历年高中提前批招生数学模拟卷及答案
数学提前招生考试试卷及答案

数学提前招⽣考试试卷及答案⾼中提前招⽣考试试卷数学考⽣须知:1、本卷满分120分,考试时间100分钟。
2、答题前,先⽤钢笔或圆珠笔在试卷规定位置上填写学校、姓名、准考准号。
⼀、选择题(每⼩题4分,共40分)1.函数y=2006x ⾃变量x 的取值范围是…………………()A .x >0B .x <0C .x=0D .x≠02. 如果从⼀卷粗细均匀的电线上截取1⽶长的电线, 称得它的质量为a 克,再称得剩余电线的质量为b 克, 那么原来这卷电线的总长度是……………( ) A .b+1a ⽶; B .(b a +1)⽶; C .(a+b a +1)⽶; D .(a b+1)⽶3. 国家质检总局出台了国内销售的纤维制品甲醛含量标准, 从2003年1⽉1 ⽇起正式实施.该标准规定:针织内⾐. 床上⽤品等直接接触⽪肤的制品,甲醛含量应在百万分之七⼗五以下. 百万分之七⼗五⽤科学记数法表⽰应写成………( ) A .75×10-7; B .75×10-6; C .7.5×10-6; D .7.5×10-54. 已知⊙O 1半径为3cm ,⊙O 2的半径为7cm, 若⊙O 1和⊙O 2的公共点不超过1 个, 则两圆的圆⼼距不可能为………………………( )A .0cm ;B .4cm ;C .8cm ;D .12cm 5. 如图所⽰的两个圆盘中,指针落在每⼀个数上的机会均等,那么两个指针同时落在偶数上的概率是……( ) A .1925 ; B .1025 ; C .625 ; D .5256. 在四边形ABCD 中,对⾓线AC 与BD 相交于点E ,若AC 平分∠DAB ,AB=AE , AC=AD. 那么在下列四个结论中:(1) AC ⊥BD ;(2)BC=DE ; (3)∠DBC=12 ∠DAB ;(4) △ABE 是正三⾓形,正确的是……………( )A .(1)和(2);B .(2)和(3);C .(3)和(4);D .(1)和(4)7. 红星学校准备开办⼀些学⽣课外活动的兴趣班,结果反应热烈。
高中提前招生考试数学模拟卷

选 拔 考 数 学 试 卷温馨提示:考试时间 120分钟 满分 150分一.选择题(每小题5分,共40分)1.下列函数的图象与函数121-=x y 的图象关于y 轴对称的是( ) A 、121+=x y B 、121+-=x y C 、x y 211-= D 、121-=x y2.若11=-t t ,则t t+1的值为( )AA .5B .5±C .3D .3±3.下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1棵棋子,第②个图形一共有6棵棋子,第③个图形一共有16棵棋子,…,则第⑥个图形中棋子的颗数为( )A .51B .70C .76D .814.在边长为正整数的△ABC 中,AB =AC ,且AB 边上的中线CD 将△ABC 的周长分为1:2的两部分,则△ABC 面积的最小值为( ) A.B .C .D .5. 如图,∠XOY= 90°,OW 平分∠XOY ,PA ⊥OX ,PB ⊥OY ,PC ⊥OW.若OA+OB+OC=1,则OC=( ).A.2- 2B. 2-1C.6-2D.2 3 -36.如图,⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,FO ⊥AB ,垂足为点O ,连接AF 并延长交⊙O 于点D ,连接OD 交BC 于点E ,∠B =30º,32=FO .则图中阴影部分的面积为( ). A .63 B. 93 C. 123 D .127. 由函数y =|x 2-x -2|和y =|x 2-x|的图象围成了一个封闭区域,那么在这个封闭区域内(包括边界)纵坐标和横坐标都是整数的点共有( )A. 2个B. 4个C. 6个D. 8个8. 如图,△ABC 、△EFG 均是边长为4的等边三角形,点D 是边BC 、EF 的中点, 直线AG 、FC 相交于点M .当△EFG 绕点D 旋转时,线段BM 长的最小值是( )A .324-B .232+C .22D .232-二.填空题(每小题6分,共36分)9.已知2310a a -+=,那么2294921a a a --++=10. 如果a +b -21a --42b -=33c --21c -5,那么a +b +c =11.已知关于x 的方程06)1(2=+++a x a ax 有两个不相等的实数根1x ,2x (211x x <<).则实数a 的取值范围是12.如图,在平面直角坐标系中,菱形ABOC 的顶点O 在坐标原点,边BO 在x 轴的负半轴上,∠BOC =60°,顶点C 的坐标为(m,,反比例函数k y x=的图像与菱形对角线AO 交于D 点,连接BD ,当BD ⊥x 轴时,k 的值是13.如图,在Rt ABC ∆中,90ABC ∠=︒,AC 的垂直平分线分别与AC ,BC 及AB 的延长线相交于点D ,E ,F ,且BF BC =.圆O 是BEF ∆的外接圆,EBF ∠的平分线交EF 于点G ,交圆O 于点H ,连接BD ,FH .若1AB =,则HG HB ⋅的值为 .14、如图,已知正方形OABC 的边长为2,顶点A 、C 分别在x 、y 轴的正半轴上,M 是BC 的中点.P (0,m )是线段OC 上一动点(C 点除外),直线PM 交AB 的延长线于点D .设过P 、M 、B 三点的抛物线与x 轴正半轴交于点E ,过点O 作直线ME 的垂线,垂足为H ,当点P 从点O 向点C 运动时,点H 也随之运动.则H 所经过的路径长 。
省重点中学高一提前招生考试数学试卷及答案(共4份)

省重点中学高一提前招生考试数学试卷满分:120分 时间:90分钟一、选择题(本题有10个小题,每小题3分,共30分)(1)如果一元一次不等式组⎩⎨⎧>>a x x 3的解集为x >3,则a 的取值范围是A .a >3B .a ≥3C .a <3D .a ≤3(2)若实数x 满足12223-=++x x x ,则9932x x x x ++++ =A .1-B .0C .1D .99(3)如果从一卷粗细均匀的电线上截取1米长的电线, 称得它的质量为a 克,再称得剩余电线的质量为b 克,那么原来这卷电线的总长度是A .a b 1+米B .(a b +1)米C .(a+b a +1)米D .(b a +1)米(4)若实数n 满足2)45()46(22=-+-n n ,则代数式)45)(46(n n --的值是A .1-B .21-C .21D .1(5)已知方程2(21)10x k x k +++-=的两个实数根12,x x 满足1241x x k -=-,则实数k 的值为 A .—3,0 B .1,43-C .1,13- D .1,0 (6)如图,矩形AOBC 的面积为16,反比例函数xky =的图象经过矩形的对角线的交点P ,则反比例函数的解析式是A .x y 1= B .x y 2=C .x y 4=D .x y 8= (7)设213a a +=,213b b +=,且a b ≠,则代数式3311ba +的值为A .24-B .18-C .18D .24(8)当x 分别取值201,191,181,…31,21,1,2,3,…,18,19,20时,计算代数式2211x x +-的值,将所得的结果相加,其和等于A .-20B .0C .1D .20(9)如图,∠ACB =60○,半径为2的⊙O 切BC 于点C ,若将⊙O 在CB 上向右滚动,则当滚动到⊙O 与CA 也相切时,圆心O 移动的水平距离为A .32B .4C .πD .2π(10)方程813222=++y xy x 的整数解(,)x y 的组数为A .7B . 6C .5D .4(第9题)二、填空(本题有7个小题,其中11题6分,其余每小题4分,共30分) (11)直接写出下列关于x 的方程的根:①015722=-+x x ; ②24)3)(2)(1(=+++x x x x ;③41122=+++x x xx ;④01)2(2=+--+a x a x ; (12)已知三个数a 、b 、c 的积为负数,和为正数,且x =a a +b b +c c +ab ab +ac ac +cb bc,则ax 3+bx 2+cx +1=_________.(13)若化简16812+---x x x 的结果为52-x ,则x 的取值范围是 . (14)如图,DE 是△ABC 的中位线,点P 是DE 的中点,CP 的延长线交AB 于点Q ,那么:DPQ ABC S S ∆∆=______________. (15)若实数a 、b 满足b >a >0,且ab b a 422=+,则ba b a +-= . (16)若实数b a ,满足0111=+--ba b a ,则=+ab b a 22. (17)桌面上有三颗球,相互靠在一起。
高中提前招生考试数学模拟试卷(含答案及解析)

2021高中提前招生考试数学模拟试卷一、选择题〔每题只有一个正确答案,共6题.每题6分,共36分〕1.设a=,b=,c=,那么a,b,c之间的大小关系是〔〕A.a<b<c B.c<b<a C.c<a<b D.a<c<b2.点P〔9+,﹣3+a〕,那么点P所在象限为〔〕A..第一象限B..第二象限C..第三象限D.第四象限3.〔2021•凉山州〕在△ABC中,∠C=90°,设sinB=n,当∠B是最小的内角时,n的取值范围是〔〕A.B.C.D.4.梯形上底长为L,中位线长为m,那么连接两条对角线中点的线段长为〔〕A.m﹣2L B.﹣LC.2m﹣L D.m﹣L5.△ABC的三边长为a,b,c,且满足方程a2x2﹣〔c2﹣a2﹣b2〕x+b2=0,那么方程根的情况是〔〕A.有两相等实根 B.有两相异实根 C.无实根D.不能确定6.abc≠0,而且,那么直线y=px+p一定通过〔〕A.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限二、填空题〔每题6分,共36分〕7.假设x2﹣2〔k+1〕x+4是完全平方式,那么k的值为_________.8.直角三角形的两边长分别为3cm,4cm,那么直角三角形的斜边为_________cm.9.y=kx+3与两坐标轴围成的三角形的面积为24,那么其函数解析式_________.10.如果对于一切实数x,有f〔x〕=x2﹣2x+5,那么f〔x﹣1〕的解析式是_________.11.如图,将△ABC纸片沿DE折叠〔1〕当点A落在△ABC内部时为点A1,请写出∠A1,∠1,∠2之间的关系_________;〔2〕当点A落在△ABC外部时为点A2,请写出∠A2,∠1,∠2之间的关系_________.12.从1,2,3,4中任取3个数,作为一个一元二次方程的系数,那么构作的一元二次方程有实根的概率是_________.三、解答题〔共48分〕13.,求.14.〔2005•黑龙江〕某房地产开发公司方案建A、B两种户型的住房共80套,该公司所筹资金不少于2 090万元,但不超过2 096万元,且所筹资金全部用于建房,两种户型的建房本钱和售价如下表:A B本钱〔万元/套〕25 28售价〔万元/套〕30 34〔1〕该公司对这两种户型住房有哪几种建房方案?〔2〕该公司如何建房获得利润最大?〔3〕根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元〔a>0〕,且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?注:利润=售价﹣本钱.15.〔2007•河北〕在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.〔1〕在图1中请你通过观察、测量BF与CG的长度,猜测并写出BF与CG满足的数量关系,然后证明你的猜测;〔2〕当三角尺沿AC方向平移到图2所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜测并写出DE+DF与CG 之间满足的数量关系,然后证明你的猜测;〔3〕当三角尺在〔2〕的根底上沿AC方向继续平移到图3所示的位置〔点F在线段AC上,且点F与点C不重合〕时,〔2〕中的猜测是否仍然成立〔不用说明理由〕.16.〔2005•淮安〕课题研究:现有边长为120厘米的正方形铁皮,准备将它设计并制成一个开口的水槽,使水槽能通过的水的流量最大.初三〔1〕班数学兴趣小组经讨论得出结论:在水流速度一定的情况下,水槽的横截面面积越大,那么通过水槽的水的流量越大.为此,他们对水槽的横截面进行了如下探索:〔1〕方案①:把它折成横截面为直角三角形的水槽〔如图1〕.假设∠ACB=90°,设AC=x厘米,该水槽的横截面面积为y厘米2,请你写出y关于x的函数关系式〔不必写出x 的取值范围〕,并求出当x取何值时,y的值最大,最大值又是多少?方案②:把它折成横截面为等腰梯形的水槽〔如图2〕.假设∠ABC=120°,请你求出该水槽的横截面面积的最大值,并与方案①中的y的最大值比拟大小;〔2〕假设你是该兴趣小组中的成员,请你再提供两种方案,使你所设计的水槽的横截面面积更大.画出你设计的草图,标上必要的数据〔不要求写出解答过程〕.2021年高中提前招生考试数学模拟试卷〔三〕参考答案与试题解析一、选择题〔每题只有一个正确答案,共6题.每题6分,共36分〕1.设a=,b=,c=,那么a,b,c之间的大小关系是〔〕A.a<b<c B.c<b<a C.c<a<b D.a<c<b考点:估算无理数的大小;实数大小比拟。
高考提前批数学试卷及答案

一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 已知函数$f(x) = 2x^3 - 3x^2 + 1$,则$f(0)$的值为:A. 1B. 0C. -1D. -22. 若复数$z = a + bi$($a, b \in \mathbb{R}$)满足$|z - 3i| = |z + 2i|$,则实数$a$的值为:A. 1B. 2C. -1D. -23. 下列各式中,能表示复数$1 + i$的平方根的是:A. $1 + i$B. $1 - i$C. $\sqrt{2}(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4})$D. $\sqrt{2}(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4})$4. 在三角形ABC中,$\angle A = 60^\circ$,$\angle B = 45^\circ$,若$AB = 2$,则$BC$的长度为:A. $\sqrt{3}$B. $2\sqrt{2}$C. $2\sqrt{3}$D. $\sqrt{6}$5. 已知等差数列$\{a_n\}$的前n项和为$S_n = 3n^2 - n$,则数列$\{a_n\}$的公差为:A. 2B. 3C. 4D. 56. 若等比数列$\{a_n\}$的公比为$q$,且$a_1 + a_2 + a_3 = 12$,$a_2 \cdot a_3 = 48$,则$q$的值为:A. 2B. 3C. 4D. 67. 已知直线$y = kx + b$经过点$A(1, 2)$和点$B(3, 6)$,则直线$y = kx +b$的斜率$k$为:A. 1B. 2C. 3D. 48. 函数$f(x) = \frac{1}{x^2 - 1}$的图像在下列哪个区间内是连续的?A. $(-\infty, -1)$B. $(-1, 1)$C. $(1, +\infty)$D. $(-\infty, -1) \cup (-1, 1) \cup (1, +\infty)$9. 若向量$\vec{a} = (2, 3)$,向量$\vec{b} = (-1, 2)$,则$\vec{a} \cdot \vec{b}$的值为:A. 7B. 5C. 1D. -110. 已知函数$f(x) = x^3 - 6x^2 + 9x$,若$f'(x) = 0$,则$x$的值为:A. 0B. 1C. 3D. 2二、填空题(本大题共5小题,每小题10分,共50分。
省重点高中高一新生提前招生考试数学试卷及答案(共5份)

18.解:按颜色把 8 个扇形分为红 1、绿 1、黄 1、红 2、绿 2、黄 2、绿 3、黄
3,所有可能结果的总数为 8。
( 1)指针指向红色可能结果为
21
2,∴ P(指针指向红色) =
。
84
( 2)指针指向黄色或绿色可能结果为
6,∴ P(指针指向黄色或绿色)
63
=
。
84
a2 4
1
a2a2 a3
19.解:
2
3 m2
=
4
x1
x 2 ቤተ መጻሕፍቲ ባይዱ即
9 m 4 = 3 m 2。解之得
16
4
此时
3m2 4
2
32 3
43
1 。 点 C 的坐标为
OC 1。
m 2 3。 3
0, 1 。
又 x2
2
x1
2
x1 x2
4 x1 x2
2
m4
3 m2 4
4 m 2,
m > 0 , x 2 x1
2m 4 3 ,即 AB 3
4 3。 3
1
∴ ∠PDF= ∠ DFA= ∠ DFP。∴ PD=PF。
∴ PA=PF。即 P 是线段 AF 的中点。
( 3)∵∠ DAF= ∠DBA ,∠ ADB= ∠ FDA ,∴△ FDA ∽△ ADB 。
AD AF
∴
。
DB AB
15
AD AF ∴在△ ADB 中, tan ABD
2
3 。
DB AB 10 4
D. 12 3
10.二次函教 y x2 2x 5 有
A .最大值 5 B.最小值 5 C.最大值 6 D .最小值 6
重点高中提前招生数学练习卷(有答案)

重点高中提前招生数学练习卷班级 姓名 成绩一、选择题(每小题4分,共32分)1.若0<x <1,则x -1,x ,x 2的大小关系是( C )A .x -1<x <x 2B . x <x 2<x -1C .x 2<x <x -1D .x 2<x -1<x 【解析】用特殊值法,例如,取x =12.2.匀速行驶的城际列车,若将速度提高25%,则相同距离的 行车时间可节省k %,那么k 的值是( D )A .35B .30C .25D .20【解析】设距离为s ,原速为v ,则(s v -s 1.25v )÷sv =20%,∴k =20.3.如图,将△ADE 绕正方形ABCD 的顶点A 顺时针旋转90°, 得△ABF ,连接EF 交AB 于H ,则下列结论错误的是( C )A .AE ⊥AFB .EF ∶AF =2∶1C .AF 2=FH •FED .FB ∶FC =HB ∶EC4.用0,l ,2,3,4,5,6,7,8这九个数字组成若干个一位数或两位数(每个数字都只用一次),然后把所得的数相加,它们的和不可能是( C ) A. 36 B. 117 C. 115 D. 153【解析】由于a +b +c +d +e +f +g +h +i =36,当组成的数中含有两位数时(如a 为十位数字),它们的和为10a +b +c +d +e +f +g +h +i =9a +(a +b +c +d +e +f +g +h +i) =36+9a 为9的倍数.同理,当多个数为十位数字时(如a ,b ,c 为十位数字),它们的和为10a +10b +10c +d +e +f +g +h +i =9a +9b +9c +(a +b +c +d +e +f +g +h +i)=36+9a +9b +9c 仍为9的倍数. ∵115不是9的倍数,∴C 答案不可能.5.如图,四边形ABMN ,BCPQ 是两个全等的矩形(AB ≤BC ),点R 在线段AC 上移动,则满足∠NRP =90°的点R 有( C )A. 1个B. 2个C. 1个或2个D. 无数多个 【解析】设AB =a ,BC =b ,AR =x. ∵∠A =∠C =∠NRP =90°,∴△ANR ∽△CRP , ∴AN RC =AR CP ,即b a +b -x =x a ,∴x 2-(a +b)x +ab =0, 解得x 1=a ,x 2=b. ∴当a <b 时点R 有2个,当a =b 时点R 有1个,故选C.6. 实数a ,b ,c 满足a +b +c =0,且abc >0,则1a +1b +1c的值是( B )A. 正数B. 负数C. 零D. 不能确定【解析】将等式a +b +c =0两边平方,得a 2+b 2+c 2+2ab +2bc +2ca =0, ∴ab +bc +ca =-12(a 2+b 2+c 2)<0. ∵abc >0,∴1a +1b +1c =ab +bc +caabc<0.7.在△ABC 中,点D ,E 分别在AB ,AC 上,CD 与BE 相交于点F ,已知△BDF 的面积为10,△BCF 的面积为20,△CEF 的面积为16,则四边形ADFE 的面积等于( D ) A .22 B .24 C .36 D .44 【解析】如图,由题意得x y +16=1020,y x +10=1620, ∴⎩⎨⎧2x =y +16,5y =4x +40,解得⎩⎨⎧x =20,y =24.∴四边形ADFE 的面积为44.8.某医院内科病房有护士15人,每2人一班,轮流值班,每8小时换班一次,某两人同值一班后,到下次两人再同班,最长需要( B )A .30天B .35天C .56天D .448天 【解析】15人每2人一班,轮流值班,有15×142=105种排法.每8小时换班一次,一天须排3班,某两人同值一班后,到下次两人再同班,最长需要105÷3=35(天). 二、填空题(每小题5分,共40分)9.已知∠A 为锐角,且4sin 2A -4sin A cos A +cos 2A =0,则tan A = . 【答案】12【解析】由题意得(2sin A -cos A )2=0,∴2sin A -cos A =0,∴sinA cosA =12. ∴tan A =sinA cosA =12.10.在某海防观测站的正东方向12海里处有A ,B 两艘船相遇,然后A 船以每小时12海里的速度往南航行,B 船以每小时3海 里的速度向北漂移.则经过 小时后,观测站及A ,B 两 船恰成一个直角三角形. 【答案】211.一个样本为l ,3,2,2,a ,b ,c .已知这个样本唯一的众数 为3,平均数为2,则这个样本的方差为 . 【答案】87【解析】这个样本为l ,3,2,2,3,3,0.∴方差为87.12.如图,直角坐标系中,沿着两条坐标轴摆着三个相同的长方 形,其长、宽分别为4,2,则通过A ,B ,C 三点的拋物线对应的 函数关系式是 . 【答案】y =-512x 2-12x +20313. 在一个木制的棱长为3的正方体的表面涂上颜色,将它的棱三等分,然后从等分点把正方体锯开,得到27个棱长为l 的小正方体,将这些小正方体充分混合后,装入口袋,从这个口袋中任意取出一个小正方体,则这个小正方体的表面恰好涂有两面颜色的概率是 . 【答案】4914. 如图,在边长为2的正方形ABCD 的四边上分别取点E ,F ,G ,H ,当四边形EFGH 各边的平方和EF 2+FG 2+GH 2+HE 2取得最小值时,四边形EFGH 的面积为 . 【答案】2【解析】设AE =a ,BF =b ,CG =c ,DH =d ,∴EF 2+FG 2+GH 2+HE 2=(2-a)2+b 2+(2-b)2+c 2+(2-c)2+d 2+(2-d)2+a 2 =2a 2+2b 2+2c 2+2d 2-4a -4b -4c -4d +16 =2[(a -1)2+(b -1)2+(c -1)2+(d -1)2+4] 当a =b =c =d =1时,四边形EFGH 恰好是 正方形ABCD 的中点四边形, ∴四边形EFGH 的面积为2.15.点P ,Q 从点A (2,0)同时出发,沿正方形BCDE 的边匀速运动,点P 以每秒1个单位的速度按逆时针方向运动,点Q 以每秒2个单位的速度按顺时针方向运动,则P ,Q 两点第11次相遇时的坐标是 . 【答案】(-43,-2)【解析】∵P ,Q 第一次相遇时,点P 所走的路程为周长的13,∴第3次相遇时点P 回到A 处.以此类推,第6次、第9次相遇时点P 均在A 处. 第11次相遇时,点P 从A 处出发,走了周长的23,其坐标为(-43,-2).16. 已知2,a ,b 分别为三角形三边,且a ,b 为方程(3x 2-4x -1)(3x 2-4x -5)=12的根,则三角形周长为 .【答案】163,203【解析】解方程(3x 2-4x -1)(3x 2-4x -5)=12,设3x 2-4x =y ,则(y -1)(y -5)=12, 解得y =-1或y =7.当y =-1时,3x 2-4x +1=0,解得x 1=1,x 2=13,当y =7时,3x 2-4x -7=0,解得x 3=-1,x 4=73.其中能与2组成三角形只有2种:(2,1,73),(2,73,73),∴周长为163或203.三、解答题(共58分)17.(10分)已知a =12+3, 求1-2a +a 2a -1-a 2-2a +1a 2-a 的值.【解】由已知得a =2- 3.原式=(1-a)2a -1-(a -1)2a(a -1). a =2-3<1,∴(a -1)2=1-a.∴原式=a -1+1a=2-3-1+2+3=3.18.(10分)在凸四边形ABCD 中,∠A -∠B =∠B -∠C =∠C -∠D >0,且四个内角中有一个角为84°,求其余各角的度数.【解】设∠A -∠B =∠B -∠C =∠C -∠D =x , 则∠C =∠D +x ,∠B =∠D +2x ,A =∠D +3x ,∵∠A +∠B +∠C +∠D =6x +4∠D =360°,∴∠D +32x =90°.若∠D =84°,则x =4°,∴∠A =96°,∠B =92°,∠C =88°; 若∠C =84°,则2x +4∠C =360°,x =12°,∴∠A =108°,∠B =96°,∠D =72°. 若∠B =84°,则-2x +4∠B =360°,x =-12°(舍去). 若∠A =84°,则-6x +4∠A =360°,x =-4(舍去).. ∴各角的度数为∠A =96°,∠B =92°,∠C =88°,∠D =84°;或∠A =108°,∠B =96°,∠C =84°,∠D =72°.19.(12当比赛进行到12 (1)试判断甲队胜、平、负各几场?(2)若每一场每名参赛队员均得出场费500元,设甲队中一位参赛队员所得的奖金与出场费的和为W (元),试求W 的最大值.【解】(1)设甲队胜x 场,平y 场,负z 场,则⎩⎨⎧x +y +z =12,3x +y =19,∴⎩⎨⎧y =19-3x ,z =2x -7,依题意知x≥0,y≥0,z≥0,且x ,y ,z 均为整数,∴⎩⎪⎨⎪⎧x ≥019-3x ≥0,2x -7≥0,∴解得72≤x ≤193,∴甲队胜、平、负的场数有三种情况:当x =4时,y =7,z =1; 当x =5时,y =4,z =3; 当x =6时,y =1,z =5.(2)∵W =(1500+500)x +(700+500)y +500z =-600x +19300. 当x =4时,W 最大值=-600×4+19300=16900(元) ∴W 的最大值为16900元.20.(12分)对于平面直角坐标系 xOy 中的点P (a ,b ),若点P'的坐标为(a +bk ,ka +b )(k 为常数,k ≠0),则称点P'为点P 的“k 属派生点”.例如:P (1,4)的“2属派生点”为P'(1+42,2×1+4),即P'(3,6).(1)①点P (-1,-2)的“2属派生点”P'的坐标为___________. ②若点P 的“k 属派生点”为P'(3,3),请写出一个符合条件的点P 的坐标____________. (2)若点P 在x 轴的正半轴上,点P 的“k 属派生点”为P'点,且△OPP'为等腰直角三角形,则k 的值为 .(3)如图, 点Q 的坐标为(0,43),点A 在函数y =-43x(x <0)的图象上,且点A 是点B 的“-3属派生点”,当线段BQ 最短时,求B 点坐标. 【解】(1)①(-2,-4);②答案不唯一,只需横、纵坐标之和为3即可,如(1,2).(2)±1. (3)设B (a ,b ),则A (a -b3,-3a +b ). ∵点A 在反比例函数y =-43x的图象上, ∴(a -b3)(-3a +b)=-4 3.∴(3a -b)2=12.∴b =3a -23或b =3a +2 3.∴B 在直线y =3x -23或y =3x +23上.过Q 作y =3x +23的垂线Q B 1,垂足为B 1,求得B 1(32,723). ∵点Q 到直线y =3x -23的距离大于Q B 1,∴B 1即为所求的B 点,∴B (32,723).21.(14分)已知:矩形ABCD (字母顺序如图)的边长AB =3,AD =2,将此矩形放在平面直角坐标系xOy 中,使AB 在x 轴的正半轴上,矩形的其它两个顶点在第一象限,且直线y =32x -1经过这两个顶点中的一个. (1)求矩形的各顶点的坐标.(2)以AB 为直径作⊙M ,经过A ,B 两点的抛物线y =ax 2+bx +c 的顶点是P 点. ①若点P 位于⊙M 外,且在矩形ABCD 内部,求a 的取值范围.②过点C 作⊙M 的切线交AD 于F 点,当PF ∥AB 时,试判断抛物线与y 轴的交点Q 是位于直线y =32x -1的上方?还是下方?还是正好落在此直线上?并说明理由.【解】(1)设A (m ,0)(m >0),则有B (m +3,0);C (m +3,2),D (m ,2); 若C 点过直线y =32x -1;则2=32( m +3)-1,解得m =-1(舍去);若点D 过直线y =32x -1,则2=32m -1,m =2(符合题意).∴A (2,0),B (5,0),C (5,2),D (2,2). (2)①∵⊙M 以AB 为直径,∴M (72,0),设抛物线y =a(x -2)( x -5)=ax 2-7ax +10a , ∴抛物线顶点P (72,-94a ).∵顶点同时在⊙M 内和在矩形ABCD 内部, ∴32<-94a <2,∴-89<a <-23. ②设切线CF 与⊙M 相切于Q ,交AD 于F (如图所示). 设AF =n ,由切线长定理得FQ =AF =n ,∴CF =n +2.由勾股定理得DF 2+DC 2=CF 2,∴32+(2-n)2=( n +2)2,解得n =98,∴F (2,98).当PF ∥AB 时,P 点纵坐标为98,∴-94a =98,∴a =-12.∴抛物线的解析式为y =-12x 2+72x -5,与y 轴的交点为Q (0,-5).∵直线y =32x -1与y 轴交点(0,-1),∴Q 在直线y =32x -1下方.。
高中提前招生模拟卷答案(一)

2021年提前招生模拟题(一)参考答案说明:本卷总分为150分,考试时间100分钟。
共32题,8页。
相对原子质量:H-1C-12N-14O-16Na-23S-32Cl-35.5Ca-40Fe-56g=10N/kg一、选择题(每题3分,每小题只有一个选项是正确的,共60分)题号12345678910答案A B D C B C B B B D 题号11121314151617181920答案C D A A C A B A C B 二、简答题(21小题每空1分,其余每空2分,共25分)21、(1)维生素(2)C6H12O6+6O2==6CO2+6H2O+能量(3)血红蛋白(4)由静脉血变成动脉血(5)神经系统和激素22、CO2、Cu、H2O O2Cu2(OH)2CO323、(1)先通一段时间一氧化碳__。
(2)20%24、(1)动(2)=(3)有价值.在阻力无法避免的情况下,用粗糙程度不同的轨道多次实验,轨道越光滑,h2约接近h1,即可推理得出:当无阻力时,h2=h1,即可判断V B=V A.25、375KJ4000J/(Kg.C)三、实验探究题(每空2分,共30分)26.(1)铁屑(2)打开H2(3)关闭活塞E,使FeSO4溶液被压入B瓶中进行反应(4)4Fe(OH)2+O2+2H2O=4Fe(OH)327、(1)Fa==1/2X Fb==X,(2)10cm(3)________7.5cm__________1228、(1)(1)用不同金属丝组成闭合回路;两连接点之间有温度差(2)测温装置(合理即可)29、(1)⑵①Cl 2>Br 2>I 2>S,②B四、分析计算题(本题有3小题,第30题11分,第31题9分,32题15分,共35分)30、解:(1)m=ρv=2.5×103×200×10-4×2=100(kg)G=mg=100×10=1000(N)(3分)(2)V 排=V 物=200×10-4米2×2米=0.04米3F 浮=ρ水gV 排=400N由T=2F ,T=G-F 浮得F=300N (3分)(3)F 浮’=G-T ’=1000N-2×350N=300N (1分)V 排’=)1)((03.010100.1300'33分水浮m gF =⨯⨯=ρ物体浸入水中的长度h 为:)1()(5.102.003.0'分排---===m SV h 物体上升的高度为:L=H-h=15-1.5=13.5(m)(1分)t=l/v =13.5/0.2=67.5s(1分)31、(1)由甲图,短路电流:0R U I =,3A 0R U=由乙图:024R U P =最大,即 4.5W 024R U =U =6V ,R 0=2Ω,4个电压为1.5V 的干电池组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中提前批招生数学模拟卷一、选择题(共8题,每题5分,共40分):1.国家质检总局出台了国内销售的纤维制品甲醛含量标准, 从2003年1月1 日起正式实施.该标准规定:针织内衣. 床上用品等直接接触皮肤的制品,甲醛含量应在百万分之七十五以下. 百万分之七十五用科学记数法表示应写成.........................( ) A .75×10-7; B .75×10-6; C .7.5×10-6; D .7.5×10-5 2.如图:是一个正方体的平面展开图,当把它拆成一个正方体, 与空白面相对的字应该是................................................( ) A .北 B .京 C .欢 D .迎3.若),(),,(222111y x P y x P 是二次函数)0(2≠++=abc c bx ax y 的图象上的两点,且21y y =,则当21x x x +=时,y 的值为..............................................( )A .0B .cC .ab- D .a b ac 442-4.如图,有三根长度相同横截面为正方形的直条形木块1I 、2I 、3I ,若将它们靠紧放 置在水平地面上时,且A 、B 、C 恰在一直线上,木块1I 、2I 、3I 的体积分别为1V 、2V 、3V ,则下列结论中正确的是……………( )A .321V V V +=B .2312V V V +=C .232221V V V += D .3122V V V =5.红星学校准备开办一些学生课外活动的兴趣班 计算机 奥数 英语口语 计划人数1009060班 计算机 英语口语 音乐艺术 报名人数280250200若计划招生人数和报名人数的比值越大,表示学校开设该兴趣班相对学生需要的满足程度就越高,那么根据以上数据,满足程度最高的兴趣班是...........( ) A .计算机班; B .奥数班; C .英语口语班; D .音乐艺术班1I2I3IAA 1BB 1CC 16.如图,AE ⊥AB 且AE=AB ,BC ⊥CD 且BC=CD ,请按照图中所标注的数据,计算图中实线所围成的图形的面积S 是( )A .50B .62C .65D .687.已知:如图1,点G 是BC 的中点,点H 在AF 上,动点P 以每秒2cm 的速度沿图1的边线运动,运动路径为:H F E D C G →→→→→,相应的△ABP 的面积)(2cm y 关于运动时间)(s t 的函数图像如图2,若cm AB 6=,则下列结论中正确的个数有.....................( )图1AF BCDEHG(1)图1中的BC 长是8cm (2)图2中的M 点表示第4秒时y 的值为242cm (3)图1中的CD 长是4cm (4)图2中的N 点表示第12秒时y 的值为182cm A .1个 B .2个 C .3个 D .4个8.在四边形ABCD 中,对角线AC 与BD 相交于点E ,若AC 平分∠DAB ,AB=AE ,AC=AD.那么在下列四个结论中:(1) AC ⊥BD ;(2)BC=DE ; (3)∠DBC=12∠DAB ;(4) △ABE是正三角形,正确的是..................................( ) A .(1)和(2); B .(2)和(3); C .(3)和(4); D .(1)和(4) 二、填空题(共8题,每题5分,共40分)9.一元二次方程0522=++x kx 有根的k 的取值范围是________________.10.如图,两个标有数字的轮子可以分别绕轮子的中心旋转,旋转停止时,每个轮子上方的箭头各指着轮子上的一个数字,若左图轮子上方的箭头指着的数字为a ,右图轮子上方的箭头指着的数字为b ,数对(a ,b )所有可能的个数为n ,其中a +b 恰为偶数的不同数对的参数为m ,则m/n 等于_____________.11.如图,圆柱形开口杯底部固定在长方体水池底,向水池匀速注入水(倒在杯外),水池中水面高度是h ,注水时间为t ,则h 与t 之间的关系大致为下图中的 (填标号).⑴ ⑵12.在平面直角坐标系中,点A 的坐标为(0,4),点B 的坐标为(-1,0),以线段AB 上一点P 为圆心作圆与OA ,OB 均相切,则点P 的坐标 .h Oth Oth Oth Ot13.等腰△ABC 的底边BC=8cm ,腰长AB=5cm ,一动点P 在底边上从点B 开始向点C 以0.25cm/秒的速度运动, 当点P 运动到PA 与腰垂直的位置时,点P 运动的时间应为 秒.14.从卫生纸的包装纸上得到以下资料:两层300格,每格11.4cm×11cm ,如图甲。
用尺 量出整卷卫生纸的半径(R )与纸筒内芯的半径(r ),分别为5.8cm 和2.3cm ,如图乙。
那么该两层卫生纸的厚度为 cm.(π取3.14,结果精确到0.001cm )15.定义一种对正整数n 的“F ”运算:①当n 为奇数时,结果为3n +5;②当n 为偶数时,结果为kn2(其中k 是使kn2为奇数的正整数),并且运算重复进行. 例如,取n =26,则:若n =449,则第449次“F 运算”的结果是 .16.把三根长为1cm 的火柴杆和三根长为3cm 的火柴杆摆放成如右图所示的圆周上,构成一个六边形,那么此六边形的面积是由三根长为1cm 的火柴杆所构成的等边三角形面积的 倍. 三、解答题(共5题,10分+14分+14分+16分+16分=70分)17.在“3.15”消费者权益日的活动中,对甲、乙两家商场售后服务的满意度进行了抽查. 如图反映了被抽查用户对两家商场售后服务的满意程度(以下称:用户满意度),分为很不满意、不满意、较满意、很满意四个等级,并依次记为1分、2分、3分、4分.(1)请问:甲商场的用户满意度分数的众数为 ;乙商场的用户满意度分数的众数为 .(2)分别求出甲、乙两商场的用户满意度分数的平均值(计算结果精确到0.01).(3)请你根据所学的统计知识,判断哪家商场的用户满意度较高,并简要说明理由.26134411第一次F ② 第二次F ① 第三次F ② …图甲 图乙 很不满意 不满意 较满意 500500 100 1000 1000 2000900 10002000 2200 1300甲商场抽查用户数 乙商场抽查用户数18.池塘中竖着一块碑,在高于水面1米的地方观测,测得碑顶的仰角为︒20,测得碑顶在水中倒影的俯角为︒30(研究问题时可把碑顶及其在水中的倒影所在的直线与水平线垂直),求水面到碑顶的高度(精确到0.01米,747.270tan ≈︒)19.A 地产汽油,B 地需要汽油,汽车自A 地运汽油往B 地,往返所需的汽油正好等于满载汽油的吨数,故无法直接自A 地运往B 地.因此,需在中途设一油库为中间站C ,自A 往返于A 、C 间的汽车将油从A 地运送至C 地,然后再由往返于C 、B 间的汽车将油从C 地运至B 地.设A 、B 两地的路程为s ,B 地收到的汽油吨数与A 地运出汽油的吨数之比为运油率k .(1)当AC =13s 时,求运油率k 的值.(2)当AC 为何值时,运油率最大?并求出此时的运油率k .20.在等腰梯形ABCD 中,AB=DC=5,AD=4,BC=10. 点E 在下底边BC 上,点F 在腰AB 上.(1)若EF 平分等腰梯形ABCD 的周长,设BE 长为x ,试用含x 的代数式表示△BEF 的面积;(2)是否存在线段EF 将等腰梯形ABCD 的周长和面积同时平分?若存在,求出此时BE 的长;若不存在,请说明理由;(3)是否存在线段EF 将等腰梯形ABCD 的周长和面积同时分成1∶2的两部分?若存在,求出此时BE 的长;若不存在,请说明理由.21.某校部分住校生,放学后到学校锅炉房打水,每人接水2升,他们先同时打开两个放水笼头,后来因故障关闭一个放水笼头.假设前后两人接水间隔时间忽略不计,且不发生泼洒,锅炉内的余水量y(升)与接水时间x(分)的函数图象如图.请结合图象,回答下列问题:(1)根据图中信息,请你写出一个结论;(2)问前15位同学接水结束共需要几分钟?(3)小敏说:“今天我们寝室的8位同学去锅炉房连续接完水恰好用了3分钟.”你说可能吗?请说明理由.参考答案一、选择题1.D 2.C 3.B 4.D 5.B 6.A 7.D 8.B 二、填空题9.05/1≠≤k k 且 10. 5/12 11.(2) 12.(-4/5,4/5) 13.7或 25 14 .0.026 15.8 16.2217.解:(1)3;3-----------------------------------------------------------------------------------(2分) (2)甲商场抽查用户数为:500+1000+2000+1000=4500(户)乙商场抽查用户数为:100+900+2200+1300=4500(户) ------------(3分) 所以甲商场满意度分数的平均值=500×1+1000×2+2000×3+1000×44500≈2.78(分)-----------(5分)乙商场满意度分数的平均值=100×1+900×2+2200×3+1300×44500 ≈3.04(分)答:甲、乙两商场用户满意度分数的平均值分别为2.78分、3.04分.-------------(7分) (3)因为乙商场用户满意度分数的平均值较高(或较满意和很满意的人数较多),所以乙商场的用户满意度较高.----------------------------------------------------------------(10分) 18.解:如图,DE 表示水面,A 表示观测点,B 为碑顶,B '在水中的倒影,由题意:()m 13020=︒='∠︒=∠,AD AC B ,BAC︒='∠︒=∠∴60,70B B设x BE =,则.1,1+='-=x C B x BC在Rt △ABC 中,()︒-=⋅=70tan 1tan x B BC AC ○1 在Rt △A B 'C 中,()︒+='⋅'=60tan 1tan x B C B AC ○2 由○1、○2得()()︒+=︒-60tan 170tan 1x x()︒+︒=︒-︒∴60tan 70tan 60tan 70tan xB 'EA BC D41.4479.4015.1≈∴=x x 米答:水面到碑顶的高度4.41米.19.解:(1)设满车载油a 吨,则汽车A 地灌油到C 地,可输入油库a 32吨, 故A 地到C 地的运油率为32……………………(3分) 同理:C 地到B 地的运油率为31……………………(4分)∴923132=⨯=k ……………………(6分)(2)设AC=x ,则A 地到C 地的运油率为sx-1 ………………(8分)C 地到B 地的运油率为s xs x =--)1(1 ……………………(10分)∴A 地到B 地的运油率x s x ss x s x k 11)()1(22+-=⋅-= ………(12分)故当2s x =时,运油率k 最大为41……………………(14分)20.(1)由已知条件得:梯形周长为12,高4,面积为28。