必修4第二章平面向量综合训练B组
人教版高一数学必修4第二章平面向量测试题(含答案)

必修4 第二章平面向量检测参考答案一、选择题:1C、2C、3A、4C、5D、6B、7C、8B、9D、10A、11C、12C、二. 填空题6 5 3 5 6 5 3 513 (1,3).14 28 15 (,)或(,)5 5 5 516 (5,3)17 2 35三. 解答题:18、(1)∵AB =(0-1,1-0)=(-1,1),AC =(2-1,5-0)=(1,5).∴ 2 AB +AC =2(-1,1)+(1,5)=(-1,7)∴|2 AB +AC | = 2 7 2( 1) =50 .(2)∵| AB| =( 1)2 12 = 2 .| AC | =12 52 =26,AB·AC =(-1)×1+1×5=4.∴cos =AB AC| AB | | AC | =42=2 261313.(3)设所求向量为m =(x,y),则x2+y2=1.①又BC =(2-0,5-1)=(2,4),由BC⊥m ,得2 x +4 y =0.②2 5 2 5x x-5 5 由①、②,得或∴(5 55 5y.y.255,-52)或(-555,55)即为所求.19.由题设, 设b= , 则由, 得. ∴,解得sin α=1 或当sin α=1 时,cosα=0;当时,。
故所求的向量或。
2 b ka t b20.解:(1), 0. [( 3) ] ( ) 0.x y x y 即 a t2 22a b 0,a 4,b 1,4k t(t 3) 0,即k 142t(t 3).(2)由f(t)>0, 得1 2t(t 3) 0,即t(t 3) (t 3)0,则 3 t 0或4t 3.必修4 第二章平面向量检测参考答案一、选择题:1C、2C、3A、4C、5D、6B、7C、8B、9D、10A、11C、12C、二. 填空题6 5 3 5 6 5 3 513 (1,3).14 28 15 (,)或(,)5 5 5 516 (5,3)17 2 35三. 解答题:18、(1)∵AB =(0-1,1-0)=(-1,1),AC =(2-1,5-0)=(1,5).∴ 2 AB +AC =2(-1,1)+(1,5)=(-1,7)∴|2 AB +AC | = 2 7 2( 1) =50 .(2)∵| AB| =( 1)2 12 = 2 .| AC | =12 52 =26,AB·AC =(-1)×1+1×5=4.∴cos =AB AC| AB | | AC | =42=2 261313.(3)设所求向量为m =(x,y),则x2+y2=1.①又BC =(2-0,5-1)=(2,4),由BC⊥m ,得2 x +4 y =0.②2 5 2 5x x-5 5 由①、②,得或∴(5 55 5y.y.255,-52)或(-555,55)即为所求.19.由题设, 设b= , 则由, 得. ∴,解得sin α=1 或当sin α=1 时,cosα=0;当时,。
人教B版高中数学必修四第二章+平面向量+本章练测().docx

第二章平面向量(数学人教B版必修4)组数值即可,不必考虑所有情况).三、解答题(解答应写出文字说明,证明过程或演算步骤,共80分) 15.(15分)设a ,b ,c ,d ∈R ,用向量方法证明:(ac+bd )2≤(a 2+b 2)(c 2+d 2). 16.(15分)已知实数a ,b ,c ,d ,求函数f (x )= .17.(21分)平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1).(1)求满足a =m b +n c 的实数m,n ; (2)若(a +k c )∥(2b -a ),求实数k ; (3)设d =(x,y)满足(d -c )∥(a +b ),且|d -c |=1,求向量d .18.(14分)设平面内两向量a 与b 互相垂直,且|a |=2,|b |=1,又k 与t 是两个不同时为零的实数.(1)若x =a +(t-3)b 与y =-k a +t b 垂直,求k 关于t 的函数表达式k=f (t ); (2)求函数k=f (t )的最小值.19.(15分)一条河的两岸平行,河的宽度d 为500 m ,一条船从A 处出发航行到河的正对岸B处,船航行的速度|v 1|=10 km/h ,水流速度|v 2|=4 km/h ,那么v 1与v 2的夹角(精确到1°)多大时,船才能垂直到达对岸B 处?船行驶多少时间?(精确到0.1 min )第二章 平面向量(数学人教B 版必修4)答题纸得分:一、选择题二、填空题11. 12. 13. 14. 三、解答题 15. 16. 17. 18. 19.第二章 平面向量(数学人教B 版必修4)答案一、选择题1.B 解析:如图,点O 到平行四边形三个顶点A 、B 、C 的向量分别为a 、b 、c , 结合图形有OD uuu r =OA uu u r +AD u u u r =OA uu u r +BC uuu r =OA uu u r +OC uuu r -OB uuu r=a +c -b .2.D 解析:设OC uuu r =(x ,y ),OA uu u r =(3,1), OB uuu r=(-1,3),∵ OC uuu r = OA uu u r + OB uuu r ,∴ (x ,y )=(3,1)+(-1,3).A D∴ 3,3.x y αβαβ=-⎧⎨=+⎩①又 + =1,与①联立可得x+2y-5=0.3.D 解析:利用向量的三角形法则求解.如图,∵ a ·b =0,∴ a ⊥b ,∴ ∠ACB=90°, ∴又CD ⊥AB,∴ AC 2=AD ·AB ,∴. ∴ AD u u u r =45AB uuu r =45(a -b )=45a -45b .4.C 解析:|a +b |2=a 2+2a ·b +b 2=|a |2+2a ·b +|b |2=50,即5+2×10+|b |2=50, ∴ |b |=5.故选C.5.B 解析:利用平面向量共线和垂直的条件求解. ∵ a =(x,1),b =(1,y ),c =(2,-4), 由a ⊥c 得a ·c =0,即2x-4=0,∴ x=2. 由b ∥c ,得1×(-4)-2y=0,∴ y=-2. ∴ a =(2,1),b =(1,-2).∴ a +b =(3,-1),∴ |a +b6.B 解析:∵ a ∥b ,∴ 13×32-t a n cos =0, 即sin =12,∴ =π6. 7.D 解析:∵ PA uu u r +PB uu u r+PC uuu r =AB uuur ,∴ PA uu u r +PC uuu r =AB uuu r +BP uu u r =AP uuu r ,即PC uuu r=2AP uuu r .∴ A 、C 、P 三点共线,即P 在AC 边上.8. B 解析:取a =(1,0),b =(0,-1),满足条件a ·b =0,a 2=b 2,但不能推得a =0或b =0,a =b 或a =-b ,故选项A 、C 均假;向量数量积运算不满足消去律,故选项D 假.9. A 解析:由数量积的几何意义和OA uu u r 与OB uuu r 在OC uuu r 方向上的射影相同,得OA uu u r ·OC uuu r =OB uuu r ·OC uuu r. 而OA uu u r =(a ,1),OB uuu r =(2,b ),OC uuu r =(4,5), ∴ 4a+5=8+5b ,即4a-5b=3.10. A 解析:设b =(x ,y ),则|b |=|a |=,a ·b =|a ||b |·cosπ4=××2=2,即x 2+y 2=5,x+2y=2,解得x=2-,y=2(舍去x=2,y=2).故b =(2-,2). 二、填空题11.-25 解析:∵|AB uuu r|2+|BC uuu r|2=|CA uu u r|2,∴ △ABC 为直角三角形,AB ⊥BC , cos A=35,cos C=45. C原式=3×4×0+4×5×(45-)+5×3×(35-)=25-.12.(5,4) 解析:设AB uuu r =(x ,y ),∵ AB uuu r与a 同向,∴ AB uuu r =λa (λ>0),即(x ,y )=λ(2,3).∴ 2,3.x y λλ=⎧⎨=⎩又|AB uuu r |=2,∴ x 2+y 2=52.∴ 4λ2+9λ2=52,解得λ=2(负值舍去).∴ 点B 的坐标为(5,4).13.等边 解析:设∠BAC 的角平分线为AD ,则AB AB u u u r u u u r + ACACu u u ru u u r =λAD u u u r .由已知AD ⊥BC,∴ △ABC 为等腰三角形.又cos A=12,∴ A=60°, ∴ △ABC 为等边三角形.14.只要写出-4c,2c,c(c ≠0)中一组即可,如-4,2,1等 解析:由k 1a 1+k 2a 2+k 3a 3=0得12313,12323,20,421002k k k k k k k k k k ++==-⎧⎧⇒⎨⎨-+==⎩⎩∴ k 1=-4c,k 2=2c,k 3=c(c ≠0). 三、解答题15.证明:引入向量a =(a ,b ),b =(c ,d ). 设向量a 、b 的夹角为,则(ac+bd )2=(a ·b )2=(|a ||b |cos )2≤(|a ||b |)2=(a 2+b 2)(c 2+d 2). 16.解:引入向量a =(x+a ,b ),b =(c-x ,d ), 则原函数变为f (x )=|a |+|b |.∴ f (x )=|a |+|b |≥|a +b∴ 函数f (x17.解:(1)因为a =m b +n c ,所以(3,2)=(-m+4n,2m+n ),所以5,43,9228.9m m n m n n ⎧=⎪-+=⎧⎪⇒⎨⎨+=⎩⎪=⎪⎩(2)因为(a +k c )∥(2b -a ),又a + k c =(3+4k,2+k),2b -a =(-5,2), 所以2(3+4k )+5(2+k )=0,即k=-1613. (3)因为d -c =(x-4,y-1),a +b =(2,4), 又(d -c )∥(a +b ),|d -c |=1,所以22444(4)2(1)0,(4)(1)1,1155x xx yx yy y⎧⎧==⎪⎪---=⎧⎪⎪⎨⎨⎨---=⎩⎪⎪=+=-⎪⎪⎩⎩解得或所以d=(455++),或d=(455--).18.解:(1)∵a⊥b,∴a·b=0.又x⊥y,∴x·y=0,即[a+(t-3)b]·(-k a+t b)=0,-k a2-k(t-3)a·b+t a·b+t(t-3)b2=0.将|a|=2,|b|=1代入上式得-4k+t2-3t=0,即k=f(t)=14(t2-3t).(2)由(1)知k=f(t)=14(t2-3t)=14(t-32)2916-,∴当t=32时,k最小=916-.19.解:如图,根据向量的平行四边形法则和解三角形知识可得| v1|2=| v |2+| v2|2,得| v9.2(km/h).∵ cos(π-)=21vv=410=25,∴π-≈1130π,即≈1930π=114°,时间t=dv=0.59.2=592(h),即约3.3 min.答:v1与v2的夹角约为114°时船才能垂直到达对岸B处,大约行驶。
北师大版必修四第二章平面向量综合检测题及答案解析

综合检测(二)(时间120分钟,满分150分)、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四 个选项中,只有一项是符合题目要求的)a ,b ,c 满足 a / b ,且 a 丄c ,贝U c (a + 2b )=( )C. 2•.a 丄c ,-'a c = 0.又•••a//b ,二可设b = a 则 c (a + 2b ) = c(1 + 2 ?)a2.已知向量a = (1,0)与向量b = (—1,^/3),则向量a 与b 的夹角是( )nA -6C.2n【答案】A. 2C-6'•'1= (1 + x,3), u= (1 — x,1), 1/u•••(1+ X)x 1-3X (1 — X) — 0,.・.x=2第二章平面向量1.若向量【解析】【答案】 D x k B1 . c o mn B.3【解析】cos〈a ,b 〉=器=T^•••0,b 〉 2n=3 .3.已知 a = (1,2), b —(X ,1),11= a + b, u= a — b,且1/ u 则x 的值为()【解析】【答案】A4.已知|a| = 2|b|, |b|M 0,且关于x的方程x2+ |a|x + ab= 0有实根,则a与b的夹角的取值范围是()n A. [0,6】n , B. [3, n> 0. C. [5,劭n ,D. [6, n【解析】|a|2— 4a b=a f — 4|a||b|cos〈a, b〉= 4|b|2— 8|b|2 cos〈a,b〉-cos a, b〉1W2,〈a, b〉€ [0, n .a,b〉【答案】5.已知|a| = 1, |b| = 6, a (b—a) = 2,则向量a与b的夹角是( )nA.6nB.4nC.nnD-22 2【解析】--a (b—a) = a b— a = 2,.・.|a||b|cos B—|a| = 2,1 n•••1x 6x cos — 1 = 2,.・.cos = 2,又0W 0W n 二=3,故选 C.【答案】 C6.已知OA= (2,2), 5B= (4,1),在x轴上一点P使A P B P有最小值,则P点的坐标是( )A. (—3,0)B. (3,0)C. (2,0)D. (4,0)【解析】设P(x,0),.・.AP= (x—2,—2), BP= (x —4,— 1),A AP BP= (x—2)(x —4)+ 22 2=x —6x+ 10= (x—3) +1,当x= 3时,AP BP取最小值,此时P(3,0).【答案】 B7•若a,b是非零向量,且a丄b,|a|M |b|,则函数f(x)= (x a+ b) (x b—a)是( )A .一次函数且是奇函数B.一次函数但不是奇函数C•二次函数且是偶函数D.二次函数但不是偶函数【解析】..a丄b,.・.a b= 0,•••f(x) = (x a + b) (x b—a) = x2(a b)+ (|b|2—|a|2)x—a b= (|bf—a|2)x,又|a|M|b|.•••f(x )是一次函数且为奇函数,故选A.【答案】 A> —> AB AC —> AB AC 18 已知非零向量AB与AC满足(=+=) BC = 0且===2则^ ABC |AB| AC| |AB| |AC|A .等边三角形B.直角三角形C.等腰非等边三角形D.三边均不相等的三角形【解析】AB和钥分别是与AB, AC同向的两个单位向量.|AB| AC|AB AC AB AC f兰+号是/BAC角平分线上的一个向量,由+弋)BC = 0知该向|AB| |AC| |AB| |AC|AB AC 1量与边BC垂直,.・.ZABC是等腰三角形.由 f f = 2知/BAC= 60 : •••ZABC是|AB|| AC|等边三角形.【答案】 A9. (2013 湖北高考)已知点 A(— 1,1), B(1,2), C(-2,— 1), D(3,4),则向量 AB 在CD 方向上的投影为()A鉅C .-寥【解析】 由已知得AB = (2,1), CD = (5,5),因此AB 在CD 方向上的投影为AB CD _ _鉅|CD| 5©2【答案】 A10•在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点'则-()D. 10【解析】--PA ^ CA — CP ,7 2 7 2 7 7 7 2 IPAl = CA — 2CP CA+CP .—7 —7 —7 —7 少 7 少 —7 —7 —7 Q •.•PB _ CB — CP ,・.|PB| _ CB — 2CP CB +CP .—7 2 —7 2 —7 2 —7 2 —7 —7 —7 —7 2 —7 2 —7 —7 —7 •••|PAr + |PBr_ (CA + CB ) — 2CP (CA + CB) + 2CP _ AB — 2CP 2CD + 2CP又AB 2= 16CP 2, CD = 2CP ,代入上式整理得 |FA|2+ |PB|2= 10|CPf ,故所求 值为10.【答案】 D二、填空题(本大题共5小题,每小题5分,共25分,将答案填在题中的横 线上)C. 5 ,211.已知向量a= (2,1), ab= 10, l a + b| = 5 迄,则|b| 等于【解析】••l a+ b|a5 72,A(a + b)2a50,即a2+ b2+ 2a b a50, 又a|=V5, a b= 10,••5+|bf+ 2X 10a 50.解得|b| = 5.【答案】 5」「4si n a— 2cos a12•已知a a g), b a(sin a, cos a,且a// b•则5^5 + 3前 a【解析】••a//b,.・.3cos aa sin a,4sin a— 2cos a 4tan a— 2 4 X 3— 2 55cos a+ 3sin a 5+ 3tan a 5+ 3X 3 75【答案】513.(2013课标全国卷n )已知正方形ABCD的边长为2, E为CD的中点,贝UAE BDa【解析】如图,以A为坐标原点,AB所在的直线为x轴,AD所在的直线为y 轴,建立平面直角坐标系,则A(0,0), B(2,0), D(0,2), E(1,2),••AE= (1,2), BDa (-2,2),••AE BD a 1X (-2) + 2X 2a2.【答案】 22 n14.已知e1, e2是夹角为~的两个单位向量,a a& —2e2, b a k e1 + e2,若a b a 0,则实数k的值为【解析】 由题意a b = 0,即有(81 — 2e 2) (*01 + e 2)= 0•••k e 1+ (1 — 2k) 81 82— 2e 2= 0.又•••|e i |= |e 2|= 1,〈e i ,e 2>2 n•'•k— 2+ (1 — 2k) cos -3 = 0, 1 — 2k 5 • k — 2= ~2~,•-k =4.【答案】515. (2012 安徽高考)设向量 a = (1,2m), b = (m + 1,1), c = (2, m).若(a + c ) 丄 b,则 a i = .【解析】 a + c = (1,2m) + (2, m) = (3,3m).••(a + c)丄 b,•••(a + c ) b = (3,3m) (m + 1,1)= 6m + 3= 0,••a = (1,— 1), la , 12 + (-1丫【答案】迈三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或 演算步骤)16.(本小题满分12分)(2013江苏高考)已知a = (cos a, sin a, b = (cos B, sin 9, 0< 3<a<n.(1)若 |a — b | = 72,求证:a 丄 b ;⑵设c = (0,1),若a + b = c ,求a 9的值. 【解】(1)证明由题意得a — b l 2 = 2, 即(a — b )2= a 2 — 2a b + b 2 = 2. 又因为 a 2= b 2= laj |b |2 = 1,2n ~3所以 2-2a b = 2, 即卩 a b = 0,故 a 丄b.⑵因为 a + b = (cos a+ cos B, sin 计 sin f) = (0,1),Icos a+ cos 3= 0, 所以1 Isin a+ sin 3= 1,由此得,cos a= cos( — 3),由 0v 3< n 得 0v n — 3^ n. a= n — 3代入 sin a+ sin 3= 1, 得 sin a= sin十“ 5 n n 所以 a=E, 3=6.【解】AC = OC — OA = (7,— 1 — m),BC = OC - 0B = (5- n ,— 2). ••A 、B 、C 三点共线,••• AC//BC ,•••—14+ (m + 1)(5 — n) = 0. 又OA 丄OB.--—■2n + m = 0.3由①②解得 m = 6, n = 3或m = 3, n =q.18.(本小题满分12分)已知a , b 是两个非零向量,当a +t b (t € R )的模取最 小值时.(1)求t 的值; ⑵求证:b 丄(a + t b ).【解】 (1)(a + t b )2= a + kb |2+ 2a t b,|a + t b |最小,即 |a |2+ |t b |2+ 2a t b 最小,又0V a< n 故 17.(本小题满分 12分)平面内三点A 、B 、C 在一条直线上,0A =(— 2, m),0B = (n,1), 0C = (5, —1),且OA 丄OB ,求实数m 、n 的值.即 t 2|b |2 + [af + 2t|a ||b |cos 〈a , b 〉最小.|a |cos 〈 a , b 〉故当t =— 石 时, |b||a +t b | 最小.2|a |cos 〈 a , b 〉 2(2)证明:b (a +1b ) = ab + t|b | ------------------ = ------ |a ||b |cos 〈 a,b 〉— |b|b | = |a ||b |cos |b|a ,b 〉一 |a ||b |cos 〈a , b 〉= 0,故 b 丄(a +1b ).19.(本小题满分13分)△ ABC 内接于以O 为圆心,1为半径的圆,且3OA +4OB + 5OC = 0. (1)求数量积 O A O B , O B OC , OC OA ; (2)求^ ABC 的面积.xKb 1. Com【解】 (1)V3OA + 4OB + 5OC = 0,••3OA + 4OB = 0-5OC , -— -—2 -— 2 即(3OA + 4OB) = (0- 5OC).—7 2 —7 —z —z 2 —7 2可得 9OA + 24OA OB + 16OB = 25OC . 又•••|OA|=|OB|=|OC| = 1,•••OA OB = 0.同理 OB OC =-5,OCOA =- 5.1 —— —— 1 —— —— (2)S Z ABC = S A OAB + Sz oBc + S ZOAC = 2|OA| | OB|sin ZAOB + 2|OB| |OC|sin /BOC + 2|OC| |OA|sin HOC. 又 |O A|= |OB|= |OC|=1.•'S^ABC^ 2(sin ZAOB+sin /BOC + sin ZAOC).由(1)OAOB= |0A| |OB|cos /AOB= cos ZAOB= 0得sin ZAOB= 1.T T T T 4OB OC= |OB| |OC| cos /BOC = cos /BOC=- 5,./ 3-sin /BOC=5,同理sin /AOC=5.5-S/yxBC = 5.20.(本小题满分13分)在平面直角坐标系xOy中,已知点A(- 1,-2),B(2,3), C( - 2,- 1).(1)求以线段AB、AC为邻边的平行四边形的两条对角线的长;(2)设实数t满足(AB-tOC) 0C= 0,求t的值.【解】(1 )由题设知AB= (3,5), AC= (—1,1),则AB + AC= (2,6), AB- AC= (4,4).所以AB+ AC| = 2^10, AB-AC匸4寸2.故所求的两条对角线长分别为4迈,2>/10.X K b心m⑵由题设知OC= (-2,- 1), AB-tOC = (3+ 2t,5 +1).由(AB-tOC) OC= 0,得(3 + 2t,5 +1) (—2,- 1)= 0,从而5t=—11,所以t115.图121.(本小题满分13分)如图1,平面内有三个向量OA, OB, OC,其中O A与OB的夹角为120°, OA与OC的夹角为30°且|5A|=|OB匸1,|oC| = 2 羽若oC = QA+ QB(入空R),求H卩的值.【解】法一:作CD //OB交直线OA于点D,作CE //OA交直线OB于点E,贝U OC = OD+ OE,由已知/OCD = /COE= 120 —30 = 90 ° 在Rt△)CD 中,OD = ^3。
(好题)高中数学必修四第二章《平面向量》测试(含答案解析)

一、选择题1.已知点G 是ABC 的重心,(),AG AB AC R λμλμ=+∈,若120,2,A AB AC ∠=︒⋅=-则AG 的最小值是( )A .3 B .2 C .12D .232.已知O 为坐标原点,点M 的坐标为(2,﹣1),点N 的坐标满足111x y y x x +≥⎧⎪-≤⎨⎪≤⎩,则OM ON ⋅的最大值为( )A .2B .1C .0D .-13.已知函数()sin (0)2f x x a a π⎛⎫=>⎪⎝⎭,点A ,B 分别为()f x 图象在y 轴右侧的第一个最高点和第一个最低点,O 为坐标原点,若OAB 为钝角三角形,则a 的取值范围为( )A .10,(2,)2⎛⎫+∞ ⎪⎝⎭ B .30,(1,)⎛⎫⋃+∞ ⎪⎝⎭C .3,1⎛⎫ ⎪ ⎪⎝⎭D .(1,)+∞4.已知向量()1,2a =,()2,3b =-,若向量c 满足()//c a b +,()c a b ⊥+,则c =( ) A .7793⎛⎫ ⎪⎝⎭,B .7739⎛⎫-- ⎪⎝⎭,C .7739⎛⎫ ⎪⎝⎭,D .7793⎛⎫-- ⎪⎝⎭,5.若平面向量与的夹角为,,,则向量的模为( ) A .B .C .D .6.在矩形ABCD 中,|AB |=6,|AD |=3.若点M 是CD 的中点,点N 是BC 的三等分点,且BN =13BC ,则AM ·MN =( ) A .6B .4C .3D .27.若2a b c ===,且0a b ⋅=,()()0a c b c -⋅-≤,则a b c +-的取值范围是( )A .[0,222]B .[0,2]C .[222,222]-+D .[222,2]-8.已知向量a ,b 满足||3,||2a b ==,且对任意的实数x ,不等式a xb a b +≥+恒成立,设a ,b 的夹角为θ,则tan θ的值为( )A B .2-C .D 9.已知向量(cos ,sin )a θθ=,向量(3,1)b =-,则2a b -的最大值,最小值分别是( )A .0B .4,C .16,0D .4,010.在ABC ∆中,060BAC ∠=,5AB =,6AC =,D 是AB 上一点,且5AB CD ⋅=-,则BD 等于( )A .1B .2C .3D .411.在边长为2的菱形ABCD 中,60BAD ∠=︒,点E 是AB 边上的中点,点F 是BC 边上的动点,则DE DF ⋅的取值范围是( )A .⎡⎣B .2⎣C .⎤⎦D .[]0,312.已知平面上的非零..向量a ,b ,c ,下列说法中正确的是( ) ①若//a b ,//b c ,则//a c ; ②若2a b =,则2a b =±;③若23x y a b a b +=+,则2x =,3y =; ④若//a b ,则一定存在唯一的实数λ,使得a b λ=. A .①③B .①④C .②③D .②④二、填空题13.已知平面向量,,a b c 满足()()||2,||2||a c b c a b a b -⋅-=-==.则c 的最大值是________.14.已知向量(12,2)a t =-+,(2,44)b t =-+,(1,)c λ=(其中t ,)R λ∈.若(2)c a b ⊥+,则λ=__.15.向量,a b 满足(1,3),2,()(3)12a b a b a b ==+⋅-=,则a 在b 方向上的投影为__________.16.已知向量2a =,1b =,223a b -=,则向量a ,b 的夹角为_______. 17.如图,正方形ABCD 的边长为2,E 是以CD 为直径的半圆弧上一点,则AD AE ⋅的最大值为______.18.在△ABC 中,BD =2DC ,过点D 的直线与直线AB ,AC 分别交于点E ,F ,若AE =x AB ,AF =y AC (x >0,y >0),则x +y 的最小值为_____.19.已知O 为ABC 内一点,且满足305OA OB OC =++,延长AO 交BC 于点D .若BD DC λ=,则λ=_____.20.已知平面向量a ,b 满足3a b +=,3a b -=,则向量a 与b 夹角的取值范围是______.三、解答题21.在ABC 中,3AB =,6AC =,23BAC π∠=,D 为边BC 的中点,M 为中线AD 的中点.(1)求中线AD 的长;(2)求BM 与AD 的夹角θ的余弦值. 22.已知()3,0a =,(1,3)b =. (Ⅰ)求a b ⋅和b 的值;(Ⅱ)当()k k ∈R 为何值时,向量a 与k +a b 互相垂直? 23.已知123PP P 三个顶点的坐标分别为123(cos ,sin ),(cos ,sin ),(cos ,sin )P P P ααββγγ,且1230OP OP OP ++=(O 为坐标原点).(1)求12POP ∠的大小; (2)试判断123PP P 的形状.24.如图,在正方形ABCD 中,点E 是BC 边上中点,点F 在边CD 上.(1)若点F 是CD 上靠近C 的三等分点,设EF AB AD λμ=+,求λ+μ的值.(2)若AB =2,当AE BF ⋅=1时,求DF 的长.25.在ABCD 中,2AB =,23AC =AB 与AD 的夹角为3π. (Ⅰ)求AD ;(Ⅱ)求AC 和BD 夹角的余弦值. 26.已知向量a 、b 的夹角为3π,且||1a =,||3b =. (1)求||a b +的值; (2)求a 与a b +的夹角的余弦.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先根据重心得到()13AG AB AC =+,设0,0AB x AC y =>=>,利用数量积计算4xy =,再利用重要不等式求解()2219A AGB AC =+的最小值,即得结果.【详解】点G 是ABC 的重心,设D 为BC 边上的中点,则()2133AG AD AB AC ==+, 因为120,2,A AB AC ∠=︒⋅=-设0,0AB x AC y =>=>,则cos1202xy ︒=-,即4xy =,故()()()222211144249999AG x y x B ACy A =+-≥-=+=,即23AG ≥, 当且仅当2x y ==时等号成立,故AG 的最小值是23. 故选:D. 【点睛】 关键点点睛:本题的解题关键在于通过重心求得向量关系()13AG AB AC =+,利用数量积得到定值,才能利用重要不等式求最值,突破难点,要注意取条件的成立.2.A解析:A【分析】根据题意可得,OM ON ⋅=2x ﹣y ,令Z =2x ﹣y ,做出不等式组所表示的平面区域,做直线l 0:2x ﹣y =0,然后把直线l 0向可行域内平移,结合图象可判断取得最大值时的位置. 【详解】根据题意可得,OM ON ⋅=2x ﹣y ,令Z =2x ﹣y做出不等式组所表示的平面区域,如图所示的△ABC 阴影部分:做直线l 0:2x ﹣y =0,然后把直线l 0向可行域内平移, 到点A 时Z 最大,而由x+y=11x ⎧⎨=⎩ 可得A (1,0), 此时Z max =2. 故选:A . 【点睛】本题主要考查了利用线性规划求解最优解及目标函数的最大值,解题的关键是正确作出不等式组所表示的平面区域,并能判断出取得最大值时的最优解的位置.利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y bx a++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值。
人教版高二必修四数学第二章平面向量试题

以下是为⼤家整理的关于《⼈教版⾼⼆必修四数学第⼆章平⾯向量试题》的⽂章,供⼤家学习参考!第四部分练习与试卷2.1 平⾯向量的概念及其线性运算(练习)【练习⽬标】1、理解平⾯向量和向量相等的含义,理解向量的⼏何表⽰;2、掌握向量加、减法的运算,并理解其⼏何意义;3、掌握向量数乘的运算,并理解其⼏何意义,以及两个向量共线的含义;4、了解向量线性运算的性质及其⼏何意义。
【⾃我测试】1、下列命题中(1)与⽅向相同(2)与⽅向相反(3)与有相等的模(4)若与垂直其中真命题的个数是 ( )A、0B、1C、2D、32、已知AD、BE是 ABC的边BC、AC上的中线,且,,则为 ( )A、 B、 C、 D、3、O是平⾯上⼀定点,A、B、C是平⾯上不共线的三个点,动点P满⾜,则P的轨迹⼀定经过 ABC的( )A、外⼼B、内⼼C、垂⼼D、重⼼4、若⾮零向量、满⾜| + |=| — |,则与所成⾓的⼤⼩为_________________。
5、已知点M是 ABC的重⼼,若,求的值。
6、 ABC的外接圆的圆⼼为O,两条边上的⾼的交点为H,,求实数的值。
2.2 平⾯向量的坐标运算【练习⽬标】1、知识与技能:了解平⾯向量的基本定理及其意义、掌握平⾯向量的正交分解及其坐标表⽰;理解⽤坐标表⽰的平⾯向量共线的条件。
2、能⼒⽬标:会⽤坐标表⽰平⾯向量的加、减与数乘运算;3、情感⽬标:通过对平⾯向量的基本定理来理解坐标,实现从图形到坐标的转换过程,锻炼学⽣的转化能⼒。
【⾃我测试】1、下列命题正确的是()A、 B、C、 D、2、已知正⽅形ABCD的边长为1,,则 = ()A、0B、3C、D、3、已知,则共线的条件是()A、 B、 C、 D、或4、如图,在中D、E、F分别是AB、BC、CA的中点,则()A、 B、 C、 D、5、若,则实数p、q的值为()A、 B、 C、 D、6、已知A、B、C是坐标平⾯上的三点,其坐标分别为A(1,2),B(4,1),C(0,-1),则是()A、等腰三⾓形B、等腰直⾓三⾓形C、直⾓三⾓形D、以上都不对2.3 平⾯向量的数量积及其运算【学习⽬标】1.知识与技能:(1)理解向量数量积的定义与性质;(2)理解⼀个向量在另⼀个向量上的投影的定义;(3)掌握向量数量积的运算律;(4)理解两个向量的夹⾓定义;【⾃我测试】1、已知,,和的夹⾓为,则为()A. B. C. D.2、已知向量,,若,则()A. B. C. D.3、在△ABC中,a,b,c分别为三个内⾓A,B,C所对的边,设向量,若 ,则⾓A的⼤⼩为()A. B. C. D.4、设是任意的⾮零平⾯向量,且它们相互不共线,下列命题:①②③不与垂直④其中正确的是()A.①②B.②③C.③④D.②④5、若向量与的夹⾓为,,则向量的模为()A. B. C. D.6、为锐⾓三⾓形的充要条件是()A. B.C. D.7、设是两个⾮零向量,是在的⽅向上的投影,⽽是在的⽅向上的投影,若与的夹⾓为钝⾓,则()A. B. C. D.8、在中,若且,则的形状是()A.等边三⾓形 B.直⾓三⾓形 C.等腰⾮等边三⾓形 D.三边均不相等的三⾓形9、若,则与的夹⾓为; = .10、已知, ,如果与的夹⾓为锐⾓,则的取值范围是11、 = 时,与垂直12、设向量其中,则的值是.13、已知向量与的夹⾓为,,则 = .14、已知,⑴求与的夹⾓;⑵求;⑶若,,求的⾯积.15、已知向量且.⑴求及;⑵若的最⼩值是,求的值.2.4平⾯向量的应⽤【学习⽬标】1.经历⽤向量⽅法解决某些简单的平⾯⼏何问题、⼒学问题与其他⼀些实际问题的过程,体会向量是⼀种处理⼏何问题、物理问题等的⼯具,发展运算能⼒2.运⽤向量的有关知识对物理中的问题进⾏相关分析和计算,并在这个过程中培养学⽣探究问题和解决问题的能⼒1.在△ABC中,AB=a,AC=b,当a•b <0时,△ABC为()A.直⾓三⾓形B.锐⾓三⾓形C.钝⾓三⾓形D.等腰三⾓形2.若向量a、b、c满⾜a +b+c=0,|a|=3,|b|=1,|c|=4,则a b+b c+c a等于()A. 11 B. 12 C. 13 D. 143.已知点,则∠BAC 的余弦值为.4.已知,且a 与b的夹⾓为钝⾓,则x的取值范围是.5.的顶点为,重⼼.求:(1)边上的中线长;(2)边上的⾼的长.6.已知O为△ABC所在平⾯内的⼀点,且满⾜,试判断△ABC的形状.7.已知,设C是直线OP上的⼀点,其中O为坐标原点.(1)求使取得最⼩值时向量的坐标;(2)当点C满⾜(1)时,求cos∠ACB.8、已知O为△ABC所在平⾯内的⼀点,且满⾜,试判断△ABC的形状.9、已知,设C是直线OP上的⼀点,其中O为坐标原点.(1)求使取得最⼩值时向量的坐标;(2)当点C满⾜(1)时,求cos∠ACB.平⾯向量测试卷命题⼈:蓝承⼀、选择题:本⼤题共8⼩题,每⼩题4分,共32分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.1、设向量,,则下列结论中正确的是()A、 B、C、与垂直D、∥2、在平⾏四边形ABCD中,AC为⼀条对⾓线,若, ,则()A.(3,5) B.(2,4) C、(-2,-4) D.(-3,-5)3、义平⾯向量之间的⼀种运算“ ”如下,对任意的,,令,下⾯说法错误的是()A.若与共线,则B.C.对任意的,有D.4、已知向量a,b满⾜a•b=0,|a|=1,|b|=2,则|2a-b|=()A、8B、4C、2D、05、在中,,.若点满⾜,则()A. B. C. D.6、设点M是线段BC的中点,点A在直线BC外,则()A、8B、4C、 2D、17、中,点在上,平⽅.若,,,,则()A、 B、 C、 D 、8、已知和点满⾜ .若存在实数使得成⽴,则 =()A. 2 B. 3 C. 4 D. 5⼆、填空题:本⼤题共4⼩题,每⼩题4分,共16分.把答案填在答题卡的相应位置.9、如图,在中,,,则 = 。
(典型题)高中数学必修四第二章《平面向量》检测卷(答案解析)

一、选择题1.已知向量a 、b 满足||||2a b a b ==⋅=,若,,1x y R x y ∈+=,则1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值为( ) A .1 B .3 C .7 D .32.如图,在ABC 中,AD AB ⊥,2AD =,3DC BD =,则AC AD ⋅的值为( )A .3B .8C .12D .16 3.已知ABC 中,2AB AC ==,120CAB ∠=,若P 是其内一点,则AP AB ⋅的取值范围是( )A .(4,2)--B .(2,0)-C .(2,4)-D .(0,2)4.若向量a ,b 满足|a 10 ,b =(﹣2,1),a •b =5,则a 与b 的夹角为( ) A .90° B .60° C .45° D .30°5.已知正方形ABCD 的边长为2,EF 为该正方形内切圆的直径,P 在ABCD 的四边上运动,则PE PF ⋅的最大值为( )A 2B .1C .2D .226.已知ABC ,若对任意m R ∈,BC mBA CA -≥恒成立,则ABC 为( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .不确定 7.已知向量()a 1,2=,()b x,2=-,且a b ⊥,则a b +等于( ).A 5B .5C .42D 31 8.ABC 是边长为1的等边三角形,CD 为边AB 的高,点P 在射线CD 上,则AP CP ⋅的最小值为( )A .18- B .116- C .316- D .09.已知抛物线2:4C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若2FP QF =,则||QF =( )A .8B .4C .6D .310.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量(,)m a b b c =++,(,)n c b a =-,若//m n ,则C =( )A .56πB .23πC .3πD .6π 11.如图所示,在ABC 中,点D 在线段BC 上,且3BD DC =,若AD AB AC λμ=+,则λμ=( )A .12B .13C .2D .23 12.已知平面上的非零..向量a ,b ,c ,下列说法中正确的是( ) ①若//a b ,//b c ,则//a c ;②若2a b =,则2a b =±;③若23x y a b a b +=+,则2x =,3y =;④若//a b ,则一定存在唯一的实数λ,使得a b λ=.A .①③B .①④C .②③D .②④二、填空题13.已知ABC ,点P 是平面上任意一点,且AP AB AC λμ=+(,λμ∈R ),给出以下命题:①若1AB λ=,1AC μ=,则P 为ABC 的内心;②若1λμ==,则直线AP 经过ABC 的重心;③若1λμ+=,且0μ>,则点P 在线段BC 上;④若1λμ+>,则点P 在ABC 外; ⑤若01λμ<+<,则点P 在ABC 内.其中真命题为______14.已知平面向量,,a b c 满足()()||2,||2||a c b c a b a b -⋅-=-==.则c 的最大值是________.15.圆O 为△ABC 的外接圆,半径为2,若2AB AC AO +=,且OA AC =,则向量BA 在向量BC 方向上的投影为_____.16.已知正方形ABCD 的边长为4,若3BP PD =,则PA PB ⋅的值为_________________. 17.已知腰长为2的等腰直角△ABC 中,M 为斜边AB 的中点,点P 为该平面内一动点,若2PC =,则()()4PA PB PC PM ⋅+⋅⋅的最小值 ________.18.已知平面向量2a =,3b =,4c =,4d =,0a b c d +++=,则()()a b b c +⋅+=______. 19.在矩形ABCD 中,2AB =,1AD =,动点P 满足||1AP =,设向量AP AB AD λμ=+,则λμ+的取值范围为____________.20.在ABC △中,已知4CA =,3CP =,23ACB π∠=,点P 是边AB 的中点,则CP CA ⋅的值为_____.三、解答题21.已知ABC 中C ∠是直角,CA CB =,点D 是CB 的中点,E 为AB 上一点.(1)设CA a =,CD b =,当12AE AB =,请用a ,b 来表示AB ,CE . (2)当2AE EB =时,求证:AD CE ⊥.22.已知a ,b ,c 在同一平面内,且()1,2a =.(1)若35c =,且//a c ,求c ;(2)若2b =,且()()2a b a b +⊥-,求a 与b 的夹角的余弦值. 23.已知()()1,,3,2a m b ==-.(1)若()a b b +⊥,求m 的值;(2)若·1a b =-,求向量b 在向量a 方向上的投影.24.已知单位向量1e ,2e 的夹角为60︒,向量12a e e =+,21b e te =-,t R ∈. (1)若//a b ,求t 的值;(2)若2t =,求向量a ,b 的夹角.25.已知单位向量1e ,2e ,的夹角为23π,向量12a e e λ=-,向量1223b e e =+. (1)若//a b ,求λ的值;(2)若a b ⊥,求||a .26.已知△ABC 中,角A 、B 、C 的对边为a ,b ,c ,向量m (2cos sin )2C C =-,, n =(cos2sin )2C C ,,且m n ⊥. (1)求角C ; (2)若22212a b c =+,试求sin()A B -的值【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用已知条件求出向量a 、b 的夹角,建立直角坐标系把所求问题转化为解析几何问题.【详解】设a 、b 所成角为θ,由||||2==a b ,2a b, 则1cos 2θ=,因为0θπ≤≤ 所以3πθ=, 记a OA =,b OB =,以OA 所在的直线为x 轴,以过O 点垂直于OA 的直线为y 轴,建立平面直角坐标系,则()2,0A ,(B ,所以()2,0a OA ==,(1,b OB ==,()(1)2x a xb x -+=-,所以((1)2x a xb x -+=-=,表示点()P x 与点()2,0A 两点间的距离,由,,1x y R x y ∈+=113222ya y b y x ⎛⎫⎛⎛⎫+-=+=-- ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭, 所以1322ya y b x ⎛⎫⎛+-=- ⎪ ⎝⎭,表示点()P x 与点3,22Q ⎛ ⎝⎭两点间的距离, ∴1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值转化为 P 到,A Q 两点的距离和最小,()P x 在直线y =上, ()2,0A 关于直线y =的对称点为(R -,PQ PA ∴+的最小值为QR == 故选:C【点睛】关键点点睛:本题考查了向量模的坐标运算以及模转化为两点之间距离的转化思想,解题的关键是将向量的模转化为点()P x 到()2,0A 、32Q ⎛ ⎝⎭两点间的距离,考查了运算求解能力. 2.D解析:D【分析】利用AB 、AD 表示向量AC ,再利用平面向量数量积的运算性质可求得AC AD ⋅的值.【详解】()3343AC AD DC AD BD AD AD AB AD AB =+=+=+-=-, AD AB ⊥,则0⋅=AD AB ,所以,()224344216AC AD AD AB AD AD ⋅=-⋅==⨯=.【点睛】方法点睛:求两个向量的数量积有三种方法:(1)利用定义:(2)利用向量的坐标运算;(3)利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.3.C解析:C【分析】以A 为坐标原点,以过点A 垂直于BC 的直线为y 轴,建立平面直角坐标系,求出()3,1B --,()3,1C -,设(),P x y ,因为点P 是其内一点,所以3x 3-<<,10y -<<,计算3AP AB x y ⋅=--得最值,即可求解.【详解】建立如图所示的空间直角坐标系:则()0,0A ,因为120CAB ∠=,所以30ABC ACB ∠=∠=,可得2cos303= ,2sin301,所以()3,1B -- ,()3,1C -, 设(),P x y ,因为点P 是其内一点,所以33,10x y <<-<<,()(),3,13AP AB x y x y ⋅=⋅--=--, 当3x =1y =-时AP AB ⋅最大为((()3314-⨯--=,当3,1x y ==-时AP AB ⋅最小为(()3312--=-, 所以AP AB ⋅的取值范围是(2,4)-,故选:C【点睛】关键点点睛:本题解题的关键点是建立直角坐标系,将数量积利用坐标表示,根据点(),P x y 是其内一点,可求出,x y 的范围,可求最值.4.C【详解】 由题意可得22(2)15b =-+=,所以2cos ,52a b a b a b ⋅===⋅,又因为,[0,180]<>∈a b ,所以,45<>=a b ,选C.5.B解析:B【分析】作出图形,利用平面向量的线性运算以及数量积的运算性质可得出21P OP E PF =⋅-,求得OP 的最大值,由此可求得PE PF ⋅的最大值.【详解】如下图所示:由题可知正方形ABCD 的内切圆的半径为1,设该内切圆的圆心为O ,()()()()2221PE PF OE OP OF OP OP OE OP OE OP OE OP ⋅=-⋅-=-+⋅--=-=-,由图象可知,当点P 为ABCD 的顶点时,2OP 取得最大值2,所以PE PF ⋅的最大值为1.故选:B.【点睛】本题考查平面向量数量积最值的计算,考查计算能力,属于中等题.6.C解析:C【分析】在直线AB 上取一点D ,根据向量减法运算可得到DC CA ≥,由垂线段最短可确定结论.【详解】在直线AB 上取一点D ,使得mBA BD =,则BC mBA BC BD DC -=-=,DC CA ∴≥.对于任意m R ∈,都有不等式成立,由垂线段最短可知:AC AD ⊥,即AC AB ⊥, ABC ∴为直角三角形.故选:C .【点睛】本题考查与平面向量结合的三角形形状的判断,关键是能够利用平面向量数乘运算和减法运算的几何意义准确化简不等式.7.B解析:B【分析】由向量垂直可得0a b ⋅=,求得x ,及向量b 的坐标表示,再利用向量加法的坐标运算和向量模的坐标运算可求得模.【详解】 由a b ⊥,可得0a b ⋅=,代入坐标运算可得x-4=0,解得x=4,所以a b + ()5,0=,得a b +=5,选B. 【点睛】求向量的模的方法:一是利用坐标()22,a x y a x y =⇒=+,二是利用性质2a a =,结合向量数量积求解.8.C解析:C【分析】建立平面直角坐标系,()0,P t ,t ≤,则 223(2416⋅=-=--AP CP t t ,进而可求最小值.【详解】以D 点为坐标原点,DC 所在直线为y 轴,DA 所在直线为x 轴建立直角坐标系,1(,0)2A ,1(,0)2B -,(0,2C ,设()0,P t ,其中2t ≤1(,)2AP t =-,(0,CP t ==,223(16⋅==-AP CP t t ,当t =时取最小值为316-,所以AP CP ⋅的最小值为316-. 故选:C【点睛】本题考查了平面向量的数量积运算,用坐标法求最值问题,考查了运算求解能力,属于一般题目.9.D解析:D【分析】设点()1,P t -、(),Q x y ,由2FP QF =,可计算出点Q 的横坐标x 的值,再利用抛物线的定义可求出QF .【详解】设点()1,P t -、(),Q x y ,易知点()1,0F ,()2,FP t =-,()1,QF x y =--,()212x ∴-=-,解得2x =,因此,13QF x =+=,故选D.【点睛】本题考查抛物线的定义,解题的关键在于利用向量共线求出相应点的坐标,考查计算能力,属于中等题.10.B解析:B【分析】由//m n ,可得()()()0a b a c b b c +⨯--⨯+=.结合余弦定理,可求角C .【详解】(,),(,)m a b b c n c b a =++=-,且//m n ,()()()0a b a c b b c ∴+⨯--⨯+=,整理得222c a b ab =++. 又22212cos ,cos 2c a b ab C C =+-∴=-. ()20,,3C C ππ∈∴=. 故选:B.【点睛】本题考查向量共线的坐标表示和余弦定理,属于基础题.11.B解析:B【分析】 由向量的运算法则,化简得1344AD AB AC =+,再由AD AB AC λμ=+,即可求得,λμ 的值,即可求解.【详解】由向量的运算法则,可得34=+=+AD AB BD AB BC 313()444AB AC AB AB AC =+-=+, 因为AD AB AC λμ=+,所以13,44λμ==,从而求得13λμ=, 故选:B .【点睛】该题考查的是有关向量的基本定理,在解题的过程中,需要利用向量直角的关系,结合三角形法则,即可求得结果,属于基础题. 12.B解析:B 【分析】根据向量共线定理判断①④,由模长关系只能说明向量a ,b 的长度关系判断②,举反例判断③.【详解】对于①,由向量共线定理可知,//a b ,则存在唯一的实数1λ,使得1λa b ,//b c ,则存在唯一的实数2λ,使得2λb c ,由此得出存在唯一的实数12λλ⋅,使得12a c λλ=⋅,即//a c ,则①正确;对于②,模长关系只能说明向量a ,b 的长度关系,与方向无关,则②错误; 对于③,当a b =时,由题意可得()5x y a a +=,则5x y +=,不能说明2x =,3y =,则③错误;由向量共线定理可知,④正确;故选:B.【点睛】本题主要考查了向量共线定理以及向量的定义,属于中档题.二、填空题13.②④【分析】①可得在的角平分线上但不一定是内心;②可得在BC 边中线的延长线上;③利用向量线性运算得出可判断;④得出根据向量加法的平行四边形法则可判断;⑤令可判断【详解】①若则因为是和同向的单位向量则解析:②④【分析】①可得P 在BAC ∠的角平分线上,但不一定是内心;②可得P 在BC 边中线的延长线上;③利用向量线性运算得出=BP BC μ可判断;④得出()1CP CB AC λλμ=++-,根据向量加法的平行四边形法则可判断;⑤令1132=λμ=-,可判断.【详解】 ①若1ABλ=,1ACμ=,则AB AC AP ABAC=+,因为,AB AC ABAC是和,AB AC 同向的单位向量,则P 在BAC ∠的角平分线上,但不一定是内心,故①错误;②若1λμ==,则AP AB AC =+,则根据平行四边形法则可得,P 在BC 边中线的延长线上,故直线AP 经过ABC 的重心,故②正确;③若1λμ+=,且0μ>,则()1=AP AB AC AB AB AC μμμμ=-+-+,即()==AP AB AB AC AC AB μμμ--+-,即=BP BC μ,则点P 在线段BC 上或BC 的延长线上,故③错误;④若1λμ+>,()()11AP AB AC AC λλλμ=+-++-,整理可得()1CP CB AC λλμ=++-,10λμ+->,根据向量加法的平行四边形法则可判断点P 在ABC 外,故④正确;⑤若01λμ<+<,则令1132=λμ=-,,则1132AP AB AC =-+,则根据向量加法的平行四边形法则可判断点P 在ABC 外,故⑤错误. 故答案为:②④. 【点睛】本题考查向量基本定理的应用,解题的关键是正确利用向量的线性运算进行判断,合理的进行转化,清楚向量加法的平行四边形法则.14.【分析】设根据得到取中点为D 又由中点坐标得到再由得到的范围然后由求解【详解】设如图所示:因为所以取中点为D 因为所以解得所以所以点C 是以D 为圆心半径为的圆上运动又因为所以当AOB 共线时取等号所以所以【解析:3【分析】设,,OA a OB b OC c ===,根据||2,||2||a b a b -==,得到||2,||2||AB OA OB ==,取AB 中点为D ,又()()2a c b c CA CB -⋅-=⋅=,由中点坐标得到CD ==⎭2OA OB AB -≤=,得到||OA OD ⎛= 范围,然后由||||||||3c OC OD DC OD =≤+≤+.【详解】设,,OA a OB b OC c ===, 如图所示:因为||2,||2||a b a b -==, 所以||2,||2||AB OA OB ==, 取AB 中点为D ,因为()()2a c b c CA CB -⋅-=⋅=,所以2222||||24AB CB CA CB CA CB CA =-=+-⋅=, 解得228CB CA +=,所以22212322CB CA CD CB CA CB CA ⎛⎫+==++⋅= ⎪⎝⎭所以点C 是以D 3的圆上运动, 又因为2OA OB AB -≤=,所以2OB ≤,当A ,O ,B 共线时,取等号,所以2221||222OA OB OD OB OA OB OA ⎛⎫+==++⋅ ⎪⎝⎭, ()222112104322OB OA AB OB =+-=-≤, 所以||||||||333c OC OD DC OD =≤+≤+≤. 【点睛】关键点点睛:平面向量的中点坐标公式的两次应用:一是22CB CA CD ⎛⎫+= ⎪⎝⎭||2,||2||AB OA OB ==求得定值,得到点C 是以D 为圆心的圆上,实现数形结合;二是||2OA OD ⎛= ⎝⎭2OA OB AB -≤=确定范围,然后由||||||c OC OD DC =≤+求解.15.3【分析】根据向量关系即可确定的形状再根据向量投影的计算公式即可求得结果【详解】因为圆O 为△ABC 的外接圆半径为2若故可得是以角为直角的直角三角形又因为且外接圆半径是故可得则故向量在向量方向上的投影解析:3 【分析】根据向量关系,即可确定ABC 的形状,再根据向量投影的计算公式,即可求得结果.【详解】因为圆O 为△ABC 的外接圆,半径为2,若2AB AC AO +=, 故可得ABC 是以角A 为直角的直角三角形.又因为OA AC =,且外接圆半径是2, 故可得224BC OA AC ===,则AB =,AB cos ABC BC ∠==,故向量BA 在向量BC 方向上的投影为32AB cos ABC ⨯∠==. 故答案为:3. 【点睛】本题考查向量数量积的几何意义,属中档题.16.6【分析】建立平面直角坐标系求得点P 的坐标进而得到的坐标再利用数量积的坐标运算求解【详解】如图所示建立平面直角坐标系:则设因为解得所以所以所以故答案为:【点睛】本题主要考查平面向量的坐标表示和数量积解析:6 【分析】建立平面直角坐标系,求得点P 的坐标,进而得到,PA PB 的坐标,再利用数量积的坐标运算求解. 【详解】如图所示建立平面直角坐标系:则()()()()04,00,40,44A B C D ,,,,,设(),P x y ,()(),,4,4BP x y PD x y ==--, 因为3BP PD =,()()3434x x y y ⎧=⨯-⎪⎨=⨯-⎪⎩,解得33x y =⎧⎨=⎩,所以()3,3P ,所以()()3,1,3,3PA PB =-=--, 所以()()()33136PA PB ⋅=-⨯-+⨯-=, 故答案为:6. 【点睛】本题主要考查平面向量的坐标表示和数量积运算,还考查了运算求解的能力,属于中档题.17.【详解】如图建立平面直角坐标系∴当sin 时得到最小值为故选 解析:48322-【详解】如图建立平面直角坐标系,()((P 2cos θ2sin θA 22B22M 02-,,,,,,,∴()()((42cos θ2θ22cos θ2θ24PA PB PC PM ⎡⎤⋅+⋅=+⋅-++⎣⎦,,()(22cos θ2sin θ2cos θ2sin θ216sin θ322sin θ32⎡⎤⋅+=++⎣⎦,,, 当sin θ1=-时,得到最小值为48322-48322-18.【分析】根据得到然后两边平方结合求得再由求解即可【详解】因为所以所以所以因为所以故答案为:【点睛】本题主要考查平面向量的数量积运算还考查了运算求解的能力属于中档题解析:52【分析】根据0a b c d +++=,得到++=-a b c d ,然后两边平方结合2a =,3b =,4c =,4d =,求得⋅+⋅+⋅a b a c b c ,再由()()a b b c +⋅+=2⋅+⋅+⋅+a b a c b c b 求解即可. 【详解】因为0a b c d +++=, 所以++=-a b c d ,所以()()22++=-a b cd ,所以()()()()2222222+++⋅+⋅+⋅=-a b c a b a c b c d ,因为2a =,3b =,4c =,4d =, 所以132⋅+⋅+⋅=-a b a c b c , ()()a b b c +⋅+=252⋅+⋅+⋅+=a b a c b c b . 故答案为:52【点睛】本题主要考查平面向量的数量积运算,还考查了运算求解的能力,属于中档题.19.【分析】由已知得应用向量的运算律求出关系利用三角换元结合正弦函数的有界性即可求解【详解】在矩形中令其中最小值最大值分别为的取值范围为故答案为:【点睛】本题考查向量的模长以及向量的数量积运算解题的关键解析:⎡⎢⎣⎦. 【分析】由已知得2||1AP =,应用向量的运算律,求出,λμ关系,利用三角换元结合正弦函数的有界性,即可求解. 【详解】在矩形ABCD 中,,0AB AD AB AD ⊥∴⋅=22222222||()41AP AB AD AB AD λμλμλμ=+=+=+=,令12cos ,sin ,cos sin sin()22λθμθλμθθθϕ==+=+=+,其中1tan 2ϕ=,λμ+最小值、最大值分别为22-,λμ+的取值范围为55,⎡⎤-⎢⎥⎣⎦. 故答案为:55,⎡⎤-⎢⎥⎣⎦【点睛】本题考查向量的模长以及向量的数量积运算,解题的关键用换元法将问题转化为求三角函数的最值,属于中档题.20.6【分析】根据平方处理求得即可得解【详解】在中已知点是边的中点解得则故答案为:6【点睛】此题考查平面向量的基本运算关键在于根据向量的运算法则求出模长根据数量积的运算律计算求解解析:6 【分析】 根据()12CP CA CB =+,平方处理求得2CB =,()12CP CA CA CB CA ⋅=+⋅即可得解. 【详解】在ABC △中,已知4CA =,3CP 23ACB π∠=,点P 是边AB 的中点, ()12CP CA CB =+ ()222124CP CA CB CA CB =++⋅ 211316842CB CB ⎛⎫⎛⎫=++⨯- ⎪ ⎪⎝⎭⎝⎭,解得2CB = 则()()21111162462222CP CA CA CB CA CA CB CA ⎛⎫⎛⎫⋅=+⋅=+⋅=+⨯⨯-= ⎪ ⎪⎝⎭⎝⎭. 故答案为:6 【点睛】此题考查平面向量的基本运算,关键在于根据向量的运算法则求出模长,根据数量积的运算律计算求解.三、解答题21.(1)2AB b a =-,12CE a b =+;(2)证明见解析. 【分析】(1)求出2CB b =,利用AB CB CA =-与12CE CA AB =+化简可得答案; (2)以C 点为坐标原点,以CB ,CA 为x ,y 轴,建立如图所示平面直角坐标系,设()0,A a , 求出,2a AD a ⎛⎫=- ⎪⎝⎭,2,33a a CE ⎛⎫= ⎪⎝⎭, 可得0AD CE ⋅=,进而可得答案.【详解】(1)∵CA a =,CD b =,点D 是CB 的中点, ∴2CB b =,∴2AB CB CA b a =-=-,∵()1112222CE CA AE a AB a b a a b =+=+=+-=+. (2)以C 点为坐标原点,以CB ,CA 为x ,y 轴,建立如图所示平面直角坐标系,设()0,A a ,∴B 点坐标为(),0a ,另设点E 坐标为(),x y ,∵点D 是CB 的中点, ∴点D 坐标为,02a ⎛⎫⎪⎝⎭, 又∵2AE EB =,∴()(),2,x y a a x y -=--,∴23a x =,3a y =, 所以,2a AD a ⎛⎫=-⎪⎝⎭,2,33a a CE ⎛⎫= ⎪⎝⎭, 所以()20233a a aAD CE a ⋅=⨯+-⨯=, ∴AD CE ⊥.【点睛】方法点睛:平面向量数量积的计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.22.(1)()3,6c =或()3,6c =--;(2)10-. 【分析】(1)设(),c x y =,由平面向量平行的坐标表示及模的坐标表示可得2y x=⎧=即可得解;(2)由平面向量垂直可得()()20a b a b +⋅-=,再由平面向量数量积的运算可得1a b ⋅=-,最后由cos ,a ba b a b⋅=⋅即可得解. 【详解】(1)设(),c x y =,因为()1,2a =,//a c ,35c =,所以235y x x y =⎧+=⎪⎩36x y =⎧⎨=⎩或36x y =-⎧⎨=-⎩, 所以()3,6c =或()3,6c =--;(2)因为()1,2a =,所以14a =+又()()2a b a b +⊥-,2b =,所以()()22225220a b a b aa b ba b +⋅-=+⋅-=+⋅-⨯=,所以1a b ⋅=-, 所以cos ,5a b a b a b⋅===⨯⋅【点睛】本题考查了平面向量共线及模的坐标表示,考查了平面向量数量积的应用及运算求解能力,属于中档题. 23.(1)8m =(2)【分析】(1)先得到()4,2a b m +=-,根据()a b b +⊥可得()0a b b +⋅=,即可求出m ;(2)根据·1a b =-求出m=2,再根据cos ,a b b a b b a b⋅=⋅求b 在向量a 方向上的投影.【详解】()()14,2a b m +=-;()a b b +⊥;()34220m ∴⋅--=;8m ∴=;()2321a b m ⋅=-=-;2m ∴=;()1,2a ∴=;b ∴在向量a 方向上的投影为cos ,55a b b a b b a b⋅=⋅==-.【点睛】本题主要考查了向量坐标的加法和数量积的运算,向量垂直的充要条件及向量投影的计算公式,属于中档题. 24.(1)1t =-;(2)23π. 【分析】(1)根据题意,设a kb =,则有122112()()e e k e te kte ke +=-=-+,分析可得11ktk=-⎧⎨=⎩,解可得t 的值;(2)根据题意,设向量a ,b 的夹角为θ;由数量积的计算公式可得a 、||b 以及a b , 由cos a b a bθ⋅=计算可得答案.【详解】(1)∵根据题意,向量12a e e =+,21b e te =-,若//a b ,则设a kb =, 则有122112()()e e k e te kte ke +=-=-+,则有11kt k =-⎧⎨=⎩,解可得1t =-;(2)根据题意,设向量a ,b 的夹角为θ;若2t =,则212b e e =-,则2221||(2)3b e e =-=,则||3b =, 又由12a e e =+,则2212||()3a e e =+=,则||3a =, 又由12213()(2)2a b e e e e =+-=-,则312cos 2||||3a b a b θ-===-⨯,又由0θπ,则23πθ=; 故向量a ,b 的夹角为23π. 【点睛】本题考查向量数量积的计算,涉及向量模的计算公式,属于基础题.25.(1)23-;(2 【分析】(1)由//a b ,所以存在唯一实数t,使得b ta =,建立方程组可得答案;(2)由已知求得12e e ⋅,再由a b ⊥得()()1212230e e e e λ-⋅+=,可解得λ,再利用向量的模的计算方法可求得答案. 【详解】(1)因为//a b ,所以存在唯一实数t,使得b ta =,即()121223e e t e e λ+=-, 所以23t tλ=⎧⎨=-⎩,解得23λ=-;(2)由已知得122111cos32e e π⋅=⨯⨯=-,由a b ⊥得()()1212230e e e e λ-⋅+=,即()12+32302λλ⎛⎫-⨯--= ⎪⎝⎭,解得4λ=,所以124a e e =-,所以22121212||416821a e e e e e e =-=+-⋅=||21a =.【点睛】本题考查向量平行的条件和向量垂直的条件,以及向量的模的计算,属于中档题.26.(1)60C =︒;(2. 【分析】(1)利用两个向量垂直的性质,两个向量数量积公式以及二倍角公式,求得cos C 的值,可得C 的值.(2)利用两角差的正弦公式,正弦定理和余弦定理化简,可得结果. 【详解】(1)由题意知,0m n =,即222cos2sin 02CC -=,21cos 2(1cos )0C C +--=, 22cos cos 10C C +-=,即cos 1C =-,或1cos 2C =, 因为0C π<<,所以60C =︒. (2)2222221122a b c a b c =+⇒-=,222222sin()sin cos sin cos 2222a a c b b b c a A B A B B A R ac R bc+-+--=-=- ()222214442a b c c sinC cR cR R -=====. 【点睛】本题主要考查两个向量数量积公式,两角差的正弦公式,正弦定理和余弦定理的应用,属于中档题.。
2019版高中数学人教B版必修4:第二章 平面向量 检测(B) 含解析

B.③①③D.①④:根据零向量的定义可知①正确;根据单位向量的定义可知,单位向量的模相等,但方向不一定相同或,故两个单位向量不一定共线,故②错误;向量互为相反向量,故③错误;由于方向相同或相反AB 与BA 的向量为共线向量,故AB 与CD 也可能平行,即A ,B ,C ,D 四点不一定共线,故④错误.故选A .:A已知向量a =(sin x ,cos x ),向量b =(1,),若a ⊥b ,则tan x 等于( )3B. C. D.-333333:由a ⊥b 可得a ·b =0,即sin x+cos x=0,于是tan x=-.33:A:DBP PC PA PQ BC在△ABC中,点P在BC上,且=2,点Q是AC的中点,若=(4,3),=(1,5),则等于( ) 6,21) B.(-2,7)-21) D.(2,-7)QC=AQ=PQ‒PA PC=PQ+QC BC PC :如图,=(1,5)-(4,3)=(-3,2),=(1,5)+(-3,2)=(-2,7),=3=(-6,21), .:A∈R),且c与a的夹角等于 ∵AB=,∴AP=.332又OA=1,∴∠AOP=.π3∴∠AOB=.2π3∴=||||cos =-.OA ·OB OA OB 2π312:B已知|a |=6,|b |=3,向量a 在b 方向上的投影是4,则a ·b 等于( )B.8D.2B.53D.76:建立如图所示的坐标系,B (3,0),D (0,1),C (1,1).∵点P 为BC 的中点,∴P .(2,12)已知正方形ABCD 的边长为2,E 为CD 的中点,则= . AE ·BD :=()·()=||2-=4-0+0-2=2.AE ·BD AD +DE AD ‒AB AD AD ·AB +DE ·AD ‒DE ·AB :2向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则= .λμ:建立如图所示的平面直角坐标系(设每个小正方形的边长为1),则A (1,-1),B (6,2),C (5,-1),∴a =AO b ==(6,2),c ==(-1,-3).OB BC (6,2),∴(λ-1)||||cos 120°-9λ+4=0,AB AC 解得λ=.712:712三、解答题(本大题共5小题,共45分.解答时应写出文字说明、证明过程或演算步骤))如图,在▱OADB 中,设=a ,=b ,.试用a ,b 表示.OA OB BM =13BC ,CN =13CDOM ,ON 及MN若|c |=2,且c ∥a ,求c 的坐标;5若|b |=,且a+2b 与2a-b 垂直,求a 与b 的夹角θ.52(1)因为c ∥a ,a =(1,2),所以可设c =λa =(λ,2λ).又|c |=2,所以λ2+4λ2=20,解得λ=±2.5所以c =(2,4)或c =(-2,-4).(2)依题意,得(a+2b )·(2a-b )=0,即2|a|2+3a ·b-2|b|2=0.5=a ,AB 2+4AB ·AC +4AC2=5同理可得|2|=a ,AB +AC 5∴cos θ=.(AB +2AC )·(2AB +AC )|AB +2AC ||2AB +AC |=4a 25a2=45(2)∵,||=||=,AB ⊥AC AB AC 2∴||=1.AM 设||=x (0≤x ≤1),OA 则||=1-x ,而=2,OM OB +OC OM ∴·()=2=2||||cos π=-2x (1-x )=2x 2-2x=2,OA ·OB +OC ·OA =OA OB +OC OA ·OM OA OM (x -12)2‒12解:由(1)得),33∴,13AC =23CB∴=2,∴=2.AC CB |AC ||CB |解:=(1+cos x ,cos x )-(1,cos x )=(cos x ,0).AB ∵x ∈,∴cos x ∈[0,1].[0,π2]∴||=|cos x|=cos x.AB ∵=2,AC CB ∴=2().OC ‒OA OB ‒OC。
高中数学 第二章 平面向量阶段质量检测B卷(含解析)新人教A版必修4

第二章 平面向量(B 卷 能力素养提升)(时间:90分钟,满分:120分)一、选择题(本大题共10小题,每小题5分,共50分) 1.化简AC -BD +CD -AB 得( ) A .AB B .DA C .BCD .0解析:选D AC -BD +CD -AB=AC +CD -(AB +BD )=AD -AD =0.2.已知向量a 与b 的夹角为π3,|a |=2,则a 在b 方向上的投影为( )A. 3B. 2C.22 D.32解析:选C a 在b 方向上的投影为|a |·cos〈a ,b 〉=2cos π3=22.选C.3.向量BA =(4,-3),BC =(2,-4),则△ABC 的形状为( ) A .等腰非直角三角形 B .等边三角形 C .直角非等腰三角形 D .等腰直角三角形解析:选C AC =BC -BA =(2,-4)-(4,-3)=(-2,-1),而AC ·BC =(-2,-1)·(2,-4)=0,所以AC ⊥BC ,又|AC |≠|BC |,所以△ABC 是直角非等腰三角形.故选C.4.若OF 1=(2,2),OF 2=(-2,3)分别表示F 1,F 2,则|F 1+F 2|为( ) A .(0,5) B .25 C .2 2D .5解析:选D ∵F 1+F 2=(0,5),∴|F 1+F 2|=02+52=5. 5.若向量a ,b ,c 满足a ∥b 且a ⊥c ,则c ·(a +2b )=( ) A .4 B .3 C .2D .0解析:选D 由a ∥b 及a ⊥c ,得b ⊥c ,则c ·(a +2b )=c ·a +2c ·b =0.6.设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于( )A .-72B .-12C.32D.52解析:选C 可得a +λb =(1+λ,2),由(a +λb )∥c 得(1+λ)×4-3×2=0,∴λ=12. 7.平面向量a 与b 的夹角为60°,a =(2,0),|b |=1,则|a +2b |等于( ) A. 3 B .2 3 C .4D .12解析:选B 因为|a |=2,|b |=1, ∴a ·b =2×1×cos 60°=1.∴|a +2b |=a 2+4×a ·b +4b 2=2 3.8.如图,非零向量OA =a ,|a |=2,OB =b ,a ·b =1,且BC ⊥OA ,C 为垂足,若OC =λa ,则λ为( )A.12B.13C.14D .2解析:选C 设a 与b 的夹角为θ.∵|OC |就是OB 在OA 上的投影|b |cos θ,∴|OC |=|b | cos θ=a ·b |a |=λ|a |,即λ=a ·b |a |2=14,故选C. 9.若e 1,e 2是平面内夹角为60°的两个单位向量,则向量a =2e 1+e 2与b =-3e 1+2e 2的夹角为( )A .30°B .60°C .90°D .120°解析:选 D e 1·e 2=|e 1||e 2|cos 60°=12,a ·b =(2e 1+e 2)·(-3e 1+2e 2)=-72,|a |=e 1+e 22=4+4e 1·e 2+1=7,|b |=-3e 1+2e 22=9-12e 1·e 2+4=7,所以a ,b 的夹角的余弦值为cos 〈a ,b 〉=a ·b |a ||b |=-727×7=-12,所以〈a ,b 〉=120°.故选D.10.在△ABC 中,已知向量AB 与AC 满足AB|AB |+AC|AC |·BC =0且AB|AB |·AC|AC |=12,则△ABC 为( ) A .三边均不相等的三角形 B .直角三角形 C .等腰非等边三角形 D .等边三角形解析:选D 非零向量AB 与AC 满足⎝ ⎛⎭⎪⎫AB |AB |+AC | AC |·BC =0,即∠A 的平分线垂直于BC ,∴AB =AC .又cos A =AB|AB |·AC |AC |=12,∴∠A =π3,所以△ABC 为等边三角形,选D.二、填空题(本大题共4小题,每小题5分,共20分)11.若向量AB =(3,-1),n =(2,1),且n ·AC =7,那么n ·BC =________. 解析:n ·BC =n ·(AC -AB )=n ·AC -n ·AB =7-5=2. 答案:212.已知a ,b 的夹角为θ,|a |=2,|b |=1,则a ·b 的取值范围为________. 解析:∵a ·b =|a ||b |cos θ=2cos θ,又∵θ∈[0,π],∴cos θ∈[-1,1],即a ·b ∈[-2,2]. 答案:[-2,2]13.如图,在平行四边形ABCD 中,AP ⊥BD ,垂足为P ,且AP =3,则AP ·AC =________.解析:设AC ∩BD =O ,则AC =2(AB +BO ),AP ·AC =AP ·2(AB +BO )=2AP ·AB +2AP ·BO =2AP ·AB =2AP ·(AP +PB )=2|AP |2=18.答案:1814.关于平面向量a ,b ,c ,有下列三个命题:①若a ·b =a ·c ,则b =c ;②若a =(1,k ),b =(-2,6),a ∥b ,则k =-3;③非零向量a 和b 满足|a |=|b |=|a -b |,则a 与a +b 的夹角为60°,其中真命题的序号为________.(写出所有真命题的序号)解析:①a ·b =a ·c ⇔a ·(b -c )=0,表明a 与b -c 向量垂直,不一定有b =c ,所以①不正确;对于②,当a ∥b 时,1×6+2k =0,则k =-3,所以②正确;结合平行四边形法则知,若|a |=|b |=|a -b |,则|a |,|b |,|a -b |可构成一正三角形,那么a +b 与a 的夹角为30°,而非60°,所以③错误.答案:②三、解答题(本大题共4小题,共50分.解答时应写出文字说明、证明过程或演算步骤) 15.(本小题满分12分)已知OA =a ,OB =b ,对于任意点M 关于A 点的对称点为S ,S 点关于B 点的对称点为N .(1)用a ,b 表示向量MN ;(2)设|a |=1,|b |=2,|MN |∈[23,27],求a 与b 的夹角θ的取值范围. 解:(1)依题意,知A 为MS 的中点,B 为NS 的中点. ∴SN =2SB ,SM =2SA .∴MN =SN -SM =2(SB -SA )=2AB =2(OB -OA )=2(b -a ). (2)∵|MN |∈[23,27],∴MN 2∈[12,28],∴12≤4(b -a )2≤28. ∴3≤4+1-2a ·b ≤7,∴-1≤a ·b ≤1.∵cos θ=a ·b |a ||b |=a ·b 2,∴-12≤cos θ≤12.∵0≤θ≤π,∴π3≤θ≤2π3,即θ的取值范围为⎣⎢⎡⎦⎥⎤π3,2π3.16.(本小题满分12分)已知在梯形ABCD 中,AB ∥CD ,∠CDA =∠DAB =90°,CD =DA =12AB .求证:AC ⊥BC .证明:以A 为原点,AB 所在直线为x 轴,建立直角坐标系,如图,设AD =1,则A (0,0),B (2,0),C (1,1),D (0,1). ∴BC =(-1,1),AC =(1,1),BC ·AC =-1×1+1×1=0,∴BC ⊥AC ,∴BC ⊥AC .17.(本小题满分12分)设函数f (x )=a ·b ,其中向量a =(m ,cos 2x ),b =(1+sin 2x ,1),x ∈R ,且y =f (x )的图象经过点⎝ ⎛⎭⎪⎫π4,2.求实数m 的值.解:f (x )=a ·b =m (1+sin 2x )+cos 2x , 由已知得f ⎝ ⎛⎭⎪⎫π4=m ⎝ ⎛⎭⎪⎫1+sin π2+cos π2=2, 解得m =1.18.(本小题满分14分)(1)已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61,求a 与b 的夹角;(2)设OA =(2,5),OB =(3,1),OC =(6,3),在OC 上是否存在点M ,使MA ⊥MB ?若存在,求出点M 的坐标;若不存在,请说明理由.解:(1)(2a -3b )·(2a +b )=4a 2-4a ·b -3b 2=61. ∵|a |=4,|b |=3, ∴a ·b =-6,∴cos θ=a ·b |a ||b |=-64×3=-12,∴θ=120°.(2)假设存在点M ,且OM =λOC =(6λ,3λ)(0<λ≤1), ∴MA =(2-6λ,5-3λ),MB =(3-6λ,1-3λ), ∴(2-6λ)×(3-6λ)+(5-3λ)(1-3λ)=0, ∴45λ2-48λ+11=0,得λ=13或λ=1115.∴OM =(2,1)或OM =⎝ ⎛⎭⎪⎫225,115. ∴存在M (2,1)或M ⎝ ⎛⎭⎪⎫225,115满足题意.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修4第二章平面向量综合训练B组
一、选择题
1下列命题中正确的是()
A B
C D
2设点,,若点在直线上,且,则点的坐标为()
A B
C或D无数多个
3若平面向量与向量的夹角是,且,则( )
A B C D
4向量,,若与平行,则等于
A B C D
5若是非零向量且满足,,则与的夹角是()
A B C D
6设,,且,则锐角为()
A B C D
二、填空题
1若,且,则向量与的夹角为
2已知向量,,,若用和表示,则=____
3若,,与的夹角为,若,则的值4若菱形的边长为,则__________
5若=,=,则在上的投影为________________
三、解答题
1求与向量,夹角相等的单位向量的坐标
2试证明:平行四边形对角线的平方和等于它各边的平方和
3设非零向量,满足,求证:
4已知,,其中
(1)求证:与互相垂直;
(2)若与的长度相等,求的值(为非零的常数)
数学4(必修)第二章平面向量 [综合训练B组]参考答案
一、选择题
1 D 起点相同的向量相减,则取终点,并指向被减向量,;
是一对相反向量,它们的和应该为零向量,
2 C 设,由得,或,
,即;
3 A 设,而,则
4 D
,则
5 B
6 D
二、填空题
1,或画图来做2设,则
3
4
5
三、解答题
1解:设,则
得,即或
或
2证明:记则
3证明:
4(1)证明:
与互相垂直
(2);
而
,。