1.3.1有理数的加法2PPT课件

合集下载

1.3.1有理数加法(2)

1.3.1有理数加法(2)

1.3.1有理数加法(2):有理数加法法则:·同号两个数相加,取相同的符号,并把绝对值相加。

·异号的两个数相加,绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两数相加得0.·一个数同0相加仍得这个数加法交换律:a b b a+=+加法结合律:()()a b c a b c++=++方法:①互为相反数的两个数先相加——“相反数结合法”②符号相同的两个数先相加——“同号结合法”③分母相同的的数先相加——“同分母结合法”④几个数相加得到整数——“凑整数”⑤整数与整数,小数与小数相加——“同行结合法”。

新课讲授:见ppt例1:计算:(1)(—83)+(+26)+(—17)+(—26)+(+15)(2)131 ++++244(—2.5)(—3)(—1)3(—1)(3)18.56+(—5.16)+(—1.44)+(+5.16)+(—18.56)练习:(1)13+(-34)+(-13)+(-14)+1819(2)(-13)+(+25)+(+35)+(-123)(3)(-12)+(-23)+(-56)(4)(-26.54)+(-6.4)+(+18.54)+6.4(5)(-3.75)+2.85+(-114)+(-12)+3.15+(-2.5)(6)11+22(—6)3(7))539()518()23()52()21(++++-+-(8))37(75.0)27()43()34()5.3(-++++-+-+-自主探究:(针对性练习)1.若|x—4|与|y+2|互为相反数,求x+y+的值。

2.若m,n互为相反数,x的绝对值2,则5(m+n)+x=3.计算1111++++ 12233420112012⋅⋅⋅⨯⨯⨯⨯4.(-1)+(+2)+(-3)+(+4)+…(-2007)+(+2008)+(-2009)+(+2010)课堂达标:1.口算:(1))8()2(+++= (2))17()16(-+- = (3))8()13(++-=(4)(-8.6)+0 = (5)3.78)+(-3.78)= (6)(-423)+(+316)= (7)(-823)+(+4.5)= (8)(-723)+(-356)= (9)│-7│+│-9715│= (10)(+4.85)+(-3.25)= (11)(-3.1)+(6.9)= (12)(-22914)+0= (13)-34+(-45)= (14)4.23+(-2.76)= (15)(-25)+(+56)+(-39)= (16)(-1.9)+3.6+(-10.1)+1.4 =(17) (-7)+(+11)+(-13)+9= (18)43+(-77)+37+(-23) =(19) 18+(-12)+(-21)+(+12) = (20)(+3)(-21)+(-19)+(+12)+(+5) =2.计算—1+1的结果是( )A. 1B. 0C.—1D. —23.下列运算正确的是( )①(—2)+2=0 ②512+=663(—)③33+=44—(—)(—7)—7④(—6)+(+4)=—10 ⑤0+(—3)=+3A. 0个B. 1个C. 2个D. 3个4.如果两个数相加的和是负数,那么( )A.这两个加数都为负数B.两个加数中,一个为负数,一个为正数C.一个加数为正数,另一个加数为负数,并且负数的绝对值大于正数的绝对值D.以上都有可能5.如果|a+b|=|a|+|b|,则这两个数一定是( )A.同为正数B.同为负数C. 同为非负数D.符号相同或一个为0或者同时为06.已知a 〈0,b 〉0且|a|=1,|b|=5,则a+b 等于( )A. 6B. ±6C. 4D. -47.小丽沿着一南北走向的街道散步,先向北走了1000m ,又向南走了800m ,则她此时位于其出发点的( )A.北200m 处B.南200m 处C. 北1800m 处D. 南1800m 处8.一个数是—8,另一个数比它大123,则另一个数是 。

1.3.1有理数的加法(第2课时)

1.3.1有理数的加法(第2课时)
解:记向东为正,根据题意得:
(1)、(+15)+(-25)+(+20)+(-35)=-25
(2)、|+15|+|-25|+|+20|+|-35| =95
答:小明的遥控车最后停在小明的西边25米处, 一共行驶了95千米。
练习: 一只乌龟沿南北方向的河岸来回爬行,假定向北 爬行的路程记为正数,向南爬行的路程记为负数,它 爬行的过程记录如下(单位m):-8,7,-3,9, -6,-4,10.
2 6 ( ) 3 7 4 21
5 1 6 ( 3) ( ) ( ) 6 6 7
讲解
请你当老师
计算:
符号相同的 先结合
(1)(-23)+(+58)+(-17) (2)(-2.8)+(-3.6)+(-1.5)+3.6 1 + (- — 2 ) + (- — 5 ) + (+ — 5) (3) — 6 7 6 7
做一做 (口答)确定下列各题中和的符号, 并计算:
=12 (2)(-10)+(+3)=-7 (1)(+5 )+(+7)
1 1 =1 (4) 0+ = (3)(+6)+(-5) 5 5
(5)(-11)+(-9) (6)(-3.5)+(+7) =-20 =3.5 (7)(-1.08)+0 =-1.08
2 (8)(+ 3 2 3
)+(-
) =0
(1)(-9.18)+6.18 = -3 (2)6.18+(-9.18)= -3

《1.3.1 有理数的加法法则》课件(三套)

《1.3.1 有理数的加法法则》课件(三套)

(2)(-10)+(-1) 同号两数相加,取相同的符号,
= -(10+1) 并把两数的绝对值相加.
= -11
(3)5 +(-5)= 0
互为相反数的两数相加等于0
(4)0 +(-2)=-2 0与任何数相加,仍得这个数
例1.计算: (1)(-3)+(-9);
(2)(-4.7)+3.9;
解:(1)(-3)+(-9)=-(3+9)=-12 (2)(-4.7)+3.9=-(4.7-3,9)=-0.8
物体从起点向 运动了
m;
3先向左运动了5 m,再向右运动了5 m, 物体从起点向______运动了 m .
(-3)+5= 2 3+(-5)=-2 (-5)+5= 0
根据以上三个算式能否尝试总结异号两数相加的法则?
结论: 绝对值不相等的异号两数相加,取绝对值较大的加 数的符号,并用较大的绝对值减去较小的绝对值, 互为相反数的两个数相加得0 .



加 ③如果小明先向东运动5m , 再向西运动 法 3m ,你能列出式子吗?
(+5 ) + (- 3 )
④如果小明先向西运动5m , 再向东运动 3m ,你能列出式子吗?
(-5 ) + (+ 3 )


⑤如果小明先向东运动5m , 再向西运动 5m ,你能列出式子吗?
数 的 加

(+5 ) + (- 5 )
5

3
-1 0 1 2 3 4 5 6 7 8
8
(+5)+(+3)=8
一个物体向左右方向运动,我们规定向右为正,向左为负.

有理数的加法(第二课时)课件 2022-2023学年人教版七年级数学上册

有理数的加法(第二课时)课件 2022-2023学年人教版七年级数学上册
6、(P25习题1.3 T2)(1)(2)(3)(4) 7、(选做)计算: 1+(-2)+(-3)+ 4 + 5 +(-6)+(-7)
+ 8 +…+ 2013 +(-2014)+(-2015)+ 2016
5、(领跑作业本P17T2)某公路养护小组乘车沿东西向公 路巡视维护.某天早晨从A地出发,最后收工时到达B地
反意义的量,再求总量
2、两种解法各有什么特点? 解法一:易懂,但计算量大 解法二:表述的要求高,但计算量小
学生自学,教师巡视(3分钟)
例3 每袋小麦的标准重量为90千克,10袋小麦称重记录 如图所示,与标准重量比较,10袋小麦总计超过多少千 克或不足多少千克?10袋小麦的总重量是多少?
91
91
91.5
91.3
88.7
88.8
89
91.2
91.8
91.1
解法1:先计算10袋小麦的总重量 91+91+91.5+89+91.2+91.3+88.7+88.8+91.8+91.1=905.4
再计算总计超过多少千克 905.4-90×10=5.4 答:10袋小麦总计超过标准重量5.4千克,总重量是905.4千 克.
解:
0.6+1.8+(-2.2)+0.4+(-1.4)+(-0.9)+0.3+1.4+0.9+(-0.8) =0.6+0.4+[(-2.2)+(-0.8)]+[(-1.4)+1.4]+[(-0.9)+0.9]+(1.8+0.3) =1.0+(-3)+0+0+2.1 =0.1(千克).
10×50+0.1=500.1(千克).答:10袋面粉共超重0.1千克 ,该面粉厂实际收到面粉500.1千克.

1.3.1有理数的加法(第2课时)教学PPT

1.3.1有理数的加法(第2课时)教学PPT

1)比较以上各组两个算式的结果有什么关系 ?每组两个算式有什么特征?
2)小学学的加法交换律在有理数的加法中 还适用吗?
3)请你再换几个加数,试一试,看一看所 得的结果 如何?
你能用精炼的语言表述这一结论吗?
你能把该规律用字母表示吗?
有理数加法中,两个数相加,交换加数的 位置,和不变.
加法交换律: abba
8(5)(4),8(5)(4)
(1)两个式子的结果有什么关系?说说你的猜想. (2)再换几个数试一试,你的猜想是否还成立呢? (3)请用精炼的语言把你得到的结论概括出来.
(4)你能用字母把这个规律表示出来吗?
有理数的加法中,三个数相加,先把前两 个数相加,或者先把后两个数相加,和不变.
加法结合律:
有理数的加法 (二)
1.有理数加法法则.
2.计算:
30+(-20)
(-20)+30
(-5)+(-13) (-13)+(-5)
(-37)+16
16+(-37)
计算下面各题 1.(—9.18)+6.18 2. 26.18+( — 9.18); 3.( — 2.37)+( — 4.63); 4.( — 4.63)+( — 2.37);
(a b ) c a (b c )
例2 计算 16+(-25)+24+(-35)
解:16+(-25)+24+(-35) =16+24+[(-25)+(-35)] =40+(-60) =-20
例 3 10袋小麦称后记录如图所示(单位:kg)
(1)10袋小麦一共多少kg? (2)如果每袋小麦以90 kg为标准,10袋小麦 总计超过多少千克或不足多少kg?

1.3.1有理数加法(2)

1.3.1有理数加法(2)

(一 ) 1, 2, 3, 4, 5, 6, 7, 8, 9;
4 3 8 9 2 5 7 1 6
(二 ) -4, -3, -2, -1, 0,1, 2, 3, 4;
(三 ) -2,-1,0,1, 2,3,4,5,6;
1.绝对值小于5的所有负整数之和是 2.绝对值小于5的所有整数之和是
有整数之和是
是,还有壹各重要问题摆在排字琦の面前,她必须要先查壹查这套首饰是哪各府上送来の,别闹咯乌龙,那可就太丢人现眼咯。于是她立 即吩咐红莲去找管账太监,查查这套首饰是哪户人家孝敬上来の。第壹卷 第398章 查账管账太监上次被红莲害惨咯,事发之后他才晓得 为啥啊红莲会派他去怡然居传话,原来竟是为咯诓骗年侧福晋去朗吟阁!幸亏事后王爷没有调查出来他也参与其中,否则秦公公都挨咯二 十板子,他壹各小小の管账太监还不得挨四十板子?因此当现在他又见到红莲找上门来,这壹肚子の怨气正愁没处发呢,也顾不得红莲是 福晋贴身丫环、大红人の身份,直接闷闷不乐、暗含嘲讽地说道:“这回又是给哪各主子传话?”上次の事情红莲自知理亏,但这都是福 晋安排下来の,她又有啥啊办法!事后她还自顾不暇呢,生怕被爷发现,吟雪那二十板子和罚去庄子の严厉处罚至今她还心有余悸。不过, 待这阵风声过去咯,她总算是踏实咯许多,毕竟秦顺儿还算是条汉子,没把她给供出来。连她都吓成这样,更何况是没见过世面の管账太 监咯,因此红莲也没有太计较他の挖苦奚落,而是好言相劝道:“那事儿你就烂肚子里吧,还敢提?不要命咯?”“以前整天都在主子の 房里,壹年里也见不到你露各壹面半脸,现在不到三各月里见你两回,谁晓得你这回又有啥啊事情!”“这回是正经事情!主子让你查壹 下,喏,就是这各东西,查查是哪各府上孝敬上来の。”管账太监壹看真是正经事儿,也是见好就收,不再绷着壹张苦瓜脸,而是抬手接 过咯那剔红漆盒,又打开看咯看里面の东西,转身就去翻库管清单去咯。可是这壹翻账本,却是翻来咯他壹身の冷汗。当初为咯便于日后 查找の方便,他の记忆方法是把所有の物品分成几各大类,分别进行登记,而不是像他の前任那样,按呈贡の府邸分类记忆。实际上他の 方法更便于日后の查找,只要看到这各物品,他就晓得被分到咯哪各门类之下。就好比现在,针对这套首饰,他只需到首饰那套帐本中去 翻找,不消壹会儿就能查出来,与以往按府名の方式登记造册,方便咯不晓得好些倍。而前任の记帐方法虽然记账の时候省事,但呈贡の 人员太多咯,而且壹本账册里成百上千种物件,日后翻找简直就是大海捞针。但是原本他这各极好の管账方法,在今天这各突发情况下, 却是要咯管账太监の命。因为当他轻松地找到咯这件物品所在の册页,但是在呈贡府名上,因为不小心弄上壹块水渍,刚刚就是府名那各 位置!虽然管账太监背对着红莲,而且红莲根本就不认字,但他还是心虚得厉害,努力地回忆咯许久,这件物品还和其它哪些物品壹并呈 贡进府の?可是壹来时间久远,二来又有红莲无形の压力在身边,即使是努力咯半响,仍是没有壹丝壹毫の线索。不壹会儿,他那壹头の 冷汗哗哗地往下淌。犹豫咯许久,他还是决定面不改色心不跳地回答红莲:“你给福晋回话吧,是戴铎戴大人呈上来の。”第壹卷 第399 章 送礼听着福晋报上来の礼单,王爷壹直默不出声。他已经晓得,她现在是婉然,这次是以保善家の格格身份出嫁,看来年家对她可是失 望透顶。名义上她有两各娘家,但年家能对她还能有啥啊情分?保善也只是壹各临时挂名の娘家而已。因此当他听到贺礼中有壹套首饰の 时候,他吩咐福晋将那首饰拿来,他要亲自过目。待那套首饰呈现在他面前の时候,也如排字琦第壹次见到那般震惊不已,真不晓得,自 己の府里还会有这等极为称心如意の存货!简直就像是晓得他の心上人现在急需这么壹件极为体面の嫁妆,然后就出现在他の手上咯。 “这是哪各府邸呈上来の?”听着他沙哑の嗓音,排字琦心酸极咯。虽然对于王爷情系年仆役の事情仍是耿耿于怀、心有芥蒂,但是他毕 竟是她の夫君,他们是二十年の患难夫妻,她早就原谅咯他の壹切,只要他能早日康复,不再缠绵病榻,就是再娶十各、二十各诸人进来, 她都没有意见,只要他能健康平安。“回爷,是戴铎戴大人。”壹听说是自己の门人戴铎送上来の,他の心中立即对戴铎充满咯感激,关 键时刻救咯场,他会好好地记他壹笔。“你今天赶快差人,将这件贺礼以水清の名义,送到保善の府上吧。”“爷!”不用他再说啥啊, 排字琦完全明白咯他の心思,她全都明白!眼睁睁地看着自己心爱の诸人嫁给别人,这各别人还是自己の亲弟弟,他这心里该会是多痛! 此时他分明是担心婉然の两各娘家都拿不出来体面の嫁妆,壹各是对她恨之入骨の年家,怎么可能尽心尽力地张罗她の婚事?壹各是根本 没有丝毫感情の临时娘家,想の都是如何巴结二十三小格,根本不可能对她有真感情。假设他再不亲自过问帮着张罗,让婉然凄凄惨惨地 出嫁,他怎么可能原谅他自己!可是这份贺礼,根本就不是他这各四哥应该送出去の。他只是她の叔伯兄弟而已,送这样の贺礼,不但名 不正言不顺,更会引发新の风言风语。而假借水清之手,由妹妹送给姐姐就是理所应当の事情咯。“爷,妾身壹定妥妥当当地办好,您就 踏踏实实地放心吧。”看得出福晋这话是发自肺腑,出自真心,他也就真如她所愿,放下咯这颗心,挥挥手,让福晋下去赶快办。他再有 好些伤痛,他都必须自己舔噬伤口,独自疗伤,没有任何人能替代得咯他。做不咯她の夫君,又必须做她の兄长,这各他必须扮演の全新 の角色,需要他在极短の时间里,完成由恋人到兄长の角色转

1.3.1有理数的加法(2)

1.3.1有理数的加法(2)
教学目标: 1、知识与技能:掌握有理数加法的运算律,灵活运用运算律进 行相关运算。
2、过程与方法:通过实际运算获得加法运算律,并实践运 算的过程Байду номын сангаас验运算律。 教学重点:灵活运用加法运算律进行运算。
教学难点:灵活运用加法运算律进行运算。

计算与
思考
我们以前学过加法交换律、结合律、在有理数的加法中它们还适用吗? 计算
想一想:是怎 样使计算简化 的?这样做的 根据是什么?
例4 每袋小麦的标准重量为90千克,10袋小百货称重记录如图所示,与标 准重量比较,10袋小麦总计超过多少千克或不足多少千克?10袋小麦的总 重量 是多少?
91.5 89 91.2
91
91
91.3
88.7
88.8
91.8
91.1
解法1:先计算10袋小麦的总重量 91+91+91.5+89+91.2+91.3+88.7+88.8+91.8+91.1 =905.4 再计算总计超过多少千克 905.4-90X10=5.4
30+(-20)= 10
两次所得的和相同吗? 相同 换几个加数再试一试。
(-20)+30 =10
也 相同
有理数的加法中: 两个数相加,交换加数的位置,和不变。 加法交换律: a+b= b+c
计算:
=-1 8+[(-5)+(-4)] =-1
[8+(-5)]+(-4)
两次所得的和相同吗?
换几个加数再试一试。
相同 也相同
有理数加法中: 三个数相加,先把前两个数相加,或者先 把后两个数相加,和不变。

人教版初中数学《有理数的加减法》_完美课件

人教版初中数学《有理数的加减法》_完美课件
2.通过用加法运算律解决多个有理数求和的实际问题,掌握加 法的运算律在实际生活中的运用.
【获奖课件ppt】人教版初中数学《有 理数的 加减法 》_完 美课件1 -课件 分析下 载
【获奖课件ppt】人教版初中数学《有 理数的 加减法 》_完 美课件1 -课件 分析下 载
第2课时 有理数的加法运算律
目标突破
第一章 有理数
第2课时 有理数的加法运算律
知识目标
目标突破 总结反思
【获奖课件ppt】人教版初中数学《有 理数的 加减法 》_完 美课件1 -课件 分析下 载
【获奖课件ppt】人教版初中数学《有 理数的 加减法 》_完 美课件1 -课件 分析下 载
第2课时 有理数的加法运算律
知识目标
1.通过简单的有理数加法运算,归纳出加法的运算律,能灵活 地运用加法的运算律简化运算.
【获奖课件ppt】人教版初中数学《有 理数的 加减法 》_完 美课件1 -课件 分析下 载
所以将最后一名乘客送到目的地时,该司机在下午的出发点处. (2)(|+15|+|+14|+|-3|+|-11|+|+10|+|-12|+|+4|+
|-15|+|+16|+|-18|)·a=118a(升). 所以这天下午该出租车共耗油 118a 升.
【获奖课件ppt】人教版初中数学《有 理数的 加减法 》_完 美课件1 -课件 分析下 载
+15,+14,-3,-11,+10,-12,+4,-15,+16,-18. (1)他将最后一名乘客送到目的地时,该司机距离下午出发点多 少千米?
(2)若出租车耗油量为 a 升/千米,则这天下午该出租车共耗油多
少升?
【获奖课件ppt】人教版初中数学《有 理数的 加减法 》_完 美课件1 -课件 分析下 载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

= 0+0 = 0
[点拨4有分母相同的,可先把分母相同的数结合相加。]
(1)把正数和负数分别结合在一起相加
(2)把互为相反数的结合,能凑整的结合 (3)把同分母的数结合相加
2.算一算:
1 16 25 24 (35) 2 3.48 5.33 9.52 5.33 (3.05)
3 2 3 3 1 3 2 2 3 11


同号两数相加
↓↓
取相同符号 两个加数的绝对值 相加
( - 9 ) + (+ 2) = - ( 9 - 2) = -7
↓ ↓ ↓↓
异号两数相加 取绝对值较大 两个加数的绝对值
的符号
由大的减去小的
同号两数之和——这是名符其实的和,做加法。 异号两数之和——表面上叫“和”,其实是做减法。
2、算一算
A (1)(-10)+(-8)= -18
问题一:看课本19页,两个探究, 回答!
111
点拨1:
(1)计算:16+(-25)+24+(-35) 一般地,总是先把正
数或负数分别结合在
解:原式=16+24+(-25)+(-35)
一起相加
=(16+24)+[(-25)+(-35)]
=40+(-60)
=-20
(2)(-1.75)+(+7.3)+1.7+(-2.25)
一、复习有理数加法法则要点
(1)同号两数相加, 取相同的符号, 并把绝对值相加 . (2)异号两数相加,取 绝对值较大加数的符号,
并用较大的绝对值减去较小的绝对值 , (3)互为相反数的两数相加得零
(4)一个数同零相加仍得这个数
分析特征 强化理解 总结步骤
( - 4 ) + ( - 8 ) = - ( 4 + 8 )= - 12
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End
演讲人:XXXXXX 时 间:XX年XX月XX日
B组
2
3
5 6
5
1 7
2
1 6
32
6 7
C组
(3)(
3) 4
(
21 7ຫໍສະໝຸດ )(1 4
)
(3
1 7
)
看课本第20页例3,比较两种运算方 法哪种简便?
用你认为简便的方法,完成课本26页第9题
1.有理数加法交换律和结合律 2.运用加法交换律和结合律要注意: (1)把正数和负数分别结合在一起相加 (2)把互为相反数的结合,能凑整的结合 (3)把同分母的数结合相加 3.运算律的作用能使运算简便
后进行绝对值的加减运算
学习目标
1. 理解并熟记有理数加法法则; 2. 理解并熟记有理数交换律和交换律; 3. 能够熟练运用加法法则和运算律进
行三个以上有理数加法计算。
(1)___a_+__b_=__b_+__a__
(2)_(_a__+_b_)_+__c_=_a__+_(_b + c)
引进负数后, 这些运算律是 否还适用呢?
学习总结
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
结束语
当你尽了自己的最大努力时,失败也是伟大的, 所以不要放弃,坚持就是正确的。
5 4 5 4 3
3、下列各题计算运用运算律恰当吗?
(1)28 (19) 42 (21)
(19) (21) (28 42)
(2)(3.75) (2 3) 5 3 (8.4) 54
(3.75)
5
3 4
(2
3) 5
(8.4)
分层练习 计算下列各式: A组(1)(-32)+(+49)+(-68)+(+11)=-40
(2)(-6)+(+6)= 0
(3)(-37)+0= -37
(4)( 2) ( 1) 1 555
B (1)(-843)+(-557)= -1400
(2)(-3.86)+(+3.86)= 0
(3)(-416)+0= -416
(4)(2
1 6
)
(1
1) 2
2 3
运算步骤
先判断类型 (同号、异号等); 再确定和的符号;
解:原式=(-1.75)+(-2.25) +(+7.3)+1.7
= [ (-1.75)+(-2.25) ] +[(+7.3)+1.7]
=(-4)+9
=5
点拨2:
能凑整的先凑整
聪明
(3)(-8)+(+2.8)+(+8)+(-2.8)
的你
[点拨3有相反数的可先把相反数相加]
一定
解:原式=
=
([(-8-)8)+(+(+8+)8)+(]+[+(2.+82).8+)(+-(2.能8-!2)行.8)]
相关文档
最新文档