1⊥B1B,A1O⊥B1B,A1C1∩A1O=A1,∴B1B⊥平面A1OC1,∵OC1⊂平面A1OC1,∴B1B⊥OC1,由题可知A1B1=A1C1=B1C1=2,在B△A1OB1中,∵A1O⊥OB1,∠A1B1B=45°,A1B1=2,∴OA1=OB1=2,在△OB1C1中,∵C1O⊥OB1,B1C1=2,OB1=2,∴OC1=2,∴=A1C12,∴OC1⊥OA1,∵OA1∩OB1=O,∵OC1⊂平面BCC1B1,∴平面BCC1B1⊥平面ABB1A1.解:(Ⅱ)由(Ⅰ)知OC1、OA1、OB1两两垂直,以O为坐标原点,OA1为x轴,OB1为y轴,OC1为z轴,建立空间直角坐标系,∵AB=2,BB1=4,OC1=2,OA1=2,OB1=2,∴A1(2,0,0),B1(0,2,0),C1(0,0,2),B(0,﹣2,0),A(2,﹣4,0),C(0,﹣4,2),=(2,﹣2,0),=(0,﹣2,2),=(﹣2,0,2),=(0,4,0),设=(x,y,z)是平面ABC的法向量,则,取x=1,得=(1,1,1),设=(x,y,z)是平面A1AC的法向量,则,取x=1,得=(1,0,1),∴cos<>==.∴二面角B﹣AC﹣A1的余弦值为.15.【解答】解:解法一:依条件可知AB、AC,AA1两两垂直,如图,以点A为原点建立空间直角坐标系A﹣xyz.根据条件容易求出如下各点坐标:A(0,0,0),B(0,2,0),C(﹣1,0,0),A1(0,0,2),B1(0,2,2),C1(﹣1,0,2),M(0,1,2),(I)证明:∵是平面ACCA1的一个法向量,且,所以又∵MN⊄平面ACC1A1,∴MN∥平面ACC1A1(II)设=(x,y,z)是平面AMN的法向量,因为,由得解得平面AMN的一个法向量=(4,2,﹣1)由已知,平面ABC的一个法向量为=(0,0,1)∴二面角M﹣AN﹣B的余弦值是解法二:(I)证明:设AC的中点为D,连接DN,A1D∵D,N分别是AC,BC的中点,∴又∵,∴,∴四边形A 1DNM是平行四边形∴A1D∥MN∵A1D⊂平面ACC1A1,MN⊄平面ACC1A1∴MN∥平面ACC1A1(II)如图,设AB的中点为H,连接MH,∴MH∥BB1∵BB1⊥底面ABC,∵BB1⊥AC,BB1⊥AB,∴MH⊥AC,MH⊥AB∴AB∩AC=A∴MH⊥底面ABC在平面ABC内,过点H做HG⊥AN,垂足为G 连接MG,AN⊥HG,AN⊥MH,HG∩MH=H ∴AN⊥平面MHG,则AN⊥MG∴∠MGH是二面角M﹣AN﹣B的平面角∵MH=BB1=2,由△AGH∽△BAC,得所以所以∴二面角M﹣AN﹣B的余弦值是16.【解答】解:(1)∵平面CDE⊥平面BCD,平面ABC⊥平面BCD.∴过E作EQ⊥平面BCD,交CD于Q,过A作AP⊥平面BCD,交BC于P,∴EQ∥AP,过Q作QO∥BC,交BD于O,则直线OQ就是在平面BCD内所求的直线,使得直线OQ上任意一点F与E的连线EF均与平面ABC平行.证明如下:∵EQ∥AP,QO∥BC,EQ∩QO=Q,AP∩BC=P,EQ、QO⊂平面EQO,AP、BC⊂平面ABC,∴平面EQO∥平面ABC,∴直线OQ上任意一点F与E的连线EF均与平面ABC平行.(2)∵△BCD与△CDE均为边长为2的等边三角形,△ABC为腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD,∴AP==2,∴S==2,△ABC点E到平面ABC的距离d===,∴三棱锥E﹣ABC的体积V E===.﹣ABC17.【解答】证明:(1)取BD的中点O,连结CO,PO,因为CD=CB,所以△CBD为等腰三角形,所以BD⊥CO.因为PB=PD,所以△PBD为等腰三角形,所以BD⊥PO.又PO∩CO=O,所以BD⊥平面PCO.因为PC⊂平面PCO,所以PC⊥BD.解:(2)由E为PB中点,连EO,则EO∥PD,又EO⊄平面PAD,所以EO∥平面PAD.由∠ADB=90°,以及BD⊥CO,所以CO∥AD,又CO⊄平面PAD,所以CO∥平面PAD.又CO∩EO=O,所以平面CEO∥平面PAD,而CE⊂平面CEO,所以CE∥平面PAD.18.【解答】解:(1)∵长方体ABCD﹣A1B1C1D1中,AB=BC=2,∴AA1⊥平面ABCD,AC==2,∴∠A1CA是A1C与底面ABCD所成的角,∵A1C与底面ABCD所成的角为60°,∴∠A1CA=60°,∴AA1=AC•tan60°=2•=2,=AB×BC=2×2=4,∵S正方形ABCD∴四棱锥A1﹣ABCD的体积:V===.(2)∵BD∥B1D1,∴∠A1BD是异面直线A1B与B1D1所成角(或所成角的补角).∵BD=,A1D=A1B==2,∴cos∠A1BD===.∴∠A1BD=arccos.∴异面直线A1B与B1D1所成角是arccos.19.【解答】证明:(Ⅰ)连接BD、AC交于O点,∵PB=PD,∴PO⊥BD,又∵ABCD是菱形,∴BD⊥AC,而AC∩PO=O,∴BD⊥平面PAC,且PC⊂平面PAC,∴BD⊥PC.解:(Ⅱ)由条件可知△ABD≌△PBD,∴AO=PO=,∵PA=,∴PA2=OA2+OP2,∴PO⊥AC,由(Ⅰ)知,BD⊥平面PAC,PO⊂平面PAC,∴PO⊥BD,∴PO⊥平面ABCD,∴平面APC⊥平面ABCD,过E点作EF⊥AC,交AC于F,则EF⊥平面ABCD,∴EF∥PO,∴EF、PO分别是三棱锥E﹣ABC和四棱锥P﹣ABCD的高.又V1=V P﹣ABC﹣V E﹣ABC=,,由=,得4(PO﹣EF)=PO,∴,又由△AEF∽△APO,=,∴=.20.【解答】解:(Ⅰ)由题可知,CM=2t,C1M=2﹣2t,∴V1=S△ECF•CM==,=S•C1M=(2﹣2t)=(1﹣t),V2∴V1•V2=≤•()2=.当且仅当t=1﹣t,即t=时等号成立.所以当t=时,V1•V2最大,最大值为.(Ⅱ)连接A1C1交B1D1于点O,则O为A1C1的中点,∵A1C∥平面B1D1M,平面A1CC1∩平面B1D1M=OM,∴A1C∥OM,∴M为CC1的中点,连接BD,∵E,F为BC、CD的中点,∴EF∥BD,又AC⊥BD,∴AC⊥EF.∵AA1⊥平面ABCD,EF⊂平面ABCD,∴AA1⊥EF,又AA1∩AC=A,∴EF⊥平面A1AC,又A1C⊂平面A1AC,∴EF⊥A1C.同理可得:EM⊥A1C,又EF∩EM=E,∴A1C⊥平面EFM.又A1C∥平面B1D1M,∴平面EFM⊥平面B1D1M.21.【解答】解:(Ⅰ)∵DA=AB=BC=a,∠ABE=∠BAF=90°,∴四边形ABCD是正方形,∴CD⊥AD,CD⊥DP,又AD∩DP=D,∴CD⊥平面ADP.∵AD2+DP2=AP2,∴AD⊥DP,又CD⊥AD,CD∩DP=D,∴AD⊥平面CDPQ,又AD∥BC,∴BC⊥平面CDPQ.∴V B﹣CDPQ==(a+2a)×a×a=a3,V B﹣ADP===.∴多面体ABCDPQ的体积为V B﹣CDPQ +V B﹣ADP=.(Ⅱ)取BP的中点G,连接GQ、DG、DQ,在△ABP中,BP==2a,∴BG=BP=a,在△BCQ中,BQ==a,PQ==a,∴PQ=BQ,∴GQ⊥BP.∴QG==a,又BD==2a=DP,∴DG⊥BP,∴DG==a,又DQ==a,∴DQ2=QG2+DG2,即QG⊥DG.又BP∩DG=G,∴QG⊥平面PBD,又QG⊂平面PBQ,∴平面PBQ⊥平面PBD.22.【解答】(1)证明:连接BD,因为底面ABCD是菱形,∠BAD=60°,所以△ABD 是正三角形,所以AD⊥BO,因为O为AD的中点,PA=PD,所以AD⊥PO,且PO∩BO=O,所以AD⊥平面POB,又AD⊂平面PAD,所以平面POB⊥平面PAD;(2)解:因为是正三角形,所以OB=3,在Rt△PAO中,,所以PO=2,又,所以OB2+PO2=PB2,所以∠POB=90°,即PO⊥OB,又AD⊥PO,且OB∩AD=O,所以PO⊥平面ABCD,因为,所以四棱锥P﹣ABCD的体积为.23.【解答】(I)证明:∵PA=PD,Q是AD的中点,∴PQ⊥AD,又平面PAD⊥底面ABCD,平面PAD∩底面ABCD=AD,PQ⊂平面PAD,∴PQ⊥平面ABCD,∴BC⊥PQ,∵BC=AD=DQ,BC∥AD,∠ADC=90°,∴四边形BCDQ是矩形,∴BC⊥BQ,又PQ∩BQ=Q,∴BC⊥平面PBQ,又BC⊂平面PBC,∴平面PBC⊥平面PQB.(II)过M作MN∥CD交PD与N,则平面BMQ∩平面PCD=MN,∵平面PAD⊥底面ABCD,平面PAD∩底面ABCD=AD,BQ⊥AD,BQ⊂平面PAD,∴BQ⊥平面PAD,又BQ∥CD∥MN,∴MN⊥平面PAD,∴MN⊥NQ,MN⊥PD,∴∠DNQ为平面BMQ与平面PCD所成角,即∠DNQ=60°,∵PD=PA=2,AD=2BC=2,∴∠PDO=60°,∴△DNQ是等比三角形,∴DN=DQ=1,即N是PD的中点,∴M是PC的中点,∵PD=2,CD=,∴PC=,∴PM==.24.【解答】(Ⅰ)证明:在△ABC中,∵,AB=2,BC=1,∴AC2+BC2=AB2.∴AC⊥BC.又∵AC⊥FB,BF∩CB=B,∴AC⊥平面FBC.(Ⅱ)解:∵AC⊥平面FBC,∴AC⊥FC.∵CD⊥FC,∴FC⊥平面ABCD.在Rt△ACB中,,∴∠CAB=30°,∴在等腰梯形ABCD中可得∠ABD=∠CDB=∠CBD=30°,∴CB=DC=1,∴FC=1.∴△BCD的面积S==.∴四面体FBCD的体积为:.(Ⅲ)解:线段AC上存在点M,且M为AC中点时,有EA∥平面FDM,证明如下:连接CE与DF交于点N,连接MN.由CDEF为正方形,得N为CE中点.∴EA∥MN.∵MN⊂平面FDM,EA⊄平面FDM,∴EA∥平面FDM.所以线段AC上存在点M,使得EA∥平面FDM成立.25.【解答】(Ⅰ)证明:∵PQ∥DC,PQ=PD=DC=1,∴四边形PQCD是平行四边形,∴PD∥CQ,∵PD⊄平面QBC,CQ⊂平面QBC,∴PD∥平面QBC.(Ⅱ)证明:∵∠APD=90°,∴PD⊥PA,∵平面PAD⊥平面ABCD,△PAD是直角三角形,四边形ABCD是直角梯形,AB ∥DC,AB⊥AD,∴AB⊥平面PAD,∴AB⊥PD,∵PD∥QC,∴PA⊥QC,AB⊥QC,∵PA∩AB=A,∴QC⊥平面PABQ.(Ⅲ)解:存在.由(Ⅱ)可知QC⊥平面PABQ;作AM⊥BQ,交BQ于M,可知AM⊥CQ,BQ∩CQ=Q,所以AM⊥平面BCQ,BC⊂平面BCQ,∴AM⊥BC.QB=,cosB=,BM=2=,QM==.26.【解答】解:(1)证明:在图1中,由题意知AE=1,AD=BE=2,在△ADE中,由余弦定理知:DE2=AE2+AD2﹣AE×AD=12+22﹣1×2=3,所以:AE2+DE2=AD2,所以:DE⊥AE,DE⊥BE,在△ADE沿直线DE折起的过程中,DE与AE,BE的垂直关系不变,故在图2中有DE⊥A'E,DE⊥BE,又A'E∩BE=E,所以DE⊥平面A'EB,所以DE⊥A'B.(2)如图2,因为平面A'DE⊥底面BCDE,由(1)知DE⊥A'E,且平面A'DE∩底面BCDE=DE,所以A'E⊥底面BCDE,所以A'E为三棱锥A'﹣EDC的高,且A'E=AE=1,又因为在图1中,S△ECD=S△ABC﹣S△AED﹣S△BEC=,所以:,故三棱锥D﹣A'CE的体积为.27.【解答】(1)证明:∵PA⊥AC,PA=2,AC=2,∴,又∵,BC=2,∴PB2+BC2=PC2,则BC⊥PB.又∵AB⊥BC,∴BC⊥平面PAB,则BC⊥PA,又PA⊥AC,AC∩BC=C,∴PA⊥平面ABC.又∵BD⊂平面PAC,∴PA⊥BD,在Rt△ABC中,由BC=2,AC=2,可得AB=2,又∵D为AC的中点,∴BD⊥AC,而PA∩AC=A,∴BD⊥平面PAC,则平面BDE⊥平面PAC;=V E﹣PBC=V B﹣APCE﹣V P﹣ABC.(2)解:V P﹣EBC由已知,DE∥AP,∴.∴=,.∴.28.【解答】解:(Ⅰ)证明:∵AD=2AB,E为线段AD的中点,∴AB=AE,取BE中点O,连接PO,则PO⊥BE,又平面PEB⊥平面BCDE,平面PEB∩平面BCDE=BE,∴PO⊥平面BCDE,则PO⊥EC,在矩形ABCD中,∴AD=2AB,E为AD的中点,∴BE⊥EC,则EC⊥平面PBE,∴EC⊥PB,又PB⊥PE,且PE∩EC=E,∴PB⊥平面PEC.(Ⅱ)以OB所在直线为x轴,以平行于EC所在直线为y轴,以OP所在直线为z轴建立空间直角坐标系,∵PB=PE=2,则B(,0,0),E(﹣,0,0),P(0,0,),D(﹣2,,0),C(﹣,2,0),∴=(﹣,0,﹣),=(﹣,2,﹣),∴cos∠EPC===,可得:sin∠EPC==,可得:S△EPC=||•||•sin∠EPC=2×2×=2,=V D﹣EPC,设三棱锥D﹣PEC的高为h,则可得:S△ECD•OP=S△EPC•h,可∵V P﹣ECD得:=2×h,∴解得:三棱锥D﹣PEC的高h=1.29.【解答】解:(Ⅰ)在Rt△BEB中,BE=1,AB=,所以∠BAE=30°……(1分)同理∠BDA=30°,从而∠AOD=90°,AF⊥BD……(2分)又因为AD∥EC,AD=EC,所以ADCE是平行四边形,∠CDO=∠AOD=90°,CD⊥DO……(3分)因为平面ABE⊥平面ADE,平面ABE∩平面ADE=AE,BO⊥AE,所以BO⊥平面ADE……(4分)又CD⊂平面ADE,所以BO⊥CD,BO∩DO=O,BO⊂平面BOD,OD平面BOD.所以CD⊥平面BOD……(6分)(Ⅱ)由(Ⅰ)可知,四边形AECD的面积S=CD•OD=3……(7分)连接AC,则△ACD的面积S1=,三棱锥B=ACD的体积V=……(9分)△BCD的面积S2=……(10分)设A到平面BCD的距离为h,则h=,h=……(11分)直线AB与面BCD所成角的正弦值为,余弦值为……(12分)30.【解答】证明:(1)取AB中点为R,连接PR,B1R∵点P是CD中点,Q是A1B1的中点,∴四边形AQB1R,PRB1C1都为平行四边形,∴AQ∥B1R,B1R∥PC1,∴AQ∥PC1.∵AQ⊄平面PBC1,PC1⊂平面PBC1,∴AQ∥平面PBC1.(Ⅱ)∵四棱柱ABCD﹣A1B1C1D1为长方体,BC=CC1,∴B1C⊥BC1.∵A1B1⊥平面BB1C1C,∴A1B1⊥BC1.∵A1B1∩B1C=B1,A1B1⊂平面A1B1C,B1C⊂平面A1B1C,∴BC1⊥平面A1B1C,BC1⊂平面PBC1,∴平面A1B1C⊥平面PBC1.31.【解答】(1)证明:由AD=6,DM=4可得AM=2,则BC=AM,又AD∥BC,则四边形ABCM是平行四边形,则CM∥AB,∵AD⊥AB,∴CM⊥AD.又PA⊥平面ABCD,CM⊂平面ABCD,∴PA⊥CM,∵PA∩AD=A,PA,AD⊂平面PAD,∴CM⊥平面PAD,又CM⊂平面PCM,∴平面PCM⊥平面PAD.(2)解:∵PA⊥平面ABCD,∴PA⊥AB,∵∠APB=45°,∴AP=AB=6.∵,∴.∴四棱锥P﹣ABCM的表面积为.32.【解答】(本小题满分12分)解:(1)直线DF与平面BCE'相交,理由如下:因为E'⊄平面ABCD,所以D⊄平面BCE'.若DF∥平面BCE',设平面DCE'∩平面BCE'=CM,则DF∥CM.CM与CB不重合.又因为AD∥BC,所以平面ADE'∥平面BCE',矛盾.所以直线DF与平面BCE'相交.…………………………(4分)证明:(2)取AB的中点O,连接E'O,BD,由等腰梯形ADCE中,AD∥EC,EC=2AD=2AE=4,,所以E'O⊥AB,DO⊥AB,…………………………(6分)分别以BA,OD所在的直线为x轴,y轴,过O垂直于平面ABCD的直线为z轴建立如图所示的空间直角坐标系,设二面角E'﹣AB﹣D的大小为α.则.过E'作E'G⊥OD于点G.因为E'O⊥AB,DO⊥AB,所以AO⊥平面E'OD,∠E'OD=α.所以E'G⊥AO.所以E'G⊥平面ABCD.…………………………(8分)所以.设平面E'AB的法向量为n=(x,y,z),则,即令y=1,得平面E'AB的一个法向量为n=(0,1,﹣cotα).…………………………(10分)同理可求平面E'DC的一个法向量为.所以.解得:.所以二面角E'﹣AB﹣D的大小为,即平面ABE'⊥平面ABCD.…………………………(12分)33.【解答】证明:(I)因为AD=4,AB=2,,所以AB2+BD2=AD2,AB⊥BD,且∠ADB=30°.又△BCD是等边三角形,所以∠ADC=90°,即CD⊥AD.…(3分)因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面PAD.所以CD⊥PA.……(6分)解:(II)因为平面BEF∥平面PCD,所以BF∥CD,EF∥PD,且BF⊥AD.……(8分)又在直角三角形ABD中,DF=,所以AE=AF=1.所以.……(10分)由(I)知CD⊥平面PAD,故四棱锥C﹣PEFD的体积.…(12分)34.【解答】解:(1)四边形ABCD是平行四边形,AD=2,∴BC=AD=2,又AB=AC=2,∴AB2+AC2=BC2,∴AC⊥AB,又PB⊥AC,且AB∩PB=B,∴AC⊥平面PAB,∵AC⊂平面PAC,∴平面PAB⊥平面PAC;(2)由(1)知AC⊥AB,AC⊥平面PAB,分别以AB、AC所在直线为x轴、y轴,平面PAB内过点A且与直线AB垂直的直线为z轴,建立空间直角坐标系A﹣xyz,如图所示;则A(0,0,0),B(2,0,0),C(0,2,0),=(0,2,0),=(﹣2,2,0);由∠PBA=45°,PB=,可得P(1,0,1),∴=(1,0,1),=(﹣1,0,1);假设棱PA上存在点E,使得直线CE与平面PBC所成角的正弦值为,设=λ(0<λ<1),则=λ=(λ,0,λ),=﹣=(λ,﹣2,λ),设平面PBC的法向量为=(x,y,z),则,即,令z=1,可得x=y=1,∴平面PBC的一个法向量为=(1,1,1),设直线CE与平面PBC所成的角为θ,则sinθ=|cos<,>|===,解得λ=或λ=(不合题意,舍去),∴存在=,使得直线CE与平面PBC所成角的正弦值为.35.【解答】解:(1)以A为坐标原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,则A(0,0,0),B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,1),∵E、F、G分别为BC、PD、PC的中点,∴,F(0,1,),G(),∴=(﹣1,),=(),设EF与DG所成角为θ,则cosθ==.∴EF与DG所成角的余弦值为.(2)设平面PBC的法向量为=(x,y,z),∵=(0,1,0),=(1,0,﹣1),∴,取x=1,得=(1,0,1),M为EF上一点,N为DG上一点,若存在MN,使得MN⊥平面PBC,则∥,设M(),N(x2,y2,z2),则,①∵点M,N分别是线段EF与DG上的点,∴,∵=(),=(x2,y2﹣2,z2),∴,且,②把②代入①,得,解得,∴M(),N().36.【解答】解:(1)∵D,E分别是AC,AB的中点,∴DE∥BC,∵四边形BB1C1C为矩形,∴BC⊥CC1.∵AC=BC=4,AB=4,∴AC2+BC2=AB2,∴BC⊥AC,又AC∩CC1=C,∴BC⊥平面AA1C1C,∴DE⊥平面AA1C1C.。

2018年全国高考文科数学分类汇编----立体几何

2018年全国高考文科数学分类汇编----立体几何

2018年全国高考文科数学分类汇编——立体几何1.(北京)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(C)A.1 B.2 C.3 D.4【解答】解:四棱锥的三视图对应的直观图为:PA⊥底面ABCD,AC=,CD=,PC=3,PD=2,可得三角形PCD不是直角三角形.所以侧面中有3个直角三角形,分别为:△PAB,△PBC,△PAD.故选:C.2.(北京)如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面PAB⊥平面PCD;(Ⅲ)求证:EF∥平面PCD.【解答】证明:(Ⅰ)PA=PD,E为AD的中点,可得PE⊥AD,底面ABCD为矩形,可得BC∥AD,则PE⊥BC;(Ⅱ)由于平面PAB和平面PCD有一个公共点P,且AB∥CD,在平面PAB内过P作直线PG ∥AB,可得PG∥CD,即有平面PAB∩平面PCD=PG,由平面PAD⊥平面ABCD,又AB⊥AD,可得AB⊥平面PAD,即有AB⊥PA,PA⊥PG;同理可得CD⊥PD,即有PD⊥PG,可得∠APD为平面PAB和平面PCD的平面角,由PA⊥PD,可得平面PAB⊥平面PCD;(Ⅲ)取PC的中点H,连接DH,FH,在三角形PCD中,FH为中位线,可得FH∥BC,FH=BC,由DE∥BC,DE=BC,可得DE=FH,DE∥FH,四边形EFHD为平行四边形,可得EF∥DH,EF⊄平面PCD,DH⊂平面PCD,即有EF∥平面PCD.3.(江苏)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.【解答】解:正方体的棱长为2,中间四边形的边长为:,八面体看做两个正四棱锥,棱锥的高为1,多面体的中心为顶点的多面体的体积为:2×=.故答案为:.4. (江苏)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.【解答】证明:(1)平行六面体ABCD﹣A1B1C1D1中,AB∥A1B1,⇒AB∥平面A1B1C;(2)在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,⇒四边形ABB1A1是菱形,⊥AB1⊥A1B.在平行六面体ABCD﹣A1B1C1D1中,AA1=AB,AB1⊥B1C1⇒AB1⊥BC.∴⇒AB1⊥面A1BC,且AB1⊂平面ABB1A1⇒平面ABB1A1⊥平面A1BC.5.(全国1卷)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.12πB.12πC.8πD.10π【解答】解:设圆柱的底面直径为2R,则高为2R,圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,可得:4R2=8,解得R=,则该圆柱的表面积为:=10π.故选:D.6.(全国1卷)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N 的路径中,最短路径的长度为()BA.2B.2C.3 D.2【解答】解:由题意可知几何体是圆柱,底面周长16,高为:2,直观图以及侧面展开图如图:圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:=2.故选:B.7.(全国1卷)在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为()CA.8 B.6C.8D.8【解答】解:长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,即∠AC1B=30°,可得BC1==2.可得BB1==2.所以该长方体的体积为:2×=8.故选:C.8.(全国1卷)如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM 折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=DA,求三棱锥Q﹣ABP的体积.【解答】解:(1)证明:∵在平行四边形ABCM中,∠ACM=90°,∴AB⊥AC,又AB⊥DA.且AD∩AB=A,∴AB⊥面ADC,∴AB⊂面ABC,∴平面ACD⊥平面ABC;(2)∵AB=AC=3,∠ACM=90°,∴AD=AM=3,∴BP=DQ=DA=2,由(1)得DC⊥AB,又DC⊥CA,∴DC⊥面ABC,∴三棱锥Q﹣ABP的体积V==××==1.9.(全国2卷)在正方体ABCD﹣A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为()CA.B.C.D.【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1棱长为2,则A(2,0,0),E(0,2,1),D(0,0,0),C(0,2,0),=(﹣2,2,1),=(0,﹣2,0),设异面直线AE与CD所成角为θ,则cosθ===,sinθ==,∴tanθ=.∴异面直线AE与CD所成角的正切值为.故选:C.10.(全国2卷)已知圆锥的顶点为S,母线SA,SB互相垂直,SA与圆锥底面所成角为30°.若△SAB的面积为8,则该圆锥的体积为8π.【解答】解:圆锥的顶点为S,母线SA,SB互相垂直,△SAB的面积为8,可得:,解得SA=4,SA与圆锥底面所成角为30°.可得圆锥的底面半径为:2,圆锥的高为:2,则该圆锥的体积为:V==8π.故答案为:8π.11. (全国2卷)如图,在三棱锥P﹣ABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.【解答】(1)证明:∵AB=BC=2,AC=4,∴AB2+BC2=AC2,即△ABC是直角三角形,又O为AC的中点,∴OA=OB=OC,∵PA=PB=PC,∴△POA≌△POB≌△POC,∴∠POA=∠POB=∠POC=90°,∴PO⊥AC,PO⊥OB,OB∩AC=0,∴PO⊥平面ABC;(2)解:由(1)得PO⊥平面ABC,PO=,在△COM中,OM==.S=××=,S△COM==.=V C﹣POM⇒,设点C到平面POM的距离为d.由V P﹣OMC解得d=,∴点C到平面POM的距离为.12.(全国3卷)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()AA.B.C.D.【解答】解:由题意可知,如图摆放的木构件与某一带卯眼的木构件咬合成长方体,小的长方体,是榫头,从图形看出,轮廓是长方形,内含一个长方形,并且一条边重合,另外3边是虚线,所以木构件的俯视图是A.故选:A.13.(全国3卷)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.54【解答】解:△ABC为等边三角形且面积为9,可得,解得AB=6,球心为O,三角形ABC 的外心为O′,显然D在O′O的延长线与球的交点如图:O′C==,OO′==2,则三棱锥D﹣ABC高的最大值为:6,则三棱锥D﹣ABC体积的最大值为:=18.故选:B.14.(全国3卷)如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D 的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.【解答】(1)证明:矩形ABCD所在平面与半圆弦所在平面垂直,所以AD⊥半圆弦所在平面,CM⊂半圆弦所在平面,∴CM⊥AD,M是上异于C,D的点.∴CM⊥DM,DM∩AD=D,∴CD⊥平面AMD,CD⊂平面CMB,∴平面AMD⊥平面BMC;(2)解:存在P是AM的中点,理由:连接BD交AC于O,取AM的中点P,连接OP,可得MC∥OP,MC⊄平面BDP,OP⊂平面BDP,所以MC∥平面PBD.15.(上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()CA.4 B.8 C.12 D.16【解答】解:根据正六边形的性质可得D1F1⊥A1F1,C1A1⊥A1F1,D1B1⊥A1B1,E1A1⊥A1B1,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E和D1一样,故有2×6=12,故选:C.16.(上海)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos .17.(天津)如图,已知正方体ABCD﹣A1B1C1D1的棱长为1,则四棱锥A1﹣BB1D1D的体积为.【解答】解:由题意可知四棱锥A1﹣BB1D1D的底面是矩形,边长:1和,四棱锥的高:A1C1=.则四棱锥A1﹣BB1D1D的体积为:=.故答案为:.18.(天津)如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=2,∠BAD=90°.(Ⅰ)求证:AD⊥BC;(Ⅱ)求异面直线BC与MD所成角的余弦值;(Ⅲ)求直线CD与平面ABD所成角的正弦值.【解答】(Ⅰ)证明:由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,得AD⊥平面ABC,故AD⊥BC;(Ⅱ)解:取棱AC的中点N,连接MN,ND,∵M为棱AB的中点,故MN∥BC,∴∠DMN(或其补角)为异面直线BC与MD所成角,在Rt△DAM中,AM=1,故DM=,∵AD⊥平面ABC,故AD⊥AC,在Rt△DAN中,AN=1,故DN=,在等腰三角形DMN中,MN=1,可得cos∠DMN=.∴异面直线BC与MD所成角的余弦值为;(Ⅲ)解:连接CM,∵△ABC为等边三角形,M为边AB的中点,故CM⊥AB,CM=,又∵平面ABC⊥平面ABD,而CM⊂平面ABC,故CM⊥平面ABD,则∠CDM为直线CD与平面ABD所成角.在Rt△CAD中,CD=,在Rt△CMD中,sin∠CDM=.∴直线CD与平面ABD所成角的正弦值为.19.(浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()CA.2 B.4 C.6 D.8【解答】解:根据三视图:该几何体为底面为直角梯形的四棱柱.如图所示:故该几何体的体积为:V=.故选:C.20.(浙江)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:∵m⊄α,n⊂α,∴当m∥n时,m∥α成立,即充分性成立,当m∥α时,m∥n不一定成立,即必要性不成立,则“m∥n”是“m∥α”的充分不必要条件.故选:A.21.(浙江)已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则()A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ1【解答】解:∵由题意可知S在底面ABCD的射影为正方形ABCD的中心.过E作EF∥BC,交CD于F,过底面ABCD的中心O作ON⊥EF交EF于N,连接SN,取CD中点M,连接SM,OM,OE,则EN=OM,则θ1=∠SEN,θ2=∠SEO,θ3=∠SMO.显然,θ1,θ2,θ3均为锐角.∵tanθ1==,tanθ3=,SN≥SO,∴θ1≥θ3,又sinθ3=,sinθ2=,SE≥SM,∴θ3≥θ2.故选:D.22.(浙江)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=l,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.【解答】(I)证明:∵A1A⊥平面ABC,B1B⊥平面ABC,∴AA1∥BB1,∵AA1=4,BB1=2,AB=2,∴A1B1==2,又AB1==2,∴AA12=AB12+A1B12,∴AB1⊥A1B1,同理可得:AB1⊥B1C1,又A1B1∩B1C1=B1,∴AB1⊥平面A1B1C1.(II)解:取AC中点O,过O作平面ABC的垂线OD,交A1C1于D,∵AB=BC,∴OB⊥OC,∵AB=BC=2,∠BAC=120°,∴OB=1,OA=OC=,以O为原点,以OB,OC,OD所在直线为坐标轴建立空间直角坐标系如图所示:则A(0,﹣,0),B(1,0,0),B1(1,0,2),C1(0,,1),∴=(1,,0),=(0,0,2),=(0,2,1),设平面ABB1的法向量为=(x,y,z),则,∴,令y=1可得=(﹣,1,0),∴cos<>===.设直线AC1与平面ABB1所成的角为θ,则sinθ=|cos<>|=.∴直线AC1与平面ABB1所成的角的正弦值为.。

2018年高考文数立体几何真题精选

2018年高考文数立体几何真题精选

2018年高考文数——立体几何一、选择题1.【2018全国一卷5】已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A .122πB .12πC .82πD .10π2.【2018全国一卷9】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .172B .52C .3D .23.【2018全国一卷10】在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为 A .8B .62C .82D .834.【2018全国二卷9】在正方体中,为棱的中点,则异面直线与所成角的正切值为A .B .C .D .5.【2018全国三卷3】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是6.【2018全国三卷12】设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为 A .B .C .D .1111ABCD A B C D -E 1CC AE CD 22325272A B C D ,,,ABC △93D ABC -1231832435437.【2018北京卷6】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形个数为A.1B.2C.3D.4第7题图 第8题图8.【2018浙江卷3】某几何体的三视图如图所示,则该几何体的体积是 A .2B .4C .6D .89.【2018上海卷15】《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA ₁是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA ₁为底面矩形的一边,则这样的阳马的个数是( )(A ) 4 (B )8 (C )12 (D )16 二、填空题1.【2018全国二卷16】已知圆锥的顶点为,母线,互相垂直,与圆锥底面所成角为,若的面积为,则该圆锥的体积为__________.2.【2018天津卷11】如图,已知正方体ABCD –A 1B 1C 1D 1的棱长为1,则四棱锥A 1–BB 1D 1D 的体积为__________.3.【2018江苏10】如图正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.__________.侧视图俯视图正视图2211S SA SB SA 30 SAB △8三、解答题1.【2018全国一卷18】如图,在平行四边形ABCM 中,3AB AC ==,90ACM =︒∠,以AC为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点, 且23BP DQ DA ==,求三棱锥Q ABP -的体积.2.【2018全国二卷19】如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上且,求点到平面的距离.3.【2018全国三卷19】如图,矩形所在平面与半圆弧所在平面垂直,是上异于,的点.(1)证明:平面平面;(2)在线段上是否存在点,使得平面?说明理由.P ABC -22AB BC ==4PA PB PC AC ====O AC PO ⊥ABC M BC 2MC MB =C POM ABCD CD M CDC D AMD ⊥BMC AM P MC ∥PBD4.【2018北京卷18】如图,在四棱锥P−ABCD 中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,E ,F 分别为AD ,PB 的中点.(Ⅰ)求证:PE ⊥BC ;(Ⅱ)求证:平面PAB ⊥平面PCD ; (Ⅲ)求证:EF ∥平面PCD .5.【2018天津卷17】如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD =23,∠BAD =90°.(Ⅰ)求证:AD ⊥BC ;(Ⅱ)求异面直线BC 与MD 所成角的余弦值; (Ⅲ)求直线CD 与平面ABD 所成角的正弦值.6.【2018江苏卷15】在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.求证:(1)AB ∥平面11A B C ; (2)平面11ABB A ⊥平面1A BC .7.【2018江苏卷22(附加题)】如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.8.【2018浙江卷19】如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.9.【2018上海卷17】已知圆锥的顶点为P,底面圆心为O,半径为2(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图,求异面直线PM与OB所成的角的大小.参考答案 一、选择题1.B2.B3.C4.C5.A6.B7.C8.C9.D 10.D 二、填空题 1.π8 2.31 3.43三、解答题1.解:(1)由已知可得,BAC ∠=90°,BA AC ⊥.又BA ⊥AD ,所以AB ⊥平面ACD . 又AB ⊂平面ABC , 所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =32. 又23BP DQ DA ==,所以22BP =. 作QE ⊥AC ,垂足为E ,则QE=13DC . 由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q ABP -的体积为1111322sin 451332Q ABP ABP V QE S -=⨯⨯=⨯⨯⨯⨯︒=△.2解:(1)因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =.连结OB .因为AB =BC =,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB ==2.由知,OP ⊥OB . 由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)作CH ⊥OM ,垂足为H .又由(1)可得OP ⊥CH ,所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离.由题设可知OC ==2,CM ==,∠ACB =45°.2322AC 12AC222OP OB PB +=12AC 23BC 423所以OM=,CH ==.所以点C 到平面POM 的距离为.3.解:(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC 平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM . 因为M 为上异于C ,D 的点,且DC 为直径,所以DM ⊥CM .又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM 平面AMD ,故平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:连结AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点. 连结OP ,因为P 为AM 中点,所以MC ∥OP . MC 平面PBD ,OP 平面PBD ,所以MC ∥平面PBD .4.解:(Ⅰ)∵PA PD =,且E 为AD 的中点,∴PE AD ⊥.∵底面ABCD 为矩形,∴BC AD ∥, ∴PE BC ⊥.(Ⅱ)∵底面ABCD 为矩形,∴AB AD ⊥. ∵平面PAD ⊥平面ABCD ,∴AB ⊥平面PAD . ∴AB PD ⊥.又PA PD ⊥,∴PD ⊥平面PAB ,∴平面PAB ⊥平面PCD . (Ⅲ)如图,取PC 中点G ,连接,FG GD .253sin OC MC ACB OM ⋅⋅∠455455⊂CD ⊂⊄⊂∵,F G 分别为PB 和PC 的中点,∴FG BC ∥,且12FG BC =. ∵四边形ABCD 为矩形,且E 为AD 的中点, ∴1,2ED BC DE BC =∥, ∴ED FG ∥,且ED FG =,∴四边形EFGD 为平行四边形, ∴EF GD ∥.又EF ⊄平面PCD ,GD ⊂平面PCD , ∴EF ∥平面PCD .5.解:(Ⅰ)证明:由平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,AD ⊥AB ,可得AD ⊥平面ABC ,故AD ⊥BC .(Ⅱ)解:取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,故MN ∥BC .所以∠DMN (或其补角)为异面直线BC 与MD 所成的角.在Rt △DAM 中,AM =1,故DMAD ⊥平面ABC ,故AD ⊥AC . 在Rt △DAN 中,AN =1,故DN在等腰三角形DMN 中,MN =1,可得12cos MNDMN DM ∠==.所以,异面直线BC 与MD(Ⅲ)解:连接CM .因为△ABC 为等边三角形,M 为边AB 的中点,故CM ⊥AB ,CM=又因为平面ABC ⊥平面ABD ,而CM ⊂平面ABC ,故CM ⊥平面ABD .所以,∠CDM 为直线CD 与平面ABD 所成的角. 在Rt △CAD 中,CD. 在Rt △CMD中,sin CM CDM CD ∠==.所以,直线CD 与平面ABD 所成角的正弦值为34.6.证明:(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1.因为AB ⊄平面A 1B 1C ,A 1B 1⊂平面A 1B 1C , 所以AB ∥平面A 1B 1C .(2)在平行六面体ABCD -A 1B 1C 1D 1中,四边形ABB 1A 1为平行四边形.又因为AA 1=AB ,所以四边形ABB 1A 1为菱形, 因此AB 1⊥A 1B .又因为AB 1⊥B 1C 1,BC ∥B 1C 1, 所以AB 1⊥BC .又因为A 1B ∩BC =B ,A 1B ⊂平面A 1BC ,BC ⊂平面A 1BC , 所以AB 1⊥平面A 1BC . 因为AB 1⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面A 1BC .7.解:如图,在正三棱柱ABC −A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以1,{},OB OC OO 为基底,建立空间直角坐标系O −xyz .因为AB =AA 1=2,所以1110,1,0,3,0,0,0,1,0,0,1,()()()()(2,3,0,2,0,1,2)()A B C A B C --.(1)因为P 为A 1B 1的中点,所以1,2)2P -,从而131(,,2)(0,2,222),BP AC ==--,故111||||cos ,|||||5BP AC BP AC BP AC ⋅-===⋅.因此,异面直线BP 与AC 1所成角的余弦值为.(2)因为Q 为BC 的中点,所以1,0)2Q ,因此33(,0)22AQ =,11(0,2,2),(0,0,2)AC CC ==.设n =(x ,y ,z )为平面AQC 1的一个法向量, 则10,0,AQ AC ⎧⎪⎨⎪⎩⋅=⋅=n n 即30,2220.y y z +=⎪+=⎩不妨取1,1)=-n ,设直线CC 1与平面AQC 1所成角为θ, 则111||sin |cos |,|||CC CC CC |θ==⋅⋅==n n n ,所以直线CC 1与平面AQC 1所成角的正弦值为.8.解:方法一:(Ⅰ)由11112,4,2,,AB AA BB AA AB BB AB ===⊥⊥得111AB A B ==,所以2221111A BAB AA +=.故111AB A B ⊥.由2BC =,112,1,BB CC ==11,BB BC CC BC ⊥⊥得11B C由2,120AB BC ABC ==∠=︒得AC =由1CC AC ⊥,得1AC =2221111AB B C AC +=,故111AB B C ⊥.因此1AB ⊥平面111A B C .(Ⅱ)如图,过点1C 作111C D A B ⊥,交直线11A B 于点D ,连结AD .由1AB ⊥平面111A B C 得平面111A B C ⊥平面1ABB ,由111C D A B ⊥得1C D ⊥平面1ABB ,所以1C AD ∠是1AC 与平面1ABB 所成的角.由111111BC A B AC ==111111cos C A B C A B ∠=∠=,所以1C D =111sin 13C D C AD AC ∠==. 因此,直线1AC 与平面1ABB所成的角的正弦值是13. 方法二:(Ⅰ)如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O -xyz.由题意知各点坐标如下:111(0,(1,0,0),(0,(1,0,2),A B A B C 因此11111(1,3,2),(1,3,2),(0,23),AB A B AC ==-=-由1110AB A B ⋅=得111AB A B ⊥.由1110AB AC ⋅=得111AB AC ⊥. 所以1AB ⊥平面111A B C . (Ⅱ)设直线1AC 与平面1ABB 所成的角为θ. 由(Ⅰ)可知11(0,23,1),(1,3,0),(0,0,2),AC AB BB ===设平面1ABB 的法向量(,,)x y z =n . 由10,0,ABBB ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,20,x z ⎧+=⎪⎨=⎪⎩可取(=n .所以111|sin |cos ,|13|||AC AC AC θ⋅===⋅n |n n |因此,直线1AC 与平面1ABB 所成的角的正弦值是13. 9.解:(1)依题意可知:圆锥的高度为322422=-=OP , 所以其体积为:πππ338322313122=⨯⨯⨯==h r V 。

2018年高考真题解答题专项训练:立体几何(文科)学生版

2018年高考真题解答题专项训练:立体几何(文科)学生版

2018年高考真题解答题专项训练:立体几何(文科)学生版1.(2018年浙江卷)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.2.(2018年天津卷)如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=BAD=90°.(((求证:AD(BC((((求异面直线BC与MD所成角的余弦值;(Ⅲ)求直线CD与平面ABD所成角的正弦值.3.(2018年北京卷)如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面P AD,平面ABCD,P A,PD,P A=PD,E,F分别为AD,PB的中点.,,)求证:PE,BC,,,)求证:平面P AB,平面PCD,,,)求证:EF,平面PCD.4.(2018年新课标1卷)如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA,(1)证明:平面ACD⊥平面ABC,DA,求三棱锥Q−ABP的(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=23体积.5.(2018年新课标3卷)如图,矩形ABCD所在平面与半圆弧CD所在平面垂直,M是CD 上异于C,D的点,(1)证明:平面AMD⊥平面BMC,(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由,6.(2018年新课标2卷)如图,在三棱锥P−ABC中,AB=BC=2√2,PA=PB=PC= AC=4,O为AC的中点.(1)证明:PO⊥平面ABC,(2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.参考答案1.(Ⅰ)见解析;(Ⅱ)√3913.【来源】2018年全国普通高等学校招生统一考试数学(浙江卷)【解析】分析:方法一:(Ⅰ)通过计算,根据勾股定理得AB 1⊥A 1B 1,AB 1⊥B 1C 1,再根据线面垂直的判定定理得结论,(Ⅱ,找出直线AC 1与平面ABB 1所成的角,再在直角三角形中求解.方法二:(Ⅰ)根据条件建立空间直角坐标系,写出各点的坐标,根据向量之积为0得出AB 1⊥A 1B 1,AB 1⊥A 1C 1,再根据线面垂直的判定定理得结论,(Ⅱ)根据方程组解出平面ABB 1的一个法向量,然后利用AC 1⃑⃑⃑⃑⃑⃑⃑ 与平面ABB 1法向量的夹角的余弦公式及线面角与向量夹角的互余关系求解. 详解:方法一:(Ⅰ)由AB =2,AA 1=4,BB 1=2,AA 1⊥AB,BB 1⊥AB 得AB 1=A 1B 1=2√2,所以A 1B 12+AB 12=AA 12.故AB 1⊥A 1B 1.由BC =2,BB 1=2,CC 1=1, BB 1⊥BC,CC 1⊥BC 得B 1C 1=√5, 由AB =BC =2,∠ABC =120°得AC =2√3,由CC 1⊥AC ,得AC 1=√13,所以AB 12+B 1C 12=AC 12,故AB 1⊥B 1C 1.因此AB 1⊥平面A 1B 1C 1.,Ⅱ)如图,过点C 1作C 1D ⊥A 1B 1,交直线A 1B 1于点D ,连结AD .由AB 1⊥平面A 1B 1C 1得平面A 1B 1C 1⊥平面ABB 1, 由C 1D ⊥A 1B 1得C 1D ⊥平面ABB 1,所以∠C 1AD 是AC 1与平面ABB 1所成的角.学科.网由B 1C 1=√5,A 1B 1=2√2,A 1C 1=√21得cos∠C 1A 1B 1=√6√7sin∠C 1A 1B 1=√7,所以C 1D =√3,故sin∠C 1AD =C 1D AC 1=√3913. 因此,直线AC 1与平面ABB 1所成的角的正弦值是√3913. 方法二:,Ⅰ)如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O -xyz .由题意知各点坐标如下:A(0,−√3,0),B(1,0,0),A 1(0,−√3,4),B 1(1,0,2),C 1(0,√3,1),因此AB 1⃑⃑⃑⃑⃑⃑⃑ =(1,√3,2),A 1B 1⃑⃑⃑⃑⃑⃑⃑⃑⃑ =(1,√3,−2),A 1C 1⃑⃑⃑⃑⃑⃑⃑⃑⃑ =(0,2√3,−3), 由AB 1⃑⃑⃑⃑⃑⃑⃑ ⋅A 1B 1⃑⃑⃑⃑⃑⃑⃑⃑⃑ =0得AB 1⊥A 1B 1. 由AB 1⃑⃑⃑⃑⃑⃑⃑ ⋅A 1C 1⃑⃑⃑⃑⃑⃑⃑⃑⃑ =0得AB 1⊥A 1C 1. 所以AB 1⊥平面A 1B 1C 1.(Ⅱ)设直线AC 1与平面ABB 1所成的角为θ.由(Ⅰ)可知AC 1⃑⃑⃑⃑⃑⃑⃑ =(0,2√3,1),AB ⃑⃑⃑⃑⃑ =(1,√3,0),BB 1⃑⃑⃑⃑⃑⃑⃑ =(0,0,2), 设平面ABB 1的法向量n =(x,y,z).由{n ⋅AB ⃑⃑⃑⃑⃑ =0,n ⋅BB 1⃑⃑⃑⃑⃑⃑⃑ =0,即{x +√3y =0,2z =0, 可取n =(−√3,1,0). 所以sinθ=|cos⟨AC 1⃑⃑⃑⃑⃑⃑⃑ ,n⟩|=|AC 1⃑⃑⃑⃑⃑⃑⃑⃑⋅n||AC 1⃑⃑⃑⃑⃑⃑⃑⃑ |⋅|n|=√3913. 因此,直线AC 1与平面ABB 1所成的角的正弦值是√3913.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.2.(Ⅰ)证明见解析;(Ⅱ)26;(Ⅲ)4. 【来源】2018年全国普通高等学校招生统一考试文科数学(天津卷) 【解析】分析:(Ⅰ(由面面垂直的性质定理可得AD ⊥平面ABC (则AD ⊥BC ((Ⅱ)取棱AC 的中点N ,连接MN ,ND .由几何关系可知∠DMN (或其补角)为异面直线BC 与MD所成的角.计算可得1226MNcos DMN DM ∠==.则异面直线BC 与MD 所成角(Ⅲ)连接CM .由题意可知CM ⊥平面ABD .则∠CDM 为直线CD 与平面ABD 所成的角.计算可得4CM sin CDM CD ∠==.即直线CD 与平面ABD所成角的正弦值为4. 详解:(Ⅰ)证明:由平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,AD ⊥AB ,可得AD ⊥平面ABC ,故AD ⊥BC .(Ⅱ)取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,故MN ∥BC .所以∠DMN (或其补角)为异面直线BC 与MD 所成的角.在Rt △DAM 中,AM =1,故DM因为AD ⊥平面ABC ,故AD ⊥AC . 在Rt △DAN 中,AN =1,故DN.在等腰三角形DMN 中,MN =1,可得12cos MNDMN DM ∠==所以,异面直线BC 与MD所成角的余弦值为26. (Ⅲ)连接CM .因为△ABC 为等边三角形,M 为边AB 的中点,故CM ⊥AB ,CM又因为平面ABC ⊥平面ABD ,而CM ⊂平面ABC ,故CM ⊥平面ABD .所以,∠CDM为直线CD 与平面ABD 所成的角.在Rt △CAD 中,CD .在Rt △CMD 中, sin CM CDM CD ∠==所以,直线CD 与平面ABD 所成角的正弦值为4. 点睛:本小题主要考查异面直线所成的角、直线与平面所成的角、平面与平面垂直等基础知识.考查空间想象能力、运算求解能力和推理论证能力. 3.,Ⅰ,见解析 ,Ⅱ,见解析 ,Ⅲ,见解析【来源】2018年全国普通高等学校招生统一考试文科数学(北京卷)【解析】分析:(1)欲证PE ⊥BC ,只需证明PE ⊥AD 即可;(2)先证PD ⊥平面PAB ,再证平面P AB ,平面PCD ;(3)取PC 中点G ,连接FG,DG ,证明EF//DG ,则EF//平面PCD . 详解:(Ⅰ),PA =PD ,且E 为AD 的中点,∴PE ⊥AD . ∵底面ABCD 为矩形,∴BC ∥AD , ,PE ⊥BC .(Ⅱ)∵底面ABCD 为矩形,∴AB ⊥AD . ,平面PAD ⊥平面ABCD ,,AB ⊥平面PAD . ,AB ⊥PD .又PA ⊥PD ,,PD ⊥平面PAB ,,平面PAB ⊥平面PCD . (Ⅲ)如图,取PC 中点G ,连接FG,GD .BC.,F,G分别为PB和PC的中点,∴FG∥BC,且FG=12∵四边形ABCD为矩形,且E为AD的中点,BC,,ED∥BC,DE=12,ED∥FG,且ED=FG,∴四边形EFGD为平行四边形,,EF∥GD.又EF⊄平面PCD,GD⊂平面PCD,,EF∥平面PCD.点睛,证明面面关系的核心是证明线面关系,证明线面关系的核心是证明线线关系.证明线线平行的方法:(1,线面平行的性质定理,,2,三角形中位线法,,3,平行四边形法. 证明线线垂直的常用方法,,1)等腰三角形三线合一;(2,勾股定理逆定理;(3,线面垂直的性质定理;,4,菱形对角线互相垂直.4.(1)见解析.(2)1.【来源】2018年全国普通高等学校招生统一考试文科数学(新课标I卷)【解析】分析:(1)首先根据题的条件,可以得到∠BAC=90,即BA⊥AC,再结合已知条件BA,AD,利用线面垂直的判定定理证得AB⊥平面ACD,又因为AB⊂平面ABC,根据面面垂直的判定定理,证得平面ACD⊥平面ABC,(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积.详解:(1)由已知可得,∠BAC=90°,BA⊥AC,又BA,AD,且AC∩AD=A,所以AB⊥平面ACD,又AB⊂平面ABC,所以平面ACD⊥平面ABC,,2)由已知可得,DC=CM=AB=3,DA=3√2,又BP=DQ=23DA,所以BP=2√2,作QE,AC,垂足为E,则QE=∥13DC,由已知及(1)可得DC⊥平面ABC,所以QE⊥平面ABC,QE=1,因此,三棱锥Q−ABP的体积为V Q−ABP=13×QE×S△ABP=13×1×12×3×2√2sin45°=1,点睛:该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的判定以及三棱锥的体积的求解,在解题的过程中,需要清楚题中的有关垂直的直线的位置,结合线面垂直的判定定理证得线面垂直,之后应用面面垂直的判定定理证得面面垂直,需要明确线线垂直、线面垂直和面面垂直的关系,在求三棱锥的体积的时候,注意应用体积公式求解即可. 5.(1)证明见解析(2)存在,理由见解析【来源】2018年全国卷Ⅲ文数高考试题文档版【解析】分析:(1)先证AD⊥CM,再证CM⊥MD,进而完成证明。

2018年全国卷文数(新课标1)立体几何

2018年全国卷文数(新课标1)立体几何

2018年全国卷文数(新课标1)立体几何5.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A. B. C. D.【答案】D【解析】解:设圆柱的底面直径为2R,则高为2R,圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,可得:,解得,则该圆柱的表面积为:.故选:D.利用圆柱的截面是面积为8的正方形,求出圆柱的底面直径与高,然后求解圆柱的表面积.本题考查圆柱的表面积的求法,考查圆柱的结构特征,截面的性质,是基本知识的考查.9.某圆柱的高为2,底面周长为16,其三视图如图圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为A. B. C. 3 D. 2【答案】B【解析】解:由题意可知几何体是圆柱,底面周长16,高为2,直观图以及侧面展开图如图:圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:.故选:B.判断三视图对应的几何体的形状,利用侧面展开图,转化求解即可.本题考查三视图与几何体的直观图的关系,侧面展开图的应用,考查计算能力.10.在长方体中,,与平面所成的角为,则该长方体的体积为A. 8B.C.D.【答案】C【解析】解:长方体中,,与平面所成的角为,即,可得.可得.所以该长方体的体积为:.故选:C.画出图形,利用已知条件求出长方体的高,然后求解长方体的体积即可.本题考查长方体的体积的求法,直线与平面所成角的求法,考查计算能力.18.如图,在平行四边形ABCM中,,,以AC为折痕将折起,使点M到达点D的位置,且.证明:平面平面ABC;为线段AD上一点,P为线段BC上一点,且,求三棱锥的体积.【答案】解:证明:在平行四边形ABCM中,,,又且,面ADC,面ABC,平面平面ABC;,,,,由得,又,面ABC,三棱锥的体积.【解析】可得,且,即可得面ADC,平面平面ABC;首先证明面ABC,再根据,可得三棱锥的高,求出三角形ABP的面积即可求得三棱锥的体积.本题考查面面垂直,考查三棱锥体积的计算,考查学生分析解决问题的能力,属于中档题.。

立体几何型解答题——高考数学试题汇编(2018年全国卷)

立体几何型解答题——高考数学试题汇编(2018年全国卷)

【立体几何型解答题高考数学试题汇编(2018年全国卷)】理科试题【2018年全国卷Ⅰ理科第18题】如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中 点,以DF 为折痕把DFC ∆折起,使点C 到达点P 的位置,且.BF DF ⊥ (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.【2018年全国卷Ⅱ理科第20题】如图,在三棱锥P ABC -中,AB BC ==PA PB ==4,PC AC ==O 为AC 的中点. (1)证明:PO ⊥平面ABC ; (2)若点M 在棱BC 上,且二面角M PA C --为30,求PC 与平面PAM 所成角的正弦值.【2018年全国卷Ⅲ理科第19题】如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于,C D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.C AAA文科试题【2018年全国卷Ⅰ文科第18题】如图,在平行四边形ABCM 中, 3,AB AC ==ACM ∠90,=以AC 为折痕将ACM ∆折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面;ABC(2)Q 为线段AD 上一点,P 为线段BC 上一点,且2,3BP DQ DA ==求三棱锥Q ABP-的体积.【2018年全国卷Ⅱ文科第20题】如图,在三棱锥P ABC -中,AB BC ==PA PB ==4,PC AC ==O 为AC 的中点. (1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2,MC MB =求点C 与平面POM 的距离.【2018年全国卷Ⅲ文科第19题】如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于,C D 的点.(1)证明:平面AMD ⊥平面BMC ; (2)在线段AM 上是否存在点,P 使得MC平面PBD ?说明理由.BAA。

2018年全国高考文科数学分类汇编----立体几何

2018年全国高考文科数学分类汇编----立体几何

2018年全国高考文科数学分类汇编----立体几何1.在某四棱锥的三视图中,侧面中直角三角形的个数为3个。

解决方法是通过对应的直观图,得出三角形PCD不是直角三角形,同时通过计算得出侧面中有三个直角三角形,分别为△PAB,△PBC和△PAD。

2.在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,E,F分别为AD,PB的中点。

需要证明PE⊥BC,平面PAB⊥平面PCD和EF∥平面PCD。

证明过程中,需要利用几何图形的性质,如平面PAD⊥平面ABCD,底面ABCD为矩形,可得BC∥AD等。

3.正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为4/3.解决方法是通过计算正方体中间四边形的边长,然后计算出棱锥的高和棱长,最后通过公式计算出多面体的体积。

4.在平行六面体ABCD-A1B1C1D1中,需要证明AB∥平面A1B1C和平面ABB1A1⊥平面A1BC。

证明过程中,需要利用平行六面体的性质,如AB∥A1B1等。

在平行四边形ABCM中,由XXX可知∠ABC=∠ACB,又∠XXX°,所以∠ABM=∠CBM,即BM=CM,所以四边形ABB1M和四边形CC1BM是菱形,进而可得AB1⊥XXX,AC1⊥CM,所以AB1∥AC1,又因为XXX⊥AC,所以AB1⊥AC,即AB1是平面ABC的法线,同理可得AD是平面ACD的法线,所以平面ACD⊥平面ABC。

2)若BM=2,求AD的长度。

因为AB=AC=3,所以BC=3,又因为BM=2,所以MC=1,由勾股定理可得AM=√8,又因为AB⊥DA,所以AD=√AB^2+BD^2,又因为ABCD是平行四边形,所以BD=AC=3,所以AD=√18,即AD=3√2.题目:求直线AC1与平面ABB1所成角的正弦值。

解答:I)证明:因为A1A垂直于平面ABC,B1B垂直于平面ABC,所以A1A∥B1B。

由于A1A=4,B1B=2,AB=2,所以A1B1=2.又因为AB1⊥A1B1,同理可得AB1⊥B1C1,且A1B1∩B1C1=B1,所以AB1⊥平面A1B1C1.II)解:取AC的中点O,过O作平面ABC的垂线OD,交A1C1于D。

数学2018高考试题分类汇编:文科立体几何试卷版.doc

数学2018高考试题分类汇编:文科立体几何试卷版.doc

2018 全国高考数学试题汇编文科立体几何(试题版)[2018 ·安徽卷 ] 一个空间几何体的三视图如下图,则该几何体的表面积为()A.48B.32+8 17C.48+8 17D.80 [2018 ·京卷北 ] 某四棱锥的三视图如下图,该四棱锥的表面积是()A.32B.16+16 2C.48D.16+322 [2018 ·东卷广 ] 如图,某几何体的正视图(主视图 ),侧视图 (左视图 )和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为()A.4 3B.4C.2 3D.2[2018 ·南卷湖 ] 设图是某几何体的三视图,则该几何体的体积为()99A . 9π+ 42B . 36π+ 18 C.2π+ 12 D.2π+ 18 [2018 ·辽宁卷 ] 一个正三棱柱的侧棱长和底面边长相等,体积为 23,它的三视图中的俯视图如下图,左视图是一个矩形,则这个矩形的面积是()A.4B.2 3C.2 D.3 [2018 课·标全国卷 ] 在一个几何体的三视图中,正视图和俯视图如下图,则相应的侧视图能够为()[2018 ·陕西卷 ] 某几何体的三视图如下图,则它的体积为()2ππ2πA.8-3B.8-3C. 8- 2π D. 3[2018 天·津卷 ] 一个几何体的三视图如下图(单位: m) ,则该几何体的体积为 ________ m 3. [2018 ·江卷浙 ] 若某几何体的三视图如图1- 1 所示,则这个几何体的直观图能够是()[2018 ·福建卷 ] 如图,正方体ABCD - A1B1C1D1中, AB= 2,点 E 为 AD 的中点,点 F 在CD 上,若 EF∥平面 AB1C,则线段EF 的长度等于 ________.[2018 浙·江卷 ] 若直线 l 不平行于平面α,且l?α,则()A .α内的全部直线与 l 异面B.α内不存在与 l 平行的直线C.α内存在独一的直线与l 平行D.α内的直线与l 都订交[2018 广·东卷 ] 正五棱柱中,不一样在任何侧面且不一样在任何底面的两极点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有()A.20B.15C. 12 D .10[2018·四川卷 ] l1,l 2, l3是空间三条不一样的直线,则以下命题正确的选项是()A . l ⊥ l2, l⊥ l? l ∥l3B. l⊥l, l∥l ? l ⊥ l3123112231C. l∥l∥l? l, l, l共面D. l,l, l共点 ? l , l, l共面123123123123[2018 ·湖北卷 ] 设球的体积为 V1,它的内接正方体的体积为V2,以下说法中最适合的是()A . V1比 V2大概多一半B. V1比 V2大概多两倍半C. V1比 V2大概多一倍D. V1比 V2大概多一倍半[2018 ·辽宁卷 ] 已知球的直径SC=4, A、 B 是该球球面上的两点,AB= 2,∠ASC=∠BSC =45 °,则棱锥S- ABC 的体积为 ()32 3 4 3 5 3 A. 3B. 3C. 3D. 3[2018 ·课标全国卷 ] 已知两个圆锥有公共底面, 且两圆锥的极点和底面的圆周都在同一个球面上, 若圆锥底面面积是这个球面面积的163,则这两个圆锥中, 体积较小者的高与体积较大者的高的比值为 ________.[2018 ·四川卷 ] 如图 1- 3,半径为 4 的球 O 中有一内接圆柱.当圆柱的侧面积最大时,球 的表面积与该圆柱的侧面积之差是________.[2018 ·全国卷 ] 已知正方体ABCD -A1B1C1D1中, E 为 C1D1的中点,则异面直线AE 与 BC 所成角的余弦值为________.[2018 ·徽卷安 ] 如图, ABEDFC 为多面体,平面ABED 与平面 ACFD 垂直,点O 在线段 AD 上, OA= 1, OD= 2,△OAB,△OAC,△ODE ,△ODF 都是正三角形.(1)证明直线 BC∥EF;(2)求棱锥 F - OBED 的体积.[2018 ·京卷北 ] 如图,在四周体 PABC 中,PC⊥ AB,PA⊥ BC,点 D,E,F,G 分别是棱AP,AC, BC,PB 的中点.(1)求证: DE ∥平面 BCP;(2)求证:四边形 DEFG 为矩形;(3)能否存在点 Q,到四周体 PABC 六条棱的中点的距离相等?说明原因.[2018 ·苏卷江 ] 如图,在四棱锥P-ABCD 中,平面 PAD⊥平面 ABCD , AB= AD,∠BAD =60°, E、 F 分别是 AP、 AD 的中点.求证: (1)直线 EF∥平面 PCD ;(2) 平面 BEF ⊥平面 PAD.[2018 ·标全国卷课 ] 如图,四棱锥P- ABCD 中,底面ABCD 为平行四边形,∠ DAB = 60°,AB= 2AD, PD ⊥底面 ABCD .(1)证明: PA⊥BD ;(2)设 PD =AD= 1,求棱锥 D- PBC 的高.[2018 陕·西卷 ] 如图,在△ABC 中,∠ABC= 45°,∠BAC= 90°,AD 是 BC 上的高,沿 AD 把△ABD 折起,使∠ BDC= 90 °.(1)证明:平面 ADB⊥平面 BDC ;(2)若 BD =1,求三棱锥 D- ABC 的表面积.[ 江苏卷 ] 如图,在四棱锥 P- ABCD 中,平面 PAD ⊥平面 ABCD ,AB=AD ,∠BAD = 60°,E、F 分别是 AP、 AD 的中点.求证: (1)直线 EF∥平面 PCD ;(2) 平面 BEF ⊥平面 PAD.[2018 ·辽宁卷 ] 如图,四边形ABCD 为正方形,1QA⊥平面 ABCD , PD∥QA, QA= AB=2PD .(1)证明: PQ⊥平面 DCQ ;(2)求棱锥 Q-ABCD 的体积与棱锥 P- DCQ 的体积的比值.[2018 ·南卷湖 ] 如图,在圆锥 PO 中,已知PO=2,⊙ O 的直径 AB=2,点 C 在 AB 上,且∠CAB= 30 °, D 为 AC 的中点.(1)证明: AC⊥平面 POD ;(2)求直线 OC 和平面 PAC 所成角的正弦值.[2018 ·江卷浙 ] 如图,在三棱锥P-ABC 中, AB= AC, D 为 BC 的中点, PO⊥平面 ABC,垂足 O 落在线段AD 上.(1)证明: AP⊥ BC;(2)已知 BC =8, PO= 4,AO= 3, OD= 2,求二面角 B- AP- C 的大小.[2018 ·建卷福 ] 如图,四棱锥 P- ABCD 中,PA⊥底面 ABCD ,AB⊥ AD,点 E 在线段 AD 上,且 CE∥AB.(1)求证: CE⊥平面 PAD;(2)若 PA= AB= 1, AD= 3, CD = 2,∠CDA = 45°,求四棱锥 P- ABCD 的体积.π[2018 江·西卷 ] 如图,在△ ABC 中,∠ B=2, AB= BC= 2,P 为 AB 边上一动点, PD ∥BC 交AC 于点 D,现将△ PDA 沿 PD 翻折至△PDA ′,使平面PDA ′⊥平面 PBCD .(1) 当棱锥 A′- PBCD 的体积最大时,求PA 的长;(2)若点 P 为 AB 的中点, E 为 A′C 的中点,求证: A′B⊥DE .[2018 ·东卷山 ] 如图,在四棱台ABCD - A1B1C1 D1中, D 1D⊥平面 ABCD ,底面 ABCD 是平行四边形, AB= 2AD , AD= A1B1,∠BAD = 60°.(1)证明: AA1⊥ BD;(2)证明: CC1∥平面 A1BD .[2018 ·川卷四 ] 如图,在直三棱柱ABC-A1B1C1中,∠BAC= 90°, AB= AC=AA 1= 1,延伸A1C1至点 P,使 C1P= A1C1,连结 AP 交棱 CC1于点 D .(1)求证: PB1∥平面 BDA1;(2)求二面角 A-A1D -B 的平面角的余弦值.[2018 ·津卷天 ] 如图,在四棱锥P- ABCD 中,底面 ABCD 为平行四边形,∠ ADC= 45°,AD =AC =1, O 为 AC 的中点, PO⊥平面 ABCD , PO= 2, M 为 PD 的中点.(1)证明 PB ∥平面 ACM ;(2)证明 AD ⊥平面 PAC;(3)求直线 AM 与平面 ABCD 所成角的正切值.(本小题满分13 分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四周体称之为鳖臑. 在如下图的阳马P ABCD 中,侧棱 PD底面ABCD,且PD CD ,点E是PC的中点,连结DE , BD , BE .(Ⅰ)证明: DE平面PBC.试判断四周体EBCD 能否为鳖臑,假如,写出其每个面的直角(只要写出结论);若不是,请说明原因;V1(Ⅱ)记阳马P ABCD 的体积为V1,四周体 EBCD 的体积为V2,求的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年高考文数——立体几何一、选择题1.【2018全国一卷5】已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A .122πB .12πC .82πD .10π2.【2018全国一卷9】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .172B .52C .3D .23.【2018全国一卷10】在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为 A .8B .62C .82D .834.【2018全国二卷9】在正方体中,为棱的中点,则异面直线与所成角的正切值为A .B .C .D .5.【2018全国三卷3】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是6.【2018全国三卷12】设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为 A .B .C .D .1111ABCD A B C D -E 1CC AE CD 22325272A B C D ,,,ABC △93D ABC -1231832435437.【2018北京卷6】某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形个数为A.1B.2C.3D.4第7题图 第8题图8.【2018浙江卷3】某几何体的三视图如图所示,则该几何体的体积是 A .2B .4C .6D .89.【2018上海卷15】《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA ₁是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA ₁为底面矩形的一边,则这样的阳马的个数是( )(A ) 4 (B )8 (C )12 (D )16 二、填空题1.【2018全国二卷16】已知圆锥的顶点为,母线,互相垂直,与圆锥底面所成角为,若的面积为,则该圆锥的体积为__________.2.【2018天津卷11】如图,已知正方体ABCD –A 1B 1C 1D 1的棱长为1,则四棱锥A 1–BB 1D 1D 的体积为__________.3.【2018江苏10】如图正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.__________.侧视图俯视图正视图2211S SA SB SA 30 SAB △8三、解答题1.【2018全国一卷18】如图,在平行四边形ABCM 中,3AB AC ==,90ACM =︒∠,以AC为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点, 且23BP DQ DA ==,求三棱锥Q ABP -的体积.2.【2018全国二卷19】如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上且,求点到平面的距离.3.【2018全国三卷19】如图,矩形所在平面与半圆弧所在平面垂直,是上异于,的点.(1)证明:平面平面;(2)在线段上是否存在点,使得平面?说明理由.P ABC -22AB BC ==4PA PB PC AC ====O AC PO ⊥ABC M BC 2MC MB =C POM ABCD CD M CDC D AMD ⊥BMC AM P MC ∥PBD4.【2018北京卷18】如图,在四棱锥P−ABCD 中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,E ,F 分别为AD ,PB 的中点.(Ⅰ)求证:PE ⊥BC ;(Ⅱ)求证:平面PAB ⊥平面PCD ; (Ⅲ)求证:EF ∥平面PCD .5.【2018天津卷17】如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD =23,∠BAD =90°.(Ⅰ)求证:AD ⊥BC ;(Ⅱ)求异面直线BC 与MD 所成角的余弦值; (Ⅲ)求直线CD 与平面ABD 所成角的正弦值.6.【2018江苏卷15】在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.求证:(1)AB ∥平面11A B C ; (2)平面11ABB A ⊥平面1A BC .7.【2018江苏卷22(附加题)】如图,在正三棱柱ABC-A1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点.(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值.8.【2018浙江卷19】如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.9.【2018上海卷17】已知圆锥的顶点为P,底面圆心为O,半径为2(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图,求异面直线PM与OB所成的角的大小.参考答案 一、选择题1.B2.B3.C4.C5.A6.B7.C8.C9.D 10.D 二、填空题 1.π8 2.31 3.43三、解答题1.解:(1)由已知可得,BAC ∠=90°,BA AC ⊥.又BA ⊥AD ,所以AB ⊥平面ACD . 又AB ⊂平面ABC , 所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =32. 又23BP DQ DA ==,所以22BP =. 作QE ⊥AC ,垂足为E ,则QE=13DC . 由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q ABP -的体积为1111322sin 451332Q ABP ABP V QE S -=⨯⨯=⨯⨯⨯⨯︒=△.2解:(1)因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =.连结OB .因为AB =BC =,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB ==2.由知,OP ⊥OB . 由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)作CH ⊥OM ,垂足为H .又由(1)可得OP ⊥CH ,所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离.由题设可知OC ==2,CM ==,∠ACB =45°.2322AC 12AC222OP OB PB +=12AC 23BC 423所以OM=,CH ==.所以点C 到平面POM 的距离为.3.解:(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC 平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM . 因为M 为上异于C ,D 的点,且DC 为直径,所以DM ⊥CM .又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM 平面AMD ,故平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:连结AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点. 连结OP ,因为P 为AM 中点,所以MC ∥OP . MC 平面PBD ,OP 平面PBD ,所以MC ∥平面PBD .4.解:(Ⅰ)∵PA PD =,且E 为AD 的中点,∴PE AD ⊥.∵底面ABCD 为矩形,∴BC AD ∥, ∴PE BC ⊥.(Ⅱ)∵底面ABCD 为矩形,∴AB AD ⊥. ∵平面PAD ⊥平面ABCD ,∴AB ⊥平面PAD . ∴AB PD ⊥.又PA PD ⊥,∴PD ⊥平面PAB ,∴平面PAB ⊥平面PCD . (Ⅲ)如图,取PC 中点G ,连接,FG GD .253sin OC MC ACB OM ⋅⋅∠455455⊂CD ⊂⊄⊂∵,F G 分别为PB 和PC 的中点,∴FG BC ∥,且12FG BC =. ∵四边形ABCD 为矩形,且E 为AD 的中点, ∴1,2ED BC DE BC =∥, ∴ED FG ∥,且ED FG =,∴四边形EFGD 为平行四边形, ∴EF GD ∥.又EF ⊄平面PCD ,GD ⊂平面PCD , ∴EF ∥平面PCD .5.解:(Ⅰ)证明:由平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,AD ⊥AB ,可得AD ⊥平面ABC ,故AD ⊥BC .(Ⅱ)解:取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,故MN ∥BC .所以∠DMN (或其补角)为异面直线BC 与MD 所成的角.在Rt △DAM 中,AM =1,故DMAD ⊥平面ABC ,故AD ⊥AC . 在Rt △DAN 中,AN =1,故DN在等腰三角形DMN 中,MN =1,可得12cos MNDMN DM ∠==.所以,异面直线BC 与MD(Ⅲ)解:连接CM .因为△ABC 为等边三角形,M 为边AB 的中点,故CM ⊥AB ,CM=又因为平面ABC ⊥平面ABD ,而CM ⊂平面ABC ,故CM ⊥平面ABD .所以,∠CDM 为直线CD 与平面ABD 所成的角. 在Rt △CAD 中,CD. 在Rt △CMD中,sin CM CDM CD ∠==.所以,直线CD 与平面ABD 所成角的正弦值为34.6.证明:(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1.因为AB ⊄平面A 1B 1C ,A 1B 1⊂平面A 1B 1C , 所以AB ∥平面A 1B 1C .(2)在平行六面体ABCD -A 1B 1C 1D 1中,四边形ABB 1A 1为平行四边形.又因为AA 1=AB ,所以四边形ABB 1A 1为菱形, 因此AB 1⊥A 1B .又因为AB 1⊥B 1C 1,BC ∥B 1C 1, 所以AB 1⊥BC .又因为A 1B ∩BC =B ,A 1B ⊂平面A 1BC ,BC ⊂平面A 1BC , 所以AB 1⊥平面A 1BC . 因为AB 1⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面A 1BC .7.解:如图,在正三棱柱ABC −A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,以1,{},OB OC OO 为基底,建立空间直角坐标系O −xyz .因为AB =AA 1=2,所以1110,1,0,3,0,0,0,1,0,0,1,()()()()(2,3,0,2,0,1,2)()A B C A B C --.(1)因为P 为A 1B 1的中点,所以1,2)2P -,从而131(,,2)(0,2,222),BP AC ==--,故111||||cos ,|||||5BP AC BP AC BP AC ⋅-===⋅.因此,异面直线BP 与AC 1所成角的余弦值为.(2)因为Q 为BC 的中点,所以1,0)2Q ,因此33(,0)22AQ =,11(0,2,2),(0,0,2)AC CC ==.设n =(x ,y ,z )为平面AQC 1的一个法向量, 则10,0,AQ AC ⎧⎪⎨⎪⎩⋅=⋅=n n 即30,2220.y y z +=⎪+=⎩不妨取1,1)=-n ,设直线CC 1与平面AQC 1所成角为θ, 则111||sin |cos |,|||CC CC CC |θ==⋅⋅==n n n ,所以直线CC 1与平面AQC 1所成角的正弦值为.8.解:方法一:(Ⅰ)由11112,4,2,,AB AA BB AA AB BB AB ===⊥⊥得111AB A B ==,所以2221111A BAB AA +=.故111AB A B ⊥.由2BC =,112,1,BB CC ==11,BB BC CC BC ⊥⊥得11B C由2,120AB BC ABC ==∠=︒得AC =由1CC AC ⊥,得1AC =2221111AB B C AC +=,故111AB B C ⊥.因此1AB ⊥平面111A B C .(Ⅱ)如图,过点1C 作111C D A B ⊥,交直线11A B 于点D ,连结AD .由1AB ⊥平面111A B C 得平面111A B C ⊥平面1ABB ,由111C D A B ⊥得1C D ⊥平面1ABB ,所以1C AD ∠是1AC 与平面1ABB 所成的角.由111111BC A B AC ==111111cos C A B C A B ∠=∠=,所以1C D =111sin 13C D C AD AC ∠==. 因此,直线1AC 与平面1ABB所成的角的正弦值是13. 方法二:(Ⅰ)如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O -xyz.由题意知各点坐标如下:111(0,(1,0,0),(0,(1,0,2),A B A B C 因此11111(1,3,2),(1,3,2),(0,23),AB A B AC ==-=-由1110AB A B ⋅=得111AB A B ⊥.由1110AB AC ⋅=得111AB AC ⊥. 所以1AB ⊥平面111A B C . (Ⅱ)设直线1AC 与平面1ABB 所成的角为θ. 由(Ⅰ)可知11(0,23,1),(1,3,0),(0,0,2),AC AB BB ===设平面1ABB 的法向量(,,)x y z =n . 由10,0,ABBB ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,20,x z ⎧+=⎪⎨=⎪⎩可取(=n .所以111|sin |cos ,|13|||AC AC AC θ⋅===⋅n |n n |因此,直线1AC 与平面1ABB 所成的角的正弦值是13. 9.解:(1)依题意可知:圆锥的高度为322422=-=OP , 所以其体积为:πππ338322313122=⨯⨯⨯==h r V 。

相关文档
最新文档