树和二叉树的基本知识

合集下载

二叉树知识点总结

二叉树知识点总结

二叉树知识点总结1. 二叉树的性质1.1 二叉树的性质一:二叉树的深度二叉树的深度是指从根节点到叶子节点的最长路径长度。

对于一个空树而言,它的深度为0;对于只有一个根节点的树而言,它的深度为1。

根据定义可知,深度为k的二叉树中,叶子节点的深度值为k。

由此可知,二叉树的深度为所有叶子节点深度的最大值。

1.2 二叉树的性质二:二叉树的高度二叉树的高度是指从根节点到叶子节点的最短路径长度。

对于一个空树而言,它的高度为0;对于只有一个根节点的树而言,它的高度为1。

由此可知,二叉树的高度总是比深度大一。

1.3 二叉树的性质三:二叉树的节点数量对于一个深度为k的二叉树而言,它最多包含2^k - 1个节点。

而对于一个拥有n个节点的二叉树而言,它的深度最多为log2(n+1)。

1.4 二叉树的性质四:满二叉树满二叉树是一种特殊类型的二叉树,它的每个节点要么是叶子节点,要么拥有两个子节点。

满二叉树的性质是:对于深度为k的满二叉树而言,它的节点数量一定是2^k - 1。

1.5 二叉树的性质五:完全二叉树完全二叉树是一种特殊类型的二叉树,它的所有叶子节点都集中在树的最低两层,并且最后一层的叶子节点从左到右依次排列。

对于一个深度为k的完全二叉树而言,它的节点数量一定在2^(k-1)和2^k之间。

2. 二叉树的遍历二叉树的遍历是指按照一定的顺序访问二叉树的所有节点。

二叉树的遍历主要包括前序遍历、中序遍历和后序遍历三种。

2.1 前序遍历(Pre-order traversal)前序遍历的顺序是:根节点 -> 左子树 -> 右子树。

对于一个二叉树而言,前序遍历的结果就是按照“根-左-右”的顺序访问所有节点。

2.2 中序遍历(In-order traversal)中序遍历的顺序是:左子树 -> 根节点 -> 右子树。

对于一个二叉树而言,中序遍历的结果就是按照“左-根-右”的顺序访问所有节点。

2.3 后序遍历(Post-order traversal)后序遍历的顺序是:左子树 -> 右子树 -> 根节点。

第7章-树和二叉树第2讲-二叉树的概念

第7章-树和二叉树第2讲-二叉树的概念
(root),其余结点可分为m (m≥0)个互不相交的有限子集 T1、T2、…、Tm,而每个子集本身又是一棵树,称为根结点 root的子树。 树中所有结点构成一种层次关系!
第一层
树的特 点?
第二层 第三层 第四层
复习:二、树的基本术语
1.结点A、D的度?树的度? 2;3;3; 2.根结点?分支结点?叶子结点? A;BCDE;GHIJF;
在二叉链中,空指针的个数?
b A
B∧
C
∧D
∧E∧
∧F∧
∧G∧
n个结点 2n个指针域 分支数为n-1 非空指针域有n-1个 空指针域个数 = 2n-(n-1) = n+1
n=7 空指针域个数=8
39/10
40/10
二叉树
当n=3,结果为ห้องสมุดไป่ตู้。
第n个Catalan数
41/23
有n个结点并且高度为n的不同形态的二叉树个数是多少? 该二叉树:有n层,每层一个结点,该结点可以
43/23
结点个数为n,树形可以唯一确定 叶子结点个数为n0,树形不能唯一确定 n为奇数时,n1=0; n为偶数时,n1=1。 n0=n2+1 高度h= log2(n+1),是n个结点高度最小的二叉树
44/23
含有60个叶子结点的二叉树的最小高度是多少?
在该二叉树中,n0=60,n2=n0-1=59,n=n0+n1+n2=119+n1。 当n1=0且为完全二叉树时高度最小。 此时高度h=log2(n+1)= log2120=7。
作为双亲结点的左孩子,也可以作为右孩子 这样的二叉树的个数=1×2×…×2=2n-1。
例如,当n=3时有22=4个这样的二叉树。

二叉树,树,森林遍历之间的对应关系

二叉树,树,森林遍历之间的对应关系

二叉树,树,森林遍历之间的对应关系一、引言在计算机科学中,数据结构是非常重要的知识点之一。

而树这一数据结构,作为基础的数据结构之一,在软件开发中有着广泛的应用。

本文将重点探讨二叉树、树和森林遍历之间的对应关系,帮助读者更加全面地理解这些概念。

二、二叉树1. 二叉树的定义二叉树是一种特殊的树结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。

二叉树可以为空,也可以是一棵空树。

2. 二叉树的遍历在二叉树中,有三种常见的遍历方式,分别是前序遍历、中序遍历和后序遍历。

在前序遍历中,节点的访问顺序是根节点、左子树、右子树;在中序遍历中,节点的访问顺序是左子树、根节点、右子树;在后序遍历中,节点的访问顺序是左子树、右子树、根节点。

3. 二叉树的应用二叉树在计算机科学领域有着广泛的应用,例如用于构建文件系统、在数据库中存储有序数据、实现算法中的搜索和排序等。

掌握二叉树的遍历方式对于理解这些应用场景非常重要。

三、树1. 树的定义树是一种抽象数据类型,由n(n>0)个节点组成一个具有层次关系的集合。

树的特点是每个节点都有零个或多个子节点,而这些子节点又构成了一颗子树。

树中最顶层的节点称为根节点。

2. 树的遍历树的遍历方式有先根遍历、后根遍历和层次遍历。

在先根遍历中,节点的访问顺序是根节点、子树1、子树2...;在后根遍历中,节点的访问顺序是子树1、子树2...,根节点;在层次遍历中,节点的访问顺序是从上到下、从左到右依次访问每个节点。

3. 树的应用树广泛用于分层数据的表示和操作,例如在计算机网络中的路由算法、在操作系统中的文件系统、在程序设计中的树形结构等。

树的遍历方式对于处理这些应用来说至关重要。

四、森林1. 森林的定义森林是n(n>=0)棵互不相交的树的集合。

每棵树都是一颗独立的树,不存在交集。

2. 森林的遍历森林的遍历方式是树的遍历方式的超集,对森林进行遍历就是对每棵树进行遍历的集合。

3. 森林的应用森林在实际编程中经常用于解决多个独立树结构的问题,例如在数据库中对多个表进行操作、在图像处理中对多个图形进行处理等。

数据结构树的知识点总结

数据结构树的知识点总结

数据结构树的知识点总结一、树的基本概念。

1. 树的定义。

- 树是n(n ≥ 0)个结点的有限集。

当n = 0时,称为空树。

在任意一棵非空树中:- 有且仅有一个特定的称为根(root)的结点。

- 当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1、T2、…、Tm,其中每个集合本身又是一棵树,并且称为根的子树(sub - tree)。

2. 结点的度、树的度。

- 结点的度:结点拥有的子树个数称为结点的度。

- 树的度:树内各结点的度的最大值称为树的度。

3. 叶子结点(终端结点)和分支结点(非终端结点)- 叶子结点:度为0的结点称为叶子结点或终端结点。

- 分支结点:度不为0的结点称为分支结点或非终端结点。

- 除根结点之外,分支结点也称为内部结点。

4. 树的深度(高度)- 树的层次从根开始定义起,根为第1层,根的子结点为第2层,以此类推。

树中结点的最大层次称为树的深度(或高度)。

二、二叉树。

1. 二叉树的定义。

- 二叉树是n(n ≥ 0)个结点的有限集合:- 或者为空二叉树,即n = 0。

- 或者由一个根结点和两棵互不相交的、分别称为根结点的左子树和右子树的二叉树组成。

2. 二叉树的特点。

- 每个结点最多有两棵子树,即二叉树不存在度大于2的结点。

- 二叉树的子树有左右之分,次序不能颠倒。

3. 特殊的二叉树。

- 满二叉树。

- 一棵深度为k且有2^k - 1个结点的二叉树称为满二叉树。

满二叉树的特点是每一层上的结点数都是最大结点数。

- 完全二叉树。

- 深度为k的、有n个结点的二叉树,当且仅当其每一个结点都与深度为k的满二叉树中编号从1至n的结点一一对应时,称之为完全二叉树。

完全二叉树的叶子结点只可能在层次最大的两层上出现;对于最大层次中的叶子结点,都依次排列在该层最左边的位置上;如果有度为1的结点,只可能有一个,且该结点只有左孩子而无右孩子。

三、二叉树的存储结构。

1. 顺序存储结构。

- 二叉树的顺序存储结构就是用一组地址连续的存储单元依次自上而下、自左至右存储完全二叉树上的结点元素。

数据库系统l试题库及答案 第6章 树和二叉树

数据库系统l试题库及答案 第6章 树和二叉树

第6章树和二叉树6.1知识点: 树和二叉树的基本概念一、填空题1.高度为h,度为m的树中至少有___________个结点,至多有______________个结点。

2.树的结点是由及若干指向其子树的组成;结点拥有的子树数称为;度为0的结点称为;度不为0的结点成为;树中结点的最大度数称为;树的最大层次称为_____________。

3.对于一棵具有n个结点的树,该树中所有结点的度数之和为___________。

4.如果结点A有3个兄弟结点,而且B是A的双亲,则B的度是___________。

5.二叉树是另一种树形结构,它的特点是。

6.一颗度数为k且有2k-1个结点的二叉树称为。

7.深度为k,且有n个结点的二叉树,当且仅当其每一个结点都与深度为k的满二叉树中编号从1到n的结点一一对应时,称之为。

8.一棵深度为6的满二叉树有个分支结点和个叶子。

9.一棵具有257个结点的完全二叉树,它的深度为。

10.设一棵完全二叉树具有1000个结点,则此完全二叉树有个叶子结点,有个度为2的结点,有个结点只有非空左子树,有个结点只有非空右子树。

11.由3个结点可以构成__________种形态的的二叉树,可以构成种形态的树。

12.将含有82个结点的完全二叉树从根结点开始顺序编号,根结点为第1号,其他结点自上向下,同一层自左向右连续编号。

则第40号结点的双亲结点的编号为。

13.一棵高度为5的完全二叉树中,最多包含有____________个结点。

14.一棵具有n个结点的二叉树,若它有n0个叶子结点,则该二叉树上度为1的结点n1=____________。

15.在高度为h(h>=0)的二叉树中至多可以有__________个结点,至少可以有___________个结点。

16.n个结点的二叉树最大高度是____________,最小高度是_______________。

二、选择题1.( )不含任何结点的空树()。

A.是一棵树B.是一棵二叉树C.是一棵树也是一棵二叉树D.既不是树也不是二叉树2.()一棵度为4的树中度为1、2、3、4的结点个数为4、3、2、1,则该树的结点总数为()。

基本二叉树知识讲解

基本二叉树知识讲解

基本二叉树知识讲解一、有关二叉树的学习性质1:二叉树上叶子结点数等于度为2的结点数加1。

性质2:二叉树的第i层上至多有2的i次方减1个结点(i>=1)。

性质3:深度为h的二叉树至多有2的h次方减1个结点。

满二叉树:在一棵二叉树中,当第i层的结点树为2的i次方减1个时,称此层的结点数是满的。

当一棵二叉树中的每一层都满时,称此树为满二叉树。

特性:除叶子结点以外的其他的结点的度皆为2,且叶子结点在同一层上。

深度为h的满二叉树中的结点数为2的h次方减1。

性质4:设含有n个结点的完全二叉树的深度为k,则k=(int)(log2n)+1,即深度k等于log2n的整数部分再加1。

二叉树的存储结构1:顺序存储结构二叉树的顺序存储结构类型定义如下:#define TREEMINSIZE 10typedef struct{BTreeDT(数据类型) *base;int spacesize;BTreeDT nullvalue;}SeqTree;2:链式存储结构(一般的二叉树主要采用链式存储结构通常有二叉链表和三叉链表两种形式)1>二叉链表存储结构二叉链表中的每个结点由data,lchild和rchild三个域组成,定义如下:typedef struct bkbtnode{BTreeDT data;struct bkbtnode *lchild;struct bkbtnode *rchild;}BTNode,*BKBTree;在二叉链表中,查找某结点的孩子很容易实现,但查找某结点的双亲不方便。

一棵喊有n个结点的二叉树采用二叉链表存储时,将有2n-(n-1)=n+1个指针域是空的。

2>三叉链表存储结构typedef struct tkbtnode{BTreeDT data;struct tkbtnode *lchild;struct tkbtnode *rchild;struct tkbtnode *parent;}TKBTNode,*TKBTree;其中,parent域存放该结点双亲的指针。

二叉树基本知识

二叉树基本知识

二叉树基本知识:
1.二叉树的定义:二叉树是每个结点最多有两个子树的树结构,它有五种基本形态:
二叉树可以是空集;根可以有空的左子树或右子树;或者左、右子树皆为空。

2.二叉树的性质:若规定根结点的层数为1,则一颗非空二叉树的第i层上最多有2^(i-1)
(i>0)个结点。

若规定只有根结点的二叉树的深度为1,则深度为K的二叉树的最大结
点数是2^K -1 (k >= 0)个。

对任何一颗二叉树,如果其叶子结点个数为n0,度为2的非叶子结点个数为n2,则有n0=n2+1。

3.二叉树的分类:二叉树有两大类,一是普通二叉树,二是特殊二叉树。

普通二叉树
是指除了满二叉树和完全二叉树之外的二叉树,特殊二叉树包括满二叉树和完全二叉树。

满二叉树是指所有层都完全填满的二叉树,而完全二叉树是指只有最下面两层结点度数可以小于2,并且最下面一层的叶子结点都位于本层中间位置的二叉树。

4.二叉树的遍历:二叉树的遍历主要有三种方法,分别是前序遍历、中序遍历和后序
遍历。

前序遍历是先访问根结点,然后遍历左子树,最后遍历右子树;中序遍历是先遍历左子树,然后访问根结点,最后遍历右子树;后序遍历是先遍历左子树,然后遍历右子树,最后访问根结点。

树和二叉树——精选推荐

树和二叉树——精选推荐

第6章 树和二叉树内容概要:本章主要介绍树,二叉树,最优二叉树的相关概念和操作,存储结构和相应的操作,并在综合应用设计中,给出了对应算法的C 语言实现。

教学目标1.理解各种树和森林与二叉树的相应操作。

2.熟练掌握二叉树的各种遍历算法,并能灵活运用遍历算法实现二叉树的其他操作。

3.熟练掌握二叉树和树的各种存储结构及其建立的算法。

4.掌握哈夫曼编码的方法。

5.通过综合应用设计,掌握各种算法的C 语言实现过程。

基本知识点:树和二叉树的定义、二叉树的存储表示、二叉树的遍历以及其它操作的实现、树和森林的存储表示、树和森林的遍历以及其它操作的实现、最优树和赫夫曼编码重点:二叉树的性质、二叉树的遍历及其应用,构造哈夫曼树。

难点:编写实现二叉树和树的各种操作的递归算法。

本章知识体系结构:课时安排:6个课时树的定义 树树的性质 树的逻辑表示法 树形表示法 树的存储结构 双亲存储结构 文氏表示法凹入表示法 括号表示法 孩子存储结构 孩子双亲存储结构二叉树二叉树的定义 二叉树的性质二叉树的逻辑表示法(采用树的逻辑表示法)二叉树的存储结构二叉树的顺序存储结构先序遍历 中序遍历 后序遍历二叉树的遍历 二叉树的链式存储结构(二叉链) 由先序序列和中序序列构造二叉树 由中序序列和后序序列构造二叉树二叉树的构造 二叉树的线索化 哈夫曼树二叉树和树之间的差别 二叉树与树、森林之间的转换二叉树和树课程数据结构教学教具多媒体课件学时2班级06网络教学日期/课时 /2课时教学单元第6章树和二叉树教学方法讲授(PPT)教学目标掌握树、二叉树的基本概念和术语,二叉树的性质教学重点二叉树的定义、二叉树的性质、链式存储结构教学难点二叉树的性质、链式存储二叉树的基本操作组织教学一、树的定义二、树的基本概念三、二叉树的定义、性质四、二叉树的顺序存储结构和链式存储结构五、小结作业复习本讲内容并预习下一讲内容课堂情况及课后分析课程数据结构教学教具多媒体课件学时2班级06网络教学日期/课时 /2课时教学单元第6章树和二叉树教学方法讲授(PPT)教学目标掌握二叉树遍历的三种方法及二叉树的基本操作教学重点二叉树的遍历算法教学难点中序与后序遍历的非递归算法组织教学一、复习二叉树的定义二、遍历二叉树的三种方法三、递归法遍历二叉树四、二叉树的基本操作五、总结作业复习本讲内容并预习下一讲内容课堂情况及课后分析课程数据结构教学教具多媒体课件学时2班级06网络教学日期/课时 /2课时教学单元第6章树和二叉树教学方法讲授(PPT)教学目标理解树与森林的转换,掌握哈夫曼树教学重点哈夫曼树教学难点树与森林的转换组织教学一、导入二、树与森林三、哈夫曼树四、小结作业习题6课堂情况及课后分析前面几章讨论的数据结构都属于线性结构,线性结构的特点是逻辑结构简单,易于进行查找、插入和删除等操作,可用于描述客观世界中具有单一前驱和后继的数据关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

树和二叉树的基本知识树是一种非线性的数据结构,用它能很好地描述有分支和层次特性的数据集合。

树型结构在现实世界中广泛存在,如把一个家族看作为一棵树,树中的结点为家族成员的姓名及相关信息,树中的关系为父子关系,即父亲是儿子的前驱,儿子是父亲的后继;把一个国家或一个地区的各级行政区划分看作为一棵树,树中的结点为行政区的名称及相关信息,树中的关系为上下级关系,如一个城市包含有若干个区,每个区又包含有若干个街道,每个街道又包含有若干个居委会;把一本书的结构看作是一棵树,树中的结点为书、章、节的名称及相关信息,树中的关系为包含关系。

树在计算机领域中也有广泛应用,如在编译系统中,用树表示源程序的语法结构;在数据库系统中,树型结构是数据库层次模型的基础,也是各种索引和目录的主要组织形式。

在许多算法中,常用树型结构描述问题的求解过程、所有解的状态和求解的对策等。

在树型结构中,二叉树是最常用的结构,它的分支个数确定,又可以为空,具有良好的递归特性,特别适宜于程序设计,因此我们常常将一般树型结构转换成二叉树进行处理。

第一节树一、树的定义一棵树(tree)是由n(n>0)个元素组成的有限集合,其中:1.每个元素称为结点(node);2.有一个特定的结点,称为根结点或树根(root);3.除根结点外,其余结点被分成m(m>=0)个互不相交的有限集合T0,T1,T2,……T m-1,而每一个子集T i又都是一棵树(称为原树的子树subtree)。

图1图1就是一棵典型的树结构。

从树的定义可以看出:1.树是递归定义的,这就决定了树的操作和应用大都是采用递归思想来解决;2.一棵树中至少有1个结点,这个结点就是根结点,如上图中的结点1;3.只有根结点没有前趋结点,其余每个结点都有唯一的一个前趋结点;4.所有结点都可以有0或多个后继结点;二、树的基本概念下面以图1为例给出树结构中的一些基本概念:1.一个结点的子树个数,称为这个结点的度(degree),如结点1的度为3,结点3的度为0。

度为0的结点称为叶结点(又称树叶leaf,如结点3、5、6、8、9)。

度不为0的结点称为分支结点(如结点1、2、4、7)。

根结点以外的分支结点又称为内部结点(如结点2、4、7)。

树中各结点的度的最大值称为这棵树的度(又称宽度),图1所示这棵树的(宽)度为3。

2.在用上述图形表示的树结构中,对两个用线段(称为树枝)连接的相关联的结点,称上端的结点为下端结点的父结点,称下端的结点为上端结点的子结点,称同一个父结点的多个子结点为兄弟结点。

如结点1是结点2、3、4的父结点,结点 2、3、4都是结点1的子结点,它们又是兄弟结点,同时结点2又是结点5、6的父结点。

称从根结点到某个子结点所经过的所有结点为这个子结点的祖先。

如结点1、4、7是结点8的祖先。

称以某个结点为根的子树中的任一结点都是该结点的子孙。

如结点7、8、9都是结点4的子孙。

3.定义一棵树的根结点的层次(level)为1,其它结点的层次等于它的父结点的层次数加1。

如结点2、3、4的层次为2,结点5、6、7的层次为3,结点8、9的层次为4。

一棵树中所有结点的层次的最大值称为树的深度(depth),图1所示这棵树的深度为4。

4.若树中各结点的子树是按照一定的次序从左向右安排的,它们之间的次序不能互换,这样的树称之为有序树,否则称之为无序树。

所以,树虽然是非线性结构,但也是有序结构。

例如,对于下面图2中的两棵树,若看作为无序树,则是相同的;若看作为有序树,则是不同的,因为根结点A的两棵子树的次序不同。

又如对于一棵反映了父子关系的家族树,兄弟结点之间是按照排行大小而有序排列的,所以它是一棵有序树。

因为任何无序树都可以当作具有任一次序的有序树来处理,所以下面如果不特别指明,均认为树是有序的。

图25.对于一棵子树中的任意两个不同的结点,如果从一个结点出发,按层次自上而下沿着一个个树枝能到达另一结点,称它们之间存在着一条路径。

可用路径所经过的结点序列表示路径,路径的长度等于路径上的结点个数减1。

如图1中,结点1和结点8之间存在着一条路径,并可用(1、4、7、8)表示这条路径,该条路径的长度为3。

从根结点出发,到树中的其余结点一定存在着一条路径。

注意,不同子树上的结点之间不存在路径。

但是,如果把树看成是一个图的话(可以把树理解为是图的一个子类),那么我们就可以继承图的路径的定义,认为不同子树上的两个结点应该是有路径的(图论意义上的路径)。

6.森林(forest)是m(m>=0)棵互不相交的树的集合。

三、树的表示方法和存储结构树的表示方法有多种,如图1采用的就是一种形象的树形表示法;另外还有一种常用的表示方法“括号表示法”,它的表示方法归纳如下:先将整棵树的根结点放入一对圆括号中,然后把它的子树由左至右放入括号中,同层子树用圆括号括在一起(同层子树之间用逗号隔开),而对子树也采用同样的方法处理,直到所有的子树都只有一个根结点为止。

用括号表示法表示图1的步骤如下:=(T)=(1(T1,T2 ,T3 )) {A是根结点,有3棵子树,用逗号隔开}=(1(2(T11,T12),3,4(T31))) {分别对3棵子树做同样的操作}=(1(2(5,6),3,4(7(T311,T312))))=(1(2(5,6),3,4(7(8,9))))实际上,以上方法是按照树的层次逐步展开,直到所有结点都已列出。

树的存储结构也有多种形式,其中使用较多的采是链式存储结构,下面给出几种常见的存储树的数据结构。

1.父亲表示法:定义一个数组,每个数组元素为一个记录,除了存放一个结点的数据信息外,还存放该结点的父结点编号。

数据结构定义如下:Const m=10; {树的结点数}Type node=Recorddata:Integer; {数据域}parent:Integer; {指针域}End;Var tree:Array[1..m] Of node;这种方法充分利用了树中除根结点外每个结点都有唯一的父结点这个性质,很容易找到树根(可以规定根结点的父结点为0),但找孩子时却需要遍历整个线性表。

2.孩子表示法:利用单链表,每个结点包括一个数据域和若干个指针域,每个指针都指向一个孩子结点。

由于一般树的各个结点的孩子数不确定,所以指针数应该等于整棵树的度。

当树的度越大时,空指针域所占比例也越大,给存储空间造成很大浪费。

假设树的度为10,树的结点仅存放字符,则这棵树的数据结构定义如下:Const m=10; {树的度}Type tree=^node;node=Recorddata:Char; {数据域}child:Array[1..m] Of tree {指针域,指向若干孩子结点}End;Var t:tree;注:空间上的浪费其实可以用“虚开实用”的方法完美地解决,在FreePascal等环境下可以用Getmem、Freemem等过程达到这个目的,这样建立一棵普通树的时间复杂度也是很不错的。

有兴趣的同学可以参考有关书籍与程序。

由于每个结点都只存放各自孩子结点的编号,所以这种方法只能从根(父)结点遍历到子结点,不能从某个子结点返回到它的父结点。

3.父亲孩子表示法:利用双链表结构,每个结点包括一个数据域和二个指针域,一个指向该结点的若干孩子结点,一个指向其父结点。

克服了上述第1种存储方法的缺点,假设树的度为10,树的结点仅存放字符,则这棵树的数据结构定义如下:Const m=10;Type tree=^node;node=Recorddata:Char;child:Array[1..m] Of tree;father:treeEnd;Var t:tree;4.孩子兄弟表示法:有些程序中需要对兄弟结点进行处理,这种情况下,可以使用另外一种双链表结构,每个结点包括一个数据域和二个指针域,一个指针指向该结点的第一个孩子结点,一个指针指向该结点的下一个兄弟结点。

克服了上述第2种存储方法的缺点,假设树的度为10,树的结点仅存放字符,则这棵树的数据结构定义如下:Type tree=^node;node=Recorddata:Char;firstchild,next: tree;End;Var t:tree;四、树的遍历在应用树结构解决问题时,往往需要按照某种次序获得树中全部结点的信息,这种操作叫做“树的遍历”。

遍历一般按照从左向右的顺序,常用的遍历方法有:1.先序(根)遍历:先访问根结点,再从左到右按照先序思想遍历各棵子树。

图1先序遍历的结果为:{1,2,5,6,3,4,7,8,9};2.后序(根)遍历:先从左到右遍历各棵子树,再访问根结点。

图1后序遍历的结果为:{5,6,2,3,8,9,7,4,1};3.层次遍历:按层次从小到大逐个访问,同一层次按照从左到右的次序。

图1层次遍历的结果为:{1,2,3,4,5,6,7,8,9};4.叶结点遍历:有时我们把所有的数据信息都存放在叶结点中,而其余结点都是用来表示数据之间的某种分支或层次关系,这种情况就用这种方法。

图1按照这个思想访问的结果为:{5,6,3,8,9};很明显,先序遍历和后序遍历两种方法的定义是递归的,所以在程序实现时往往也是采用递归的思想,既通常所说的“深度优先搜索”。

按照先序遍历思想编写的递归过程如下:Procedure tra1(t,m) {访问以t为根结点的含有m棵子树的过程}BeginIf t <>Nil Then BeginWrite(t^.data,’’); {访问根结点}For I:=1 To m Do {前序遍历各子树}tra1(t^.child[I],m);End;End;也可以用堆栈的方法编写这个程序,留给读者作为练习。

层次遍历应用也较多,实际上就是我们所说的“广度优先搜索”。

思想如下:若某个结点被访问,则该结点的子结点应被记录下来,等待被访问。

顺序访问各层次上结点,直至不再有未访问过的结点。

为此,引入一个队列来存储等待访问的子结点,设一个队首和队尾指针分别表示出队、进队的下标。

程序框架如下:Const n=100;Var head,tail,i:integer;q:array[1..n] of tree;p:tree;Begintail:=1;head:=1; {初始化}q[tail]:=t;tail:=tail+1; {t进队}While ( head<tail) do Begin {队列非空}p:=q[head];head:=head+1; {取出队首结点}Write(p^.data,‘‘); {访问某结点}For i:=1 To m Do {该结点的所有子结点按顺序进队}If p^.child[i]<>Nil Then Beginq[tail]:=p^.child[I];tail:=tail+1;End;End;End;例1:单词查找树[问题描述] 在进行文法分析的时候,通常需要检测一个单词是否在我们的单词列表里。

相关文档
最新文档