测控电路
测控电路考点整理

红色字体是必须要掌握的时间来不及可以先看一、1.测控电路的主要要求:精度高、响应快、可靠性与经济性、转换灵活(填空选择)2.测控电路的组成(概念、流程框图等看课件)3.测量电路的组成模拟式与数字式AB卷4.开闭环控制流程图(重点)二、1.二极管三极管原理特性了解2.放大电路基本要求(背全文背诵必考)①低噪声;②低的输入失调电压和输入失调电流以及低的漂移;③高共模输入范围和高共模抑制比;④一定的放大倍数和稳定的增益;⑤线性好;⑥输入阻抗应与传感器输出阻抗相匹配;⑦足够的带宽和转换速率。
反相电路同相电路差动放大(有能力同学背原理图及特点)无时间也可以直接记结论3.高共模抑制比放大电路(必考全文背诵)CMRR公式必考考点可能分散在AB卷推导过程都很重要电路组成要看懂原理自动凋零放大电路各部分组成名称两个周期调零原理(不懂原理就背)5.电荷放大电路原理公式不懂原理就背公式截止频率Uo公式等找到规律很好记6.隔离电路好像没考7.失调电压调整外部内部二选一8.转换速率SR=u/t以及最大变换率(考了填空或者填空好像)9.转折频率10.写出三种噪声类型答:(热噪声、低频噪声、散弹噪声)其他略过不考11.基本加法电路、减法电路要看得出来背结构组成和计算公式12.对数指数我记得是没考了解吧知道长什么样就可以13.基本积分运算电路(重点要考的)电路结构+公式14.PID运算电路(重点要考的大题!!)我们当时考了并联PID电路公式推导这个图很复杂很难看不懂背也要背下来每一部分原理组成(非常重要)一定要弄明白(并联简单一点串联PID难一点求稳的话就都看明白原理自己会推导最好!)15.绝对值运算电路也就是半波整流和全波整理(重点考点)16.峰值、最值、平均值运算电路等了解即可三、1.调制信号、解调信号、载波信号、已调信号定义正弦信号三个特点:幅值、频率、相位(选择填空)2.调幅信号原理:用调制信号x去控制高频载波信号的幅值。
测控电路

第一章!测控系统的组成:传感器测量控制电路和执行机构!!测控电路的功用:传感器的输出信号一般很微弱,还可能伴随着各种噪声,需要用测控电路将它放大,剔除噪声、选取有用信号,按照测量与控制功能的要求,进行所需演算、处理与变换,输出能控制执行机构动作的信号。
在整个测控系统中,电路是最灵活的部分,它具有便于放大、便于转换、便于传输、便于适应各种使用要求的特点。
测控电路在整个测控系统中起着十分关键的作用,测控系统、乃至整个机器和生产系统的性能在很大程度是取决于测控电路。
!!!测控电路的主要要求:1.精度高(1)低噪音和高抗干扰能力对信号进行调制,合理安排电路的通频带。
采用高共模抑制比的电路(2)低漂移、高稳定性首先选择温漂低觉得器件,其次应尽量减小电路的特别是关键部分的温度变化并保持电路工作稳定(3)线性与保真度好2.转换灵活(1)A/D转换灵活(2)电量参数转换(3)量程的变化3.有适合的输入电阻和输出电阻4.动态性能好响应快和动态失真小5.高的识别和分辨力6.可靠性高7.经济性好一:测量电路的输入信号类型对其电路组成有何影响?试述模拟式测量电路与增量码数字式测量电路的基本组成及各组成部分的作用。
随着传感器类型的不同,输入信号的类型也随之而异。
主要可分为模拟式信号与数字式信号。
随着输入信号的不同,测量电路的组成也不同。
图X1-1是模拟式测量电路的基本组成。
传感器包括它的基本转换电路,如电桥,传感器的输出已是电量(电压或电流)。
根据被测量的不同,可进行相应的量程切换。
传感器的输出一般较小,常需要放大。
图中所示各个组成部分不一定都需要。
例如,对于输出非调制信号的传感器,就无需用振荡器向它供电,也不用解调器。
在采用信号调制的场合,信号调制与解调用同一振荡器输出的信号作载波信号或参考信号。
利用信号分离电路(常为滤波器),将信号与噪声分离,将不同成分的信号分离,取出所需信号。
有的被测参数比较复杂,或者为了控制目的,还需要进行运算。
测控电路知识点总结

测控电路一.名词解释1.测量放大电路2.高共模抑制比电路:有抑制传感器输出共模电压(包括干扰电压)的放大电路称为高共模抑制比放大电路。
P263.有源驱动电路:将差动式传感器的两个输出经两个运算放大器构成的同相比例差动放大后,使其输入端的共模电压1:1地输出,并通过输出端各自电阻(阻值相等)加到传感器的两个电缆屏蔽层上,即两个输入电缆的屏蔽层由共模输入电压驱动,而不是接地,电缆输入芯线和屏蔽层之间的共模电压为零,这种电路就是有源屏蔽驱动电路。
P284.电桥放大电路:由传感器电桥和运算放大器组成的放大电路或由传感器和运算放大器构成的电桥都称为电桥放大电路。
P295.自举电路:自举电路是利用反馈使输入电阻的两端近似为等电位,减小向输入回路索取电流,从而提高输入阻抗的电路。
P366.可编程增益放大电路:放大电路的增益通过数字逻辑电路由确定的程序来控制,7.隔离放大电路:隔离放大电路的输入、输出和电源电路之间没有直接的电路耦合,即信号在传输过程中没有公共的接地端。
P458.信号调制及解调:调制就是用一个信号(称为调制信号)去控制另一作为载体的信号(称为载波信号),让后者的某一特征参数按前者变化。
在将测量信号调制,并将它和噪声分离,放大等处理后,还要从已经调制的信号中提取反映被测量值的测量信号,这一过程称为解调。
P559•调幅、调频、调相、脉冲调宽:调幅就是用调制信号x去控制高频载波信号的幅值。
(P55)10.包络检波:从已调信号中检出调制信号的过程称为解调或检波。
幅值调制就是让已调信号的幅值随调制信号的值变化,因此调幅信号的包络线形状与调制信号一致。
只要能检出调幅信号的包络线即能实现解调。
这种方法称为包络检波。
P60二.简答题1.测控电路在整个测控系统中起着什么样的作用?答:传感器的输出信号一般很微弱,还可能伴随着各种噪声,需要用测控电路将它放大,剔除噪声、选取有用信号,按照测量与控制功能的要求,进行所需演算、处理与变换,输出能控制执行机构动作的信号。
测控电路

测控电路介绍测控系统主要由传感器、测量控制电路(简称测控电路)和执行机构三部分组成。
在测控系统中电路是最灵活的部分,它具有便于放大、便于转换、便于传输、便于适应各种使用要求的特点。
测控系统乃至整个机器和生成系统的性能在很大程度上取决于测控电路。
测控电路主要包括信号放大电路、信号调制解调电路、信号分离电路、信号运算电路、信号转换电路、信号细分与辨向电路、电量测量电路、连续信号控制电路、逻辑与数字控制电路等。
实际上,测控电路是模拟电子技术和数字电子技术的进一步延伸与扩展,主要讨论一些典型常见的电路。
因此学好模电和数电是基础,其中运算放大器是测控电路的一个核心部件。
网址:从50年代的“尺寸自动检测仪器”,到80年代的“精密仪器电路”,再到今天的“测控电路”,“测控电路”课程经历了半个世纪的发展历程。
测控技术是现代生产和高科技中的一项必不可少的基础技术。
“测控电路”课程主要介绍工业生产和科学研究中常用的测量与控制电路。
包括测控电路的功用和对它的主要要求、测控电路的类型与组成、信号放大电路、信号调制解调电路、信号分离电路、信号运算电路、信号转换电路、信号细分与辨向电路、逻辑控制与连续信号控制电路、测控电路中的抗干扰技术,最后通过若干典型测控电路对电路进行分析。
本课程不是一般意义上电子技术课程的深化与提高,而要着重讲清如何在电子技术与测量、控制之间架起一座桥梁,使学员熟悉怎样运用电子技术来解决测量与控制中的任务,实现测控的总体思想,围绕精、快、灵和测控任务的其它要求来选用和设计电路。
本课程选用的教材是由天津大学精仪学院张国雄教授主编的《测控电路》。
该书是根据1996年10月全国高等学校仪器仪表类教学指导委员会第一次会议的决定,作为测控技术及仪器专业的规划教材,并根据随后拟定的教学大纲编写的。
该教材可供测控技术及仪器专业各专业方向和机械工程类其它专业选用。
2002年,该书获全国优秀教材二等奖,并被列为国家“十五”规划教材。
测控电路课后习题答案

实例三:液位测控电路
0 电路组成:由传感器、放大器、比较器和执行机构等组成
1 0
实例应用:可用于化工、石油、食品等行业的液位测控
3
பைடு நூலகம்工作原理:传感器将液位信号转换为电信号,放大
0
器将信号放大后送至比较器与设定值进行比较,根
2
据比较结果控制执行机构动作,实现液位的自动控
制
0 电路特点:结构简单、可靠性强、易于实现自动化控制
习题二答案
• 题目:简述测控电路的基本组成。 答案:测控电路的基本组成包括传感器、信号调理电路、转换电路和执行机构。传感器负责采集 被测量的信息,信号调理电路对传感器输出的信号进行放大、滤波等处理,转换电路将模拟信号转换为数字信号,执行机构则根据 控制信号对被控对象进行控制。
• 答案:测控电路的基本组成包括传感器、信号调理电路、转换电路和执行机构。传感器负责采集被测量的信息,信号调理电路对传感器输出的信号进 行放大、滤波等处理,转换电路将模拟信号转换为数字信号,执行机构则根据控制信号对被控对象进行控制。
采集电路:放大器、滤波器、模 数转换器等
添加标题
添加标题
添加标题
添加标题
采集方法:直接采集和间接采集
采集注意事项:保证信号的准确 性和可靠性
信号的放大与滤波
信号放大:通过电子元件将微弱信号进行放大,以便于测量和控制 滤波:利用滤波器对信号进行筛选,去除噪声干扰,提取有用信号
信号的转换与输出
信号的转换:将输入的模拟信号转换为数字信号,便于计算机处理
分
添加标题
工作原理:压力传感 器将压力信号转换为 电信号,经过信号调 理电路处理后,再通 过A/D转换器转换为 数字信号,最后由微 控制器进行数据处理
测控电路 (2)

测控电路1. 引言测控电路是一种应用广泛的电子电路,用于测量和控制各种物理量。
在现代工业、科研和仪器仪表中,测控电路扮演着重要的角色。
本文将介绍测控电路的基本原理、常见元件和设计考虑因素。
2. 测量电路测量电路是测控电路中的核心部分,它用于测量各种物理量,如电压、电流、温度、压力等。
常见的测量电路包括电压分压电路、电流测量电路、电桥电路等。
2.1 电压分压电路电压分压电路是一种常见的测量电路,它通过使用电阻器将被测电压降低到适合测量范围内。
电压分压电路可以使用电阻分压原理或者电容分压原理实现。
电阻分压原理是使用串联电阻来实现电压分压,根据欧姆定律,电阻与电压成正比关系。
电阻分压电路可以灵活调整分压比例,适用于各种电压范围的测量。
电容分压原理是利用电容器的电压分压特性实现电压分压。
通过选择合适的电容比例,可以实现不同范围的电压测量。
电容分压电路对输入阻抗要求较高,适用于高阻抗源测量。
2.2 电流测量电路电流测量电路用于测量电路中的电流大小。
电流测量电路采用电阻器、电流互感器等元件来实现电流的测量。
电阻器法是最常见的电流测量方法之一。
通过串联电阻器,将待测电流转化为电压信号进行测量。
根据欧姆定律,电流与电压成反比关系,因此可以根据电压信号求出电流大小。
电流互感器是一种特殊的电流测量元件,通过互感原理实现电流的测量。
电流互感器主要由铁芯和线圈组成,当被测电流通过线圈时,会在铁芯中产生磁感应强度变化,通过测量磁感应强度的变化来求解电流大小。
2.3 电桥电路电桥电路是一种精密测量电路,常用于测量阻抗、电容和电感等物理量。
电桥电路的核心是利用电阻和电压的平衡关系来实现测量。
常见的电桥电路包括维尔斯顿电桥、韦斯通电桥和麦克斯韦电桥等。
电桥电路通过调整电桥上的元件值,使得电桥平衡,从而测量待测物理量。
3. 控制电路控制电路是测控电路中的另一个重要组成部分,它用于控制各种设备和系统的操作。
常见的控制电路包括开关电路、比较器电路和放大器电路等。
测控电路基础概念总结

第一章绪论1、测控系统主要由传感器(测量装置)、测量控制电路(测控电路)、执行机构组成2、测控电路的主要要求:精、快、灵、可靠3、测控电路的特点:精度高、动态性能好、高的识别和分析能力、可靠性高、经济性好4、为了提高信号的抗干扰能力,往往需要对信号进行调制。
在紧密测量中希望从信号一形成就成为已调制信号,因此常在传感器中进行调制。
5用电感传感器测量工件轮廓形状时—这是一个幅值按被测轮廓调制的已调制信号---称为调幅信号6、用应变片测量梁的变形,并将应变片接入交流电桥。
这时电桥的输出也是调幅信号,载波信号的频率为电桥供电频率,电桥输出信号的幅值为应变片的变形所调制。
7、采用光栅、激光干涉法等测量位移时时传感器的输出为增量码信号。
8、增量码信号是一种反映过程的信号,或者说是一种反映变化增量的信号。
它与被测对象的状态并无一一对应的关系。
9、绝对码信号是一种与状态相对应的信号。
10、开关信号可视为绝对码信号的特例,当绝对码信号只有一位编码时,就成了开关信号。
开关信号只有0和1两个状态。
11、控制方式可分为开环控制与闭环控制。
12、闭环控制的特点:它的主要特点是用传感器直接测量输出量,将它反馈到输入端与设定电路的输出相比较,当发现他们之间有差异时,进行调节补充:1、信息时代的标志——高性能计算机的发展,速度和容量为其主要标志2、影响测控电路精度的主要因素有哪些?其中那几个因素是最基本的?(1)、噪声与干扰★(2)、失调与漂移,主要是温漂★(3)、线性度与保真度(4)、输入与输出阻抗的影响第二章信号放大电路1、输入失调电压u0s:对于理想运算放大器,输入电压为零,输出电压也必然为零。
然而,实际运算放大器中,前置级的差动放大器并不一定完全对称,必须在输入端加上某一直流电压后才能使输出为零,这一直流电压称之。
2、零点漂移:失调电压随时间和温度而变化,即零点在变动,称之3、输出失调电压u0=(1+R2/R1)u0s4、输出端产生的失调电压u02=-R2I b1+(1+R2/R1)R3I b2若取R3=R1//R2,则u02=R2(I b2-I b1)=R2I0s I0s称为输入失调电流5、绝大部分的运算放大器都是用于反馈状态6、由于运算放大器通常使用在负反馈状态,本来就有1800的相位差,再加上外接和内部电路的RC网络,有可能出现3600的相位差,使电路振荡。
测控电路 (2)

测控电路1. 引言测控电路是指用于测量和控制系统中的信号调理、数据采集、信号传输和控制执行等功能的电路。
在现代工业控制、仪器仪表和自动化等领域中,测控电路发挥着重要的作用。
本文将介绍测控电路的基本原理、常见组成部分和设计要点等内容。
2. 测控电路的基本原理测控电路的基本原理包括信号调理、数据采集、信号传输和控制执行等方面。
信号调理是指将传感器、信号源等产生的信号进行放大、滤波、线性化等处理,以便更好地适应后续的数据采集和控制操作。
数据采集是指将经过信号调理的信号转换为数字信号,并进行采样、量化等操作。
信号传输是指将采集到的数字信号进行传输,常用的方式包括串行通信、并行通信、以太网等。
控制执行是指根据传输的数字信号控制执行器进行动作控制,例如电机的启动、停止等操作。
3. 测控电路的组成部分测控电路的组成部分主要包括传感器、信号调理电路、数据采集器、数据传输模块和执行控制器等。
3.1 传感器传感器是将被测量的物理量转换为电信号的装置,常见的传感器包括温度传感器、压力传感器、光电传感器等。
传感器的选择应根据被测量的物理量和测量要求进行,例如在温度测量中可以选择热电偶传感器或者热敏电阻传感器。
3.2 信号调理电路信号调理电路用于对传感器输出的信号进行放大、滤波、线性化等处理,以适应后续的数据采集和控制操作。
常见的信号调理电路包括放大电路、滤波电路和线性化电路等。
放大电路可以根据传感器输出的信号进行放大,以增加测量的精度。
滤波电路可以通过滤除高频噪声和杂散信号,提高测量的稳定性。
线性化电路可以将非线性的传感器输出信号转换为线性信号,以便后续的处理和分析。
3.3 数据采集器数据采集器用于将经过信号调理的信号转换为数字信号,并进行采样和量化等操作。
数据采集器可以根据采集的信号类型选择合适的转换方式,常见的转换方式包括模数转换和频率转换等。
模数转换器可以将连续变化的模拟信号转换为离散的数字信号,频率转换器可以将频率变化的信号转换为数字信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
测控电路课程设计测控电路课程设计题目名称:倒车防撞报警装置专业班级:学生姓名:学号:指导教师:成绩:评语:指导老师签名:测控电路课程设计课程设计名称:倒车防撞报警装置专业班级:学生姓名:学号:指导教师:课程设计地点:课程设计时间:同组人员:目录引言 (4)1系统设计的目标和任务 (4)1.1系统设计的基本要求 (4)1.2系统设计的思路 (4)1.3方案论证 (5)1.3.1发送模块 (5)1.3.2接收模块 (5)2 AT89S51单片机与超声波简介 (5)2.2 AT89S51单片机的特点 (6)2.3 超声波简介 (7)2.4 超声波测距原理 (7)2.5 超声波测距误差分析 (9)2.5.1 温度误差 (9)2.5.2 时间误差 (9)2.6 影响超声波探测的因素 (10)2.7 如何提醒车主 (12)2.8 基于CX20106A超声波测距的调试 (12)3.1 倒车雷达的工作原理图 (12)3.2超声波系统主流程图 (13)3.3超声波硬件设计与软件编程 (14)3.3.1复位电路 (14)3.3.2显示电路 (15)3.3.3超声波发送与接收模块 (15)3.3.4 报警模块 (16)4 调试及性能分析 (17)4.1 硬件调试 (17)4.2 软件调试 (17)4.3测试结果与分析 (17)5设计总结 (18)致谢 (18)附录1电路原理图 (19)附录2程序 (19)参考文献 (28)引言随着我国经济的快速发展,交通运输车辆及私家用车的不断增加,不可避免的交通问题瞬时成为人们关注的问题。
其中由于倒车事故发生的频率高,已引起了社会和交通部门的高度重视。
倒车事故发生的原因是多方面的,造成倒车时的事故率远大于汽车前进时的事故率,尤其是非职业驾驶员以及女性更为突出。
而倒车事故给车主带来许多麻烦,不仅经济上,更有人身伤害,例如撞上别人的车,如果伤及儿童更是不堪设想,所以倒车雷达应运而生,倒车雷达的加装可以解决司机的不少麻烦,大大降低了倒车事故的频率。
由于存在视觉盲区,无法看清车后状况,司机在倒车时很容易发生事故。
为了减少带来的损失,需要有一种专门帮助司机安全倒车的装置。
因此,设计一个小车防撞系统也就变得很有必要。
目前测量距离一般都采用波在介质中的传播速度和时间关系进行测量。
常用的技术主要有激光测距、微波雷达测距和超声波测距三种。
超声波具有指向性强、能量消耗缓慢且在介质中传播的距离较远的优点,因此经常用于距离的测量。
超声波测距主要用于建筑工地以及一些工业现场和移动机器人研制上,可在潮湿,多尘等环境下工作。
相对于其他技术而言,超声波定位技术成本低、工作稳定、精度高、操作简单等优点,非常适用于距离测量定位。
AT89S51为小车防撞控制系统提供了稳定、可靠的解决办法,充分利用它的片内资源,实现了超声波测距和报警。
1系统设计的目标和任务1.1系统设计的基本要求本次设计的主要内容是设计一种基于单片机汽车防撞报警系统的硬件电路,主要利用单片机对超声波传感器采集的模拟数据的处理及存储。
设计的基本要求:1.快速自动报警功能:当超声波传感器检测到汽车后方障碍物与汽车的距离小于安全值时,系统能快速进行声光报警。
2.准确地向终端报警:能够及时并准确地向司机进行报警,快速地实现安全检测。
3.实时检测功能:监测模块能实时采集汽车与后方障碍物距离的变化,将这些数据定时传送给单片机,有利于及时了解当前所处情况是否处于安全环境之下。
1.2系统设计的思路该系统分为监测部分与终端接收部分。
监测部分,通过超声波系统对碰到的障碍物进行检测,再通过单片机系统对接收到的数据进行处理,保证在终端能准确地接收信息,蜂鸣器同时工作;终端接收部分,终端通过单片机分析接收的相关信息,在LED上显示与障碍物的距离。
1.3方案论证1.3.1发送模块方案1:采用压电式超声波换能器。
压电式超声波换能器是利用压电晶体的谐振来工作的。
方案2:采用反向器74LS04和超声波发射换能器T构成震荡器。
这种电路可以提高超声波发射强度,且电路简单,稳定性高。
方案3:单电源乙类互补对称功率放大电路和UCM—40T发射器。
利用单电源乙类互补对称功率放大大路驱动发射器[5]。
经论证比较,三种方案差距不大,但鉴于用74LS04电路简单。
故选择方案2。
1.3.2接收模块方案1:采用集成电路CX20106A。
它是一款红外线检波接收的专用芯片,考虑到红外常用的载波频率38KHZ与测距的超声波40KHZ较为接近,可以利用它制作超声波检测接受电路,且电路简单,灵敏度高,还有较强的抗干扰能力。
方案2:采用uA741构成两级放大电路,这是专用运算放大器,高增益,增益带宽积大,抗干扰能力强,可测距离远,精度高[6]。
经论证比较,虽然方案2相对方案1可测的更远,但方案1已可满足项目功能的要求,且方案1电路结构简单,方便调试,故采用方案1。
2 AT89S51单片机与超声波简介AT89S51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Flash Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器。
该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89S51是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
AT89S51单片机引脚图2.2 AT89S51单片机的特点AT89S51是一个低功耗,高性能CMOS 8位单片机,片内含4k Bytes ISP(In-system programmable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,功能强大的微型计算机的AT89S51可为许多嵌入式控制应用系统提供高性价比的解决方案。
AT89S51具有如下特点:40个引脚,4k Bytes Flash片内程序存储器,128 bytes的随机存取数据存储器(RAM),32个外部双向输入/输出(I/O)口,5个中断优先级2层中断嵌套中断,2个16位可编程定时计数器,2个全双工串行通信口,看门狗(WDT)电路,片内时钟振荡器[8]。
此外,AT89S51设计配置了振荡频率可为0Hz并可通过软件设置省电模式。
空闲模式下,CPU暂停工作,而RAM定时计数器,串行口,外中断系统可继续工作,掉电模式冻结振荡器而保存RAM的数据,停止芯片其它功能直至外中断激活或硬件复位。
同时该芯片还具有PDIP、TQFP和PLCC等三种封装形式,以适应不同产品的需求。
主要特性:· 8031 CPU与MCS-51 兼容· 4K字节可编程FLASH存储器(寿命:1000写/擦循环)·全静态工作:0Hz-33MHz·三级程序存储器保密锁定· 128*8位内部RAM· 32条可编程I/O线·两个16位定时器/计数器· 6个中断源·可编程串行通道·低功耗的闲置和掉电模式·片内振荡器和时钟电路.2.3 超声波简介我们知道,当物体振动时会发出声音。
科学家们将每秒钟振动的次数称为声音的频率,它的单位是赫兹。
人类耳朵能听到的声波频率为20~20,000HZ。
当声波的振动频率大于20000HZ或小于20HZ时,我们便听不见了。
因此,我们把频率高于20000HZ的声波称为“超声波”。
超声波广泛地应用在多种技术中。
超声波有两个特点,一个是能量大,一个是沿直线传播。
由于超声波也是一种声波,超声波在媒质中传播的速度和媒质的特性有关。
声波是物体机械振动状态(或能量)的传播形式。
所谓振动是指物质的质点在其平衡位置附近进行的往返运动。
超声和可闻声本质上是一致的,它们的共同点都是一种机械振动,通常以纵波的方式在弹性介质内会传播,是一种能量的传播形式,其不同点是超声频率高,波长短,在一定距离内沿直线传播具有良好的束射性和方向性。
超声波具有以下的特点:1)超声波可在气体、液体、固体、固熔体等介质中有效传播。
2)超声波可传递很强的能量。
3)超声波会产生反射、干涉、叠加和共振现象。
4)超声波在液体介质中传播时,可在界面上产生强烈的冲击和空化现象。
2.4 超声波测距原理在超声波探测电路中, 发射端输出一系列脉冲方波, 其宽度为发射超声波与接收超声波的时间间隔, 被测物距越远, 脉冲宽度越大, 输出脉冲个数与被测距离成正比。
超声波测距的方法有多种, 如相位检测法、声波幅值检测法和往返时间检测法等。
相位检测法虽然精度高, 但检测范围有限可检测到汽车倒车中, 其障碍物与汽车的距离;声波幅值检测法易受反射波的影响。
本文硬件设计采用超声波往返时间检测法, 其测量原理图如图2所示。
图2 超声波测距原理图其原理为: 在超声波发射器两端输入40KHZ 脉冲串, 脉冲信号经过超声波内部振子, 振荡产生机械波, 并通过空气介质传播到被测面, 由被测面反射到超声波接收器接收, 在超声波接收器两端, 信号是毫伏级的正弦波信号, 超声波经气体介质的传播到接收器的时间, 即为往返时间。
超声测距有脉冲回波法、共振法和频差法,其中常用脉冲回波法测距。
超声波测距的原理一般采用渡越时间法 ,其原理是超声传感器发射超声波, 超声波在空气中传播至障碍物, 经反射后由超声传感器接收反射脉冲, 测量出超声脉冲从发射到接收的时间, 再乘以超声波在空气中的速度就得到二倍的声源与障碍物之间的距离, 即:L=c ·t/2 (1)式(1)中, L 为超声传感器与被测障碍物之间的距离, c 为超声波在介质(空气)中的传输速率, t 为超声波从发射到接收的时间。
超声波在空气中的传播速度为: 00c c T T =⋅, 其中T 为绝对温度数值, 0273.15T k ≈,0331.4C m s =。
在测量精度不是很高的情况下, 一般可以认为c 为常数340m/s 。
由于温度影响超声波在空气中的传播速度;超声波反射回波又很难精确捕捉,致使超声波在空气中传播的时间很难精确测量。
这些因素是使用超声测距引起误差的原因。
2.5超声波测距误差分析根据超声波测距公式L=c·t/2,可知测距的误差是由超声波的温度误差、传播速度误差和测量距离传播的时间误差引起的。
2.5.1 温度误差由于超声波也是一种声波。
其声速C与温度有关。
表1列出了几种不同温度下的声速表1声速与温度关系温度(℃) -30 -20 -10 0 10 20 30 100313 319 325 323 338 344 349 386 声速(米/秒)这是超声波的温度效应特性,超声波的传播速度“C”可以用公式(2)表示:C=331.5+0.607t(m/s),式中t=温度(℃)。